
Peeking Behind the Mask
Modeling Belief in a Game of Mascarade

Colin Shea-Blymyer 1

Abstract

In this paper I study the beliefs of an agent play-
ing a version of the game Mascarade. A player in
this game must rely on memory and bluffs to con-
vince others that one has the card one claims to
have. The design of the game contains great math-
ematical structure, and represents an intuitively
pleasing subclass of stochastic systems with par-
tial observation. I introduce a formalization of the
game, and present bounds on the game’s action
and state spaces. I then introduce an algorithm
to track belief updates over actions and observa-
tions, and discuss alternatives to this algorithm
in the context of computational and memory con-
straints. In demonstrating the bounds and beliefs
associated with Mascarade, I illuminate an in-
teresting set of stochastic processes, and draw
connections between these processes and various
fields of mathematics. Interpreted through a board
game, these fields of theory can be more easily
accessed by a broad population.

1. Introduction
Mascarade is a social bluffing card game for 2 to 13 players
designed by Bruno Faidutti (Faidutti, 2014). In this game
a player only knows which card they start with, and other
players will try to decrease the confidence their opponents
have in knowing which card lies in front of them. Thus,
modeling a player’s belief about which players have which
cards is paramount in optimizing game play. The mechanics
of the game are simple, but encode a rich structure that
branches across probability, combinatorics, group theory,
and graph theory.

1School of EECS, Oregon State University, Oregon,
USA. Correspondence to: Colin Shea-Blymyer <she-
ablyc@oregonstate.edu>.

Proceedings of Oregon State University Probabilistic Graphical
Models Course, Corvallis, Oregon, USA, 2020. Copyright 2020
by the author(s).

Figure 1. Contents of the game Mascarade. Character cards are
pictured splayed across the top of the image. The goal of the game
is to claim a total of 13 points represented by the coins seen here.

1.1. Mascarade

In Mascarade a player’s objective is to use the powers of
the card in front of them to be the first to obtain 13 coins.
Gameplay starts with one card being randomly assigned to
each player face-up, and each player starts with 6 coins. As
play begins, all cards are turned face-down. Each card has
an identity, and a power is associated with that identity. On
each turn a player may take one of three actions:

1. Announce - claim that a certain card is in front of
you and activate its power. The announcing player
doesn’t have to have the claimed card, but any num-
ber of other players (starting with the player to the
announcing player’s left, and continuing clockwise)
may also claim to have that card and thereby challenge
your claim. Once all challenges have been made, all
players making a claim must reveal their card. Any
player that revealed they do not have the claimed card
loses one coin to a central pot. Any player that revealed
they do have that card activates its power.

Peeking Behind the Mask

2. Swap-or-not - take another player’s card along with
your own. Place both cards under the table and shuffle
them. Give one back to the other player and keep one
for yourself. The shuffle need not be random, and you
likely know which of the two cards you kept (though
not the identity of those cards - you do not get to look
at them).

3. Look - secretly look at the identity of your card.

The first few actions of the game must be swap-or-not to
force players into states of partial knowledge. As the game
progresses, the probability that a given player has a given
card changes every time the card is swapped-or-not by an-
other player, the card is revealed, and some times when
another card is revealed - possibly resolving whether that
card was involved in an earlier swap-or-not. To reach the
game’s objective, however, a player must claim to know
which card they possess and announce their card. If all cards
were equal we may assume that the best card to announce
is that for which my probability of possessing it dominates
that of other players. In this naive case, we can begin to
see the value in statistically modeling the probabilities of
players having certain cards.

Most cards, however, have unique powers. While most have
a reward in coins as a component of their power, not all do.
Other cards move coins in particular ways, or allow a player
to gain knowledge, or obfuscate it. As such, assigning the
rewards for actions can be very difficult. In this work, I
focus on the properties of the belief process, and refrain
from value modeling.

2. Related Work
The game of Mascarade can be straightforwardly under-
stood as a discrete time stochastic process. The game’s
time is discretized on turns (or on players in the case of a
challenged “announce” action), and the game is stochastic
if the policies of other players is unknown. If the game is
played with all cards revealed, an observer might model
it as a Markov chain. Consequently, a player of such a
game who possesses a notion of rewards for their actions
can model the game as a Markov decision process (MDP)
(Bellman, 1957). As per the rules, however, the cards re-
main concealed, and the true state of the game can only be
partially observed through looking at one’s own card, or as
the result of a challenged claim. Appropriately, one might
try to model the game as a partially observable Markov
decision process (POMDP) (Åström, 1965). A POMDP
augments an MDP with a probability distribution over pos-
sible states, and, if solved, provides optimal actions for each
belief. While modeling Mascarade as a POMDP would
provide a unique perspective on the game and a powerful
platform for teaching decision modeling, the game’s reward

functions are complex and the POMDP belief update pro-
cedure is insufficient to capture the game’s dynamics as
is.

For a more expressive belief update, I consider the belief
propagation algorithm for inference on graphical models
(Pearl, 1982). In this scenario it provides a method for
recalibrating the forward propagation of probability from
previous states that, after observation, are known to have not
occurred. While the belief propagation algorithm is not a
perfect fit for belief updates in Mascarade, its core concepts
and the fundamentals of its implementation on trees proved
inspirational to this work.

3. Methodology
The formalization of Mascarade draws from a multitude of
mathematical disciplines, including combinatorics, group
theory, and probability. In this section, I formalize a sim-
plification of the game as an observable system, and then
extend that formalization to the partially observable case. In
section 4.1 I use these formalizations to determine bounds
on this game that will be useful for later analysis.

3.1. Fully Observable Formalization

A game is represented as the four-tuple Γ =< J,C,S,A >,
where the set of players is J = {J0, . . . , Jn}, the set of cards
is C = {C0, . . . , Cn}, the set of states is S = {σ0, . . . , σm},
and the set of actions is A = {τ(i, j)∀i 6= j}. Each turn in
a game results in an action. In this fully observable case, the
only actions are true swaps, as the results of announcing a
card and looking at a card do not change the game’s state.

3.2. Partially Observable Formalization

The partially observable case adopts the formalization from
section 3.1, and introduces two core concepts. First, when
an action τ is taken, the outcome is unknown, and will be
modeled with a probability of 0.5 for occurring1. In a more
complex model of the game, these transition probabilities
would be determined by the active player’s policy, according
to that player’s belief. Second, an observation λ(i) can be
made on a single item i in the current state. To illustrate, the
observation λ(1) can be interpreted as learning what card
player J1 has2. Thus λ(1) → 2 signifies the observation
that player J1 is in possession of card C2.

1In a Markov decision process, this probability would be asso-
ciated with each action to form the state transition function.

2Since the assignment of cards to players is symmetric to the
assignment of players to cards, it is valid to interpret λ(1) as
learning which player holds card C1. However, this is inconsistent
with the rules of Mascarade, so I adopt the former interpretation
for the remainder of the text.

Peeking Behind the Mask

4. Results
In this section I introduce bounds derived from the structure
of the game, discuss one implemented algorithm for belief
updates, and propose two other such algorithms. Bounds on
the algorithms will also be presented for later discussion.

4.1. Game Bounds

I use the structure of the game and the formalizations pre-
sented in section 3 to find bounds on the action and state
space of a game. I also explore the structure inherent in the
game.

4.1.1. FULLY OBSERVABLE GAME STRUCTURE

Each state σ ∈ S is a unique bijection over players J and
cards C, and are therefore permutations on the bijection
set. It follows that S is in the symmetric group Sn, giving
m = |S| = n!. Further, σ can be said to associate with
the n× n permutation matrix Mσ whose entry Mσ

i,j = 1 if
σ(j) = i, and 0 otherwise.

The fact that player J0 possesses card C3 is thus represented
in all Mσ : Mσ

0,3 = 1, corresponding with permutations
that satisfy σ(3) = 0. In a four player game, this matrix
must fit the pattern

M =

0 0 0 1
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0

A game Γ begins with the state σ0 associated with the permu-
tation matrix M0 = I . An action τ(i, j) is a transposition
on the state. A game’s state σ after an action τ is given by
the update σ = στ . Each action can be said to move the
state across an adjacent edge in the transposition graph Gn.
This gives us |A| =

(
n
2

)
.

Though many of the properties of this game scale combina-
torialy, the process itself is Markovian, so only the previous
state needs to be remembered.

4.1.2. PARTIALLY OBSERVABLE GAME STRUCTURE

While the fully observable game may rely on the Markov
property in order to reduce the order of information needed
to store, the partially observable game does not satisfy the
Markov property, and so must exploit the game’s structure
to gain traction. This and the inclusion of multiple players
results in this game’s deviation from an orthodox POMDP
model. The partially observable game admits myriad rep-
resentations — three of which form the foundations each
belief update algorithm in section 4.2. I will address each
of these in the following section.

4.2. Belief Update

In the partially observable game, the most difficult pro-
cedure in updating beliefs is the update as a result of an
observation. In such cases, previous actions may be found
to be impossible in retrospect, and balance of probability
must then be recalculated. Fortunately, the structure of this
game is a powerful tool for reducing the complexity of be-
lief updates. In this section I introduce three methods for
storing and updating beliefs. The first, which has been fully
implemented, uses a tree to track all possible lineages of
states. The second tracks only a distribution over possi-
ble states and the history of transitions, but increases the
complexity of updates from observation. The third method
employs a doubly stochastic matrix, which possesses de-
sirable properties but does not lend itself to observation
updates.

4.2.1. PROBABILISTIC BRANCHING TIME UPDATE

This update procedure, named after the alethic logic that
inspired it, reflects the mechanics of Pearl’s belief propa-
gation algorithm in its observation updates. As shown in
figures 2 and 3, the core data structure of this algorithm
is an execution tree. Each level of the tree represents the
outcome of a swap action. The root of the tree is the starting
state, and each node contains a possible permutation matrix
and its possibility. After a swap, each leaf node spawns one
child node with the same state (representing the chance the
swap did not occur) and another with the state formed by
the product of the original state and the swap’s associated
transposition (representing the chance the swap did occur).
Both child nodes inherit half of its parent’s probability.

When an observation update occurs (depicted in figure 3)
each leaf node is checked for compliance with the obser-
vation. Those whose states are rendered impossible by the
update are removed from the tree, and their probability is
considered to be 0. If both children are pruned from a par-
ent node, then the parent node, too, is pruned, and so on,
recursively, until no more nodes need to be removed from
the tree. With respect to the belief propagation algorithm,
this tree can be considered the factor graph, and the pruning
is analogous to setting the potentials of each invalid node
to 0, so outgoing messages from an invalid node’s parent
will not be diminished for its sibling. Next the tree is re-
calibrated with respect to its new structure, propagating its
probabilities down until each leaf node receives an update.

As this algorithm stores the execution tree at each time step,
the space required in on the order of 2t, where t is the num-
ber of transpositions taken. Though observations do reduce
the number of nodes tracked in the tree, an observation
leaves (n − 1)! unique states feasible once all states are
possible. Since observation updates check at least every leaf
node, and propagate probabilities from the root, it too is

Peeking Behind the Mask

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

0 1 0
1 0 0
0 0 1

1 0 0
0 1 0
0 0 1

1 0 0
0 0 1
0 1 0

0 1 0
1 0 0
0 0 1

0 1 0
0 0 1
1 0 0

1 0 0
0 1 0
0 0 1

0 1 0
1 0 0
0 0 1

1 0 0
0 0 1
0 1 0

0 0 1
1 0 0
0 1 0

0 1 0
1 0 0
0 0 1

1 0 0
0 1 0
0 0 1

0 1 0
0 0 1
1 0 0

0 0 1
0 1 0
1 0 0

p=1

0.5 0.5

0.25 0.25 0.25 0.25

0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

Figure 2. Illustration of the Probabilistic Branching Time Update after transitions for n = 3. The game begins with the known state
(represented as the permutation matrix M0 = I3 with probability = 1) that each player starts with their originally assigned card. Next,
player J0’s card is swapped with player J1’s card. With a transition probability of 0.5, the probability that the state remains the same is
0.5, as is the probability that the swap did, in fact, occur (resulting in the right-child permutation matrix). The probabilities propagate
forward in this fashion after each swap is made. This game is generated by the permutation sequence σ0 ∗ τ(0, 1) ∗ τ(1, 2) ∗ τ(0, 1).

Peeking Behind the Mask

Figure 3. Illustration of the Probabilistic Branching Time Update after observation for n = 3. This game shows the one depicted in figure
2 after the observation λ(1)→ 0. This observation (i.e. that player J1 has card C0) eliminates the possibility of the multiple leaf states
that don’t match Mσ

1,0. Further, the rightmost state generated by the second transition is also found to be invalid. This implies that if the
first swap did happen, then the second swap could not have. Once all invalid nodes are removed from the execution tree, probabilities can
be propagated from the root node, resulting in an accurate update of the game’s state. Future updates will only affect the remaining states
and their new probabilities. This game is generated by the permutation sequence σ0 ∗ τ(0, 1) ∗ τ(1, 2) ∗ τ(0, 1) ∗ (λ(1)→ 0).

Peeking Behind the Mask

bounded by the order of 2t.

This algorithm is intuitive, and well founded. An imple-
mentation of this algorithm can be found in this paper’s
supplementary materials.

4.2.2. DISTRIBUTION OVER STATES UPDATE

An alternative to tracking all possible lineages of states
through a game is to maintain a distribution over all possible
states, and a history of transitions taken. This is similar to
how POMDP models perform updates.

When a game begins, this algorithm must first produce the
full list of states, and the transposition edges between them,
i.e. the full transposition graph must be generated with edges
mapped to swap actions and nodes mapped to states. Then
the state corresponding with M0 is assigned a probability of
1 and all other states are assigned a probability of 0. When
a swap occurs, each state on the transposition graph splits
its probability with the state at the other end of the edge
associated with the current swap.

For observation updates the transposition graph must be
iterated over time based on the recorded order of swaps.
In this case the graphs may be considered directed acyclic
probabilistic graphical models, and beliefs may be propa-
gated after infeasible edges are pruned following a similar
method described in the observation update of section 4.2.1.

This procedure can take a shortcut to the transposition graph
by generating new states as they become possible (much like
the tree in section 4.2.1), and merging non-unique nodes
while associating the generating transposition that created
the duplicates. Without this shortcut, this method faces an
upper bound on the order of tn! on storage. With the short-
cut, this method has a storage upper bound of min(2t, n!)
for nodes and an additional n!2

(
n
2

)
in storage if the algorithm

(eventually) caches all the edges in the transposition graph,
or and additional min(2t, n!)/2 in complexity as it checks
each newly generated leaf node for uniqueness.

4.2.3. DOUBLY STOCHASTIC MATRIX UPDATE

While both previous methods track the likelihoods of states,
the doubly stochastic matrix update represents each update
as a change in the probability that player Ji has card Cj
for each i and j. For instance, the doubly stochastic matrix
representation of the game generated by the permutation
sequence σ0 ∗ τ(0, 1) ∗ τ(1, 2) ∗ τ(0, 1) (see figure 2) is

M =

 0.375 0.375 0.25
0.375 0.375 0.25
0.25 0.25 0.5

where M0,0 represents the probability that player J0 has
card C0, etc.

This representation has many desirable properties: it intu-

2 4 6 8 10 12

2000

4000

6000

8000

10 000

12 000

2x

Γ(x+1)

1

2
(x-1) x

Computed by Wolfram|Alpha

Figure 4. A comparison of some of the bounds found in this work.

itively presents probabilities to a player in a manner that
is actionable; transposition updates to the matrix reduces
to simple matrix operations; and the matrix requires only
n×n space. Further, by the Birkhoff-von Neumann theorem
(Birkhoff, 1946), any doubly stochastic matrix can be rep-
resented by a convex combination of permutation matrices.
In terms of probability, a doubly stochastic matrix can be
thought of as the sum of all states scaled by their probability.
This representation is known as the Birkhoff-von Neumann
decomposition of the matrix.

As shown previously, knowledge of the current state is in-
sufficient to produce knowledge of the state after an ob-
servation. With the Birkhoff-von Neumann decomposition
in mind, one might consider retaining a history of doubly
stochastic matrices and use the decomposition to produce
the network structure introduced in section 4.2.2. Unfortu-
nately, the decomposition is not unique, so one runs the risk
of including a bogus history when building the network. To
ameliorate this, one can check each decomposition against
the previous, but this entails the same effort as rebuilding
the tree from scratch.

5. Discussion
The doubly stochastic matrix update has very striking pros
and cons. In its favor are the conveniences and interpretabil-
ity of its form, the ease of transposition updates, and low
storage costs. Against it lies the expense of performing an
observation update. With these in mind it is clear that in
a game where actions are evenly balanced between obser-
vations and transpositions, it is better to forgo this method.
However, much can be gained with this method in a game
where the number of transpositions is much greater than the
number of observations.

Similar trade-offs exist for the distribution over states update
and the probabilistic branching time update. The former
performs better on average with a larger number of obser-
vations, but the maintenance and storage required on new

Peeking Behind the Mask

leaf nodes holds it back when many transpositions are being
performed. The latter method may take more space, and
longer games will make that space tend toward infinity, but
it performs transposition updates quicker than the distribu-
tion over states method, and observation updates quicker
than the doubly stochastic matrix method. In the average
game, the optimal update is likely to be a hybrid between
the unbounded tree in the early game, and the states distri-
bution as the number of leaves in the tree surpasses the total
number of states. To put this in perspective, in a game of
6 people (approximately half of the maximum number of
players), the number of leaves on the tree would surpass the
total number of states after 10 card swaps.

6. Conclusion
In this paper I have formalized the card game Mascarade as
class of stochastic processes, derived bounds on the action
and state space of of these processes, introduced and ana-
lyzed three algorithms for updating a belief state on these
processes, and I’ve discussed cases where the introduced
algorithms are more preferable than the others based on
their performance. The bounds and algorithms rely on rich
mathematical structure in this game, providing a unique and
entertaining case study for the application of many veins
of theory. I also implemented a belief update algorithm for
the game, which can be used in future work to help model a
player’s decision policy.

Some small optimizations can be made to the algorithms
implemented and proposed. When updating from a network,
propagation need not start from the top of the tree, but only
from one level deeper than the deepest pruned node. Also, as
mentioned in the end of section 5, one can easily transition
memory models from trees to networks when 2t > n!.

Finally, I have yet to believe that I’ve squeezed all the use
out of the structure in this game. The patterns I’ve noticed
in my experiments with the doubly stochastic matrix update
method suggest there’s some hidden key I’ve not yet discov-
ered. It seems that the richer the structure, the more difficult
it is to find exactly which structural features will be useful.

References
Bellman, R. A markovian decision process. Indiana Univ.

Math. J., 6:679–684, 1957. ISSN 0022-2518.

Birkhoff, G. Three observations on linear algebra. Univ.
Nac. Tucumán. Revista A., 5:147–151, 1946.

Faidutti, B. Mascarade. [Board Game], 2014.

Pearl, J. Reverend Bayes on inference engines: A distributed
hierarchical approach. Cognitive Systems Laboratory,
School of Engineering and Applied Science . . . , 1982.

Åström, K. Optimal control of markov processes
with incomplete state information. Journal of
Mathematical Analysis and Applications, 10
(1):174 – 205, 1965. ISSN 0022-247X. doi:
https://doi.org/10.1016/0022-247X(65)90154-X. URL
http://www.sciencedirect.com/science/
article/pii/0022247X6590154X.

http://www.sciencedirect.com/science/article/pii/0022247X6590154X
http://www.sciencedirect.com/science/article/pii/0022247X6590154X

