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Abstract

As autonomous systems become more ubiquitous, the ability to repre-
sent and reason about their behaviors becomes more important. Norma-
tive autonomous systems are those systems that obey some set of norms,
and deontic logic is a formal method for reasoning about norms. In this
survey, I explore what normative autonomous systems are, why they are
important, how they can be implemented, and what role deontic logic
plays in their implementation. I also explore a particular form of deontic
logic (Dominance Act Utilitarianism) and its strengths and weaknesses as
a logic for normative autonomous systems.

1 Introduction

As self-driving cars take to the road, and autonomous delivery drones take to the
skies, autonomous systems that behave by socially accepted norms will find it
easier to inter-operate with humans in that society. It follows that the capability
of autonomous systems to respect the ethical and social norms of the society
they operate within will play a large role in their rate of adoption.

Any autonomous, embodied, system that obeys (or tries to obey) a set of eth-
ical or social guidelines can be considered to be a normative autonomous system
(NAS). These guidelines, or norms, are distinct from the system’s mission, and
modify and constrain the behavior of a NAS. In particular, normative systems
are concerned with statements of obligation, permission, and prohibition.

A famous example of a normative autonomous system is Isaac Asimov’s
positronic robot that follows the Three Laws of Robotics [4]:

1. A robot may not injure a human being or, through inaction,
allow a human being to come to harm.

2. A robot must obey orders given to it by human beings except
where such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protec-
tion does not conflict with the First or Second Law.
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These laws do not define a robot’s mission (perhaps to drive from one city to an-
other), but do constrain its behavior (preventing it from harming pedestrians).
These laws are the norms by which the robotic system is governed.

I describe some properties of norms in the next section. In Section 3 I
explore some approaches to imbuing autonomous systems with norms. Section
4 introduces the concepts of deontic logic. Section 5 introduces a specific flavor
of deontic logic known as Dominance Act Utilitarianism (DAU). Through the
lens of this logic, I approach some challenges in normative reasoning: contrary
to duty reasoning (Section 6), and emergent norms in groups (Section 7). I
then present some computational results regarding DAU in Section 8. Finally,
I reflect on the use of deontic logic in normative autonomous systems and offer
some exciting directions for future work in Section 9.

2 Norms

In general, norms may be considered to be the rules that govern the behavior
of a system acting in a group or society [5].

Norms are often thought to be violable. For instance, a self-driving car
might try to obey the norm to stop at stop signs, but will violate that norm
if its brakes are not working, or if extenuating circumstances make it clearly
unsafe to do so. It is also common to expect retribution in the case of a violated
norm. This retribution may be exacted by an institution (such is the case
when violating regulatory norms), or by other agents in the society (such is the
case when violating social norms).1 Norms are commonly held to be exogenous
(originating from outside of an agent), but I will also consider norms that arise
from and concern the same actor. Finally, as seen in Asimov’s Three Laws of
Robotics, norms may also be hierarchical.

3 Approaches to NAS

A natural question is how to represent norms and implement autonomous sys-
tems that obey them. One approach is to model norms implicitly. For example,
inverse reinforcement learning systems that operate autonomous vehicles can
learn to obey traffic laws. This approach relies on training data to impart
norms into the system, and so it is difficult to enforce normative behavior di-
rectly. Further, it lacks a principled way to translate between natural language
and the procedure for imparting norms. Importantly, this approach also lacks
any clear method to reason about the norms of the system, and how they in-
teract with each other. That is, how will changes to the system’s training data
affect its norms and behavior in the future?

Alternatively, norms can be modeled explicitly. Such representations seek
to translate norms into mathematical rules that are then interpreted by the

1regulatory and social norms are sometimes referred to as r-norms and s-norms, respec-
tively [24]. The former are determined by authority, and the latter are agreed upon (often
implicitly) by the members of the society.

2



autonomous system. This approach is taken in [10], where ethical guidelines are
incorporated as terms in an optimal controller’s utility function and constraints.
While this approach is straightforward to implement, and allows the system
designer to impart norms directly to the system, it retains the other problems
of implicit norm modeling.

Another way to explicitly model norms is to write them as specifications
for the system. This approach is taken in [12] to describe and reason about
legal systems, where the specifications are formalized in Linear Temporal Logic
(LTL); and in [1] to define open organizations of agents, where organizational
norms are formalized using first order logic.

Such an approach avoids the issues of implicit norm representation. Logics
are developed with natural specification in mind, and determining a norm’s
consequences is a matter of formal reasoning. This raises the question of which
logic should be used to specify norms. Logics of necessity and possibility (alethic
logics) seem to be insufficient for expressing norms. To illustrate this, consider
the norm “The car should stop at the stop sign”. In an alethic logic, one might
express this using Kripke semantics by stating “In all accessible worlds, the car
stops at the stop sign” (styled ‘ p’, where ‘p’ is the proposition that the car
stops at the stop sign, and ‘ ’ is the necessity modality and the dual of possibility
‘ ’). This is equivalent to saying “There is no accessible world in which the
car does not stop at the stop sign”. In such a case, it is clearly impossible to
violate this norm, or any norm formulated as a matter of necessity. Since we
understand norms to be violable (as discussed in Section 2), expressing norms
in this manner does not capture all the essential features of norms.

The apparent unsuitability of alethic logics for expressing and reasoning
about norms led to the development of deontic logic — a logic designed to
reason about normative propositions.

4 Deontic Logic

Deontic logic can be considered as the formal study of norms and their inter-
action with each other [8]. In particular, deontic logic models norms in terms
of obligation, permission, and prohibition. Obligations are positive normative
imperatives, and are expressed by stating what ought to be the case. E.g. “It
ought to be the case that the car stops at the stop sign” (styled ‘©p’). Permis-
sion is usually defined as the dual of obligation, and something is prohibited (or
forbidden) if it ought to be the case it does not hold (‘©¬p’).

While the foundations of deontic logic had been considered as far back as
the tenth century [18], it wasn’t until 1951 that philosopher Georg von Wright
established it as a formal symbolic logic [26]. The logic that emerged from von
Wright’s work is known as Standard Deontic Logic (SDL).

SDL can be described in Kripke semantics by introducing a deontic accessi-
bility relationship between worlds. That is, a world w is deontically accessible
from world w′ just in case world w is an ideal world — a world where all obli-
gations hold. SDL is a normal S5 modal logic.
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Deontic logics are built to express and reason about norms, so they are better
suited for designing NAS than alethic logics. Deontic logic’s status as a formal
logic makes reasoning about norms possible.

In [8], the authors propose that deontic logic can be used to develop logic-
based agents that can derive what they ought to do via deduction from a norm
base. In [2], deontic logic is proposed as a method for formal verification and
monitoring of normative properties in automata. In [23], the authors advance
the verification proposal by developing a model-checking algorithm for deontic
logic formulas. The authors of [20] use deontic logic to supervise a reinforcement
learning agent.

SDL provides a fine starting point for the discussion of deontic logic, but it
is plagued by paradoxes in practical scenarios, and lacks much of the context
that makes normative reasoning special [8]. I now introduce Dominance Act
Utilitarianism as a richer focal point for the study of deontic logic.

5 Dominance Act Utilitarianism

Dominance Act Utilitarianism (DAU) is a deontic logic that integrates modal-
ities for agency, paths, states, and counterfactuals [16]. The modal operators
introduced here make DAU a normal multi-S5 logic, but it can support non-
monotonic modalities [19].

Syntax. Let Agents be a finite set of agents. The language of well-formed
DAU formulas is given by:

A := φ | ¬A | A∧A | [α cstit : A] | � [α cstit : A] | � ([α cstit : A]/φ)

where α ∈ Agents, ∧,¬ are the usual boolean connectives, and φ is a formula in
a branching time logic. The branching time logic is used to describe an agent’s
mission and the states in the world. The informal description of branching time
logic operators is given here. The reader can refer to [16] for formal semantics:
the operator means “Historically Necessary” ( A means A is true no matter
which future is taken), means “Historically Possibe” ( A means there is a
future that leads to A). The formula PA means “there is a previous moment
on this history where A holds”, and FA means “there is a future moment on
this history where A holds”. The DAU-specific operators informally mean the
following: [α cstit : A] is the agency operator and says that α sees to it, or
ensures, that A is true; �[α cstit : A] is the obligation modality and says that
α ought to ensure that A is true; finally, �([α cstit : A]/φ) says that under the
condition φ, α ought to ensure that A is true. The formal semantics of these
deontic operators follow.

Branching time. Let Tree be a set of moments with an irreflexive, transitive
ordering relation < such that for any three moments m1,m2,m3 in Tree, if
m1 < m3 and m2 < m3 then either m1 < m2 or m2 < m1. There is a
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Figure 1: A utilitarian stit model for an agent α illustrating the main DAU
definitions. Moments m < m′ with sets of histories Hm = {h1, . . . , h6} and
Hm′ = {h1, . . . , h4}. Each moment is marked with the actions available to α
at that moment: Choicemα = {K1,K2} and Choicem

′

α = {K3,K4,K5}. Action
K2 = {h5, h6} and K4 = {h2}. Each history is marked with the formula(s)
that it satisfies at m and with its value V alue(h), e.g., m/h1 satisfies A and
has value 3. m/h5 |= [α cstit : A] since Choicemα (h5) = K2, and both h5 and
h6 satisfy A. On the other hand, m/h1 6|= [α cstit : A] since Choicemα (h1) =
K1 = {h1, h2, h3, h4} and h4 does not satisfy A. Optimalmα = {K2} so m/h5 |=
�[α cstit : A]. Optimalm

′

α = {K4,K5} and so α has no obligations at m′ since
there is no formula φ s.t. |φ|m′ ⊇ K4 ∪K5 (See Def. 5.3).

unique root moment which is denoted by 0. A history is branch of the tree that
extends infinitely into the future. Formally, it is a maximal, linearly ordered set
of moments from Tree. Given a moment m ∈ Tree, Hm is the set of histories
that go through m: Hm := {h | m ∈ h}. See Fig. 1. A pair of moments and
histories is denoted by m/h, where m ∈ Tree and h ∈ Hm.

Definition 5.1. [16, Def. 2.2] With AP a set of atomic propositions, a branch-
ing time model is a tuple M = (Tree,<, v) where Tree is a tree of moments
with ordering < and v is a function that maps m/h pairs inM to sets of atomic
propositions from 2AP , the set of subsets of AP .

A formula is considered to hold or not at an m/h pair. This is written:
M,m/h |= φ, and it is granted that h ∈ Hm. The operators of branching time,
F and are evaluated by:

M,m/h |= FA iff ∃m′ ∈ h s.t. m < m′ and M,m′/h |= A

M,m/h |= A iff ∀h′ ∈ HmM,m/h′ |= A

The P operator is defined like F, but for moments m′ < m, and the operator
is the dual of .
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Given a DAU statement A, the proposition it expresses at moment m is the
set of histories where it holds starting at m

|A|Mm := {h ∈ Hm | M,m/h |= A} (1)

M is omitted from the notation where there is no risk of ambiguity; writing
instead, e.g. |A|m, or m/h |= A.

Choice. Consider an agent α ∈ Agents. Formally, at m, an action K is a
subset of Hm: this is the subset of histories that are still realizable after taking
the action. At every moment m, α is faced with a choice of actions which is
denoted by Choicemα . So Choicemα ⊂ 2Hm . See actions in Fig. 1. Choicemα must
obey certain constraints given in the Supplementary material. In what follows,
Choicemα is assumed finite for every α and m.

Agency. Agency is defined via the ‘Chellas sees to it’ operator cstit, named af-
ter Brian Chellas [9]. This operator can be used on its own to define a ‘stit-logic’,
whose product with computational tree logic (CTL) approaches the semantics
of DAU [6]. Intuitively, an agent sees to it, or ensures, that A holds at m/h if
it takes an action K s.t., whatever other history h′ could’ve resulted from K,
A is true at m/h′ as well. I.e., the non-determinism does not prevent α from
guaranteeing A.

Definition 5.2 (Chellas cstit). [16, Def. 2.7] With agent α and DAU statement
A, let Choicemα (h) be the unique action that contains h. Then

M,m/h |= [α cstit : A] iff Choicemα (h) ⊆ |A|Mm

If K ⊆ |A|m we say K guarantees A. See Fig. 1.

Optimal actions. An agent’s obligations in DAU are defined in terms of an
agent’s ‘optimal actions’ — those actions that bring about an ideal state of
affairs. Let V alue : H0 → R be a value function that maps histories of M to
utility values from the real line R. This value represents the utility associated
by all the agents to this common history. Two sets of histories Z and Y are
ordered as

Z ≤ Y iff V alue(h) ≤ V alue(h′) ∀ h ∈ Z, h′ ∈ Y (2)

Let Statemα := ChoicemAgents\{α} be the set of background states against which
α’s decisions are to be evaluated. These are the choices of action available
to other agents. Given two actions K,K ′ in Choicemα , K � K ′ iff K ∩ S ≤
K ′ ∩ S for all S ∈ Statemα . That is, K ′ dominates K iff it is preferable to it
regardless of what the other agents do (known as sure-thing reasoning). Strict
inequalities are naturally defined. Optimal actions are given by

Optimalmα := {K ∈ Choicemα | 6 ∃K ′ ∈ Choicemα s.t. K ≺ K ′} (3)

Optimalmα is non-empty in models with finite Choicemα [16, Thm. 4.10].
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Dominance Ought. Obligations can now be defined. Intuitively, at moment
m, agent α ought to see to it that A iff A is a necessary condition of all the
histories considered ideal at moment m. This is formalized in the following
dominance Ought operator, which is pronounced “α ought to see to it that A
holds”.

Definition 5.3 (Dominance Ought). With α an agent and A an obligation in
a model M,

M,m/h |= �[α cstit : A] iff K ⊆ |A|Mm for all K ∈ Optimalmα (4)

See Fig. 1 for examples. The dominance ought satisfies a number of intuitive
logical properties; notably, it is a normal S5 modal operator. The reader may
refer to [16, Ch. 4] for more details.

Conditional obligation. It is often necessary to say that an obligation is
imposed only under certain conditions. Let X be a proposition, i.e. X = |φ|m
for some φ. The choice of actions available to α at m under the condition that
X holds is defined as Choicemα /X := {K ∈ Choicemα | K ∩ X 6= ∅}. This is
the right definition because non-determinism might make it impossible to have
K ⊆ X (i.e., an action that guarantees X), but future actions might still ensure
the finally realized history will satisfy X. Thus in Fig. 1 Choicemα /B = {K1}.
Conditional dominance is then defined by comparing only histories that satisfy
φ: for two actions K,K ′ from Choicemα , K �X K ′ iff K ∩ S ∩X ≤ K ′ ∩ S ∩X
for all S ∈ Statemα . The conditionally optimal actions are then

Optimalmα /X := {K ∈ Choicemα /X | 6 ∃K ′ ∈ Choicemα /X s.t. K ≺X K ′} (5)

Finally, where A is an obligation and φ a formula in the underlying temporal
logic, the conditional Ought is defined by

M,m/h |= �([α cstit : A]/φ) iff K ⊆ |A|Mm ∀K ∈ Optimalmα /|φ|Mm . (6)

Notably, conditional obligation is not the same as φ =⇒ �[α cstit : φ].
Conditional obligation only compares φ-satisfying histories, while this latter
formula still compares all histories.

6 Contrary to Duty Reasoning

Conditional obligations are key in DAU for dealing with so-called “contrary
to duty” (CTD) obligations. These CTD obligations are concerned with what
ought to be the case when an obligation is violated [21]. Since norms are violable,
it is important to be able to reason about what an agent ought to do in the
contrary to duty case.

An example CTD scenario presented in [21] regarding the appearance of
holiday cottages is as follows:
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Figure 2: A utilitarian stit model for agent α illustrating a valid model for
Example 6. Here m1/h1 |= f as does m1/h2. It is clear that [α cstit : f ] holds
for m1/h1 and m1/h2 because both Choicemα (h1) = K1 and Choicemα (h2) =
K2 guarantee f . �[α cstit : ¬f ] also holds because K3 dominates all other
actions (and is therefore the only member of Optimalmα ), and K3 guarantees
¬f . �([α cstit : w]/f) holds because Optimalmα /f = K2, and K2 guarantees f .

CTD Example 1.

1. There must be no fence.

2. If there is a fence then it must be a white fence.

3. There is a fence.

This is troublesome to formulate in SDL. The natural approach would be to
state “There ought not be a fence, and a fence implies it ought to be a white
fence, and there is a fence”: ©¬f ∧(f =⇒ ©w)∧ f . However, in SDL (and,
indeed, in any normal deontic logic) f =⇒ ©f by necessitation. Thus we
have ©¬f ∧©f , from which we can derive any obligation due to the principle
of explosion.

In DAU these norms may be formalized as �[α cstit : ¬f ]∧�([α cstit :
w]/f)∧ f . The proposition f may hold in m′/h′, but that does not neces-
sarily imply that the obligation is violated — the optimal action may not in-
clude h′. Therefore I can devise a model in which these statements hold (see
Figure 2), so this formalization is consistent. If the third statement in the
example is interpreted not just as something that holds true in one possible
history, but as something the agent sees to, the example may be formalized as
�[α cstit : ¬f ]∧�([α cstit : w]/f)∧[α cstit : f ]. This case may still be satisfi-
able provided some action available to the agent can guarantee f (see Figure
2). However, if statement 3 is interpreted as a statement of necessity then we
are left with: �[α cstit : ¬f ]∧�([α cstit : w]/f)∧ f . Because DAU is normal
(and thus f =⇒ �[α cstit : f ]), we can deduce �[α cstit : ¬f ]∧�[α cstit : f ];
again invoking the principle of explosion.
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This last case exposes some flaws in the formulation of DAU that are common
to other deontic logics [22]. First, DAU can not effectively express obligations
that can not possibly be fulfilled. Though this may seem like the right conclu-
sion, it seems to be that humans are capable of reasoning about norms that can
not be met. In the given example a human would ideally paint their cottage
fences white, even if all cottages had fences. Second, DAU can not effectively
express true moral dilemmas. It does not seem like desired behavior to accept
all obligations when faced with two ideal, but mutually exclusive worlds.

One proposed solution to these problems is the use of defeasible logic [10].
For the first problem, a defeat mechanism could be implemented to release the
agent from an obligation that can not be met. However, it has been argued that
such a mechanism would make it impossible to determine if a norm has been
truly violated, or if a permission had been granted to ignore that norm [21]. For
the second problem, non-monotonic reasoning could assign one obligation more
weight than the other, but DAU already incorporates a preference relation, so
such a solution would only change the modality of the dilemma. Non-monotonic
reasoning does, however, provide a useful framework for describing hierarchies of
norms, and norm change. Another solution involves introducing paraconsistency
to the logic [11]. This would avoid explosion in the logic, but would trade away
commonly accepted principles of the logic.

Now I will explore CTD reasoning with a temporal dimension in a second
example2 from [21]:

CTD Example 2.

1. On Monday you ought to help your friend on Tuesday.

2. On Monday you ought not apologize to your friend on Wednesday if you
help them on Tuesday.

3. On Monday you ought to apologize to your friend on Wednesday if you
do not help them on Tuesday.

4. On Monday you will not help your friend on Tuesday.

In [21] it is shown that expressing this problem in SDL leads to the ‘prag-
matic oddity’ where you ought to help your friend, and apologize to them for
not helping. Avoiding the pragmatic oddity is a goal of successful CTD reason-
ing. In [7] the authors begin with a product of LTL and SDL, but approach the
semantics of DAU as they attempt to represent a similar problem. In [22], a
deontic logic with counterfactual and temporal modalities is used to solve this
problem, but struggles to solve a problem like CTD Example 1. This failure may
be related to the use of accessibility relations in the counterfactual modality as
opposed to a preference ordering, as DAU and [7] do.

2Though originally introduced in [21], I am adapting the temporal presentation of this
problem from [22]
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An open area of research in CTD and alethic-deontic logics is how obliga-
tions propagate. Detachment is the method by which secondary, or conditional
norms become primary norms [21]. Some work on propagation regarding the
alethic modalities of DAU has been presented in [23], but it does not explore
the counterfactual modalities. Another area of research in CTD is the nature
of CTD obligations in multiagent games [25].

7 Group Agency

STIT logics, like the agency logic embedded in DAU, express an agent’s ability
to ensure some state through performing some action. These logics can also
express the interaction between two or more agents, or represent the interactions
between coalitions of agents. This allows deontic logics built on stit models to
reason about how agents ought to interact with each other. This is also essential
to multiagent system designers for reasoning about how choices of norms could
impact the system [6].

In [25], the authors propose the “left and right shoes” game in which two
agents are each given two shoes, not of a pair (i.e. two left shoes or two right
shoes). The agents must independently determine how many shoes they would
like to give to the other agent with the knowledge that a matching pair of
shoes is worth more than two not of a pair. An agent can give away 0, one, or
both their shoes (Kα,0,Kα,1, and Kα,2 respectively). The utility they receive is
determined in part by the action the other agent takes (see Table 1 for utility
assignment). The authors formalize the game in a close relative to DAU, and

j, i Ki,0 Ki,1 Ki,2

Kj,0 2, 2 4, 1 6, 0
Kj,1 1, 4 3, 3 4, 1
Kj,2 0, 6 1, 4 2, 2

Table 1: Utilities for left and right shoes agents i and j given their choices of
action.

show that the optimal action available to each agent is related to that agent’s
dominant strategy. They also remark that if each agent acts according to their
obligations (that is, to not give away any shoes), an equilibrium is obtained,
but it is not an optimal outcome. However, if the agents act contrary to duty,
then an optimal outcome is achieved.

Group action in DAU was presented in [16] for groups of agents receiving
the same utility from the intersection of their actions. In [17], semantics are
introduced for determining optimal actions for groups with knowledge of future
moments. With this, the author shows that individual agents acting from a fu-
ture perspective reach an equilibrium for the group, but not necessarily a group
optimum if there are multiple such equilibria. If the agents act cooperatively,
however, then they are capable of ensuring an optimal outcome. If the agents
do not act from a future perspective (and therefore do not have knowledge of
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what other agents may do), then they can not guarantee cooperation, optimal
outcomes, or equilibrium (specifically in the absence of static equilibria). This
demonstrates the importance of information on the success of groups of agents,
and further epistemic frames are developed for DAU in [15] and [14].

8 Computational Details of DAU

Modeling multiagent systems is a strength of stit logics, however it comes at
a computational cost. It has been shown that satisfiability of atemporal stit
formulas that model two or more agents is undecidable [13]. [13] also shows that
such logics are not finitely axiomatizable; that is, there is no finite set of axioms
from which all the theorems of the logic could be derived. Reducing the agent
count to one allows the logic to be decidable in nondeterministic exponential
time, and an axiomatization has been given in [27]. However, [6] introduces
a flow-product of CTL and stit, which avoids some of these issues; implying
there may be interesting temporal fragments of stit that are axiomatizable and
decidable.

Regarding DAU more directly, [19] shows that an interpretation of the logic
without temporal or counterfactual operators is decidable and finitely axioma-
tizable. This simplified version of the logic has been mechanized as a natural
deduction calculus [3]. However, it is argued in [19] that this simplified logic is
essentially the same as SDL, and so shares in its paradoxes.

9 Conclusion

Deontic logic allows designers of autonomous systems to reason formally about
the norms of those systems. With the development of more powerful tools in de-
ontic logic, designers could better prevent the violation of rules, develop agents
that internalize and reason about explicitly specified social conduct, explain
why an agent reasoned a move was optimal, or deduce the impacts of intro-
ducing a competitor to a society. Though the number of modalities that seem
to be critical to effective deontic reasoning make the subject computationally
complex to explore, the number of contexts deontic logics are able to capture
make them highly expressive. Balancing this trade off between expressiveness
and complexity is important. So, too, is exploring the interactions between
the different modalities of deontic logic, and better characterizing obligation
propagation and CTD obligation.

Deontic logic could also benefit from some practical applications. Its use in
game theory is a promising start, and could be followed by control synthesis in
decision problems and beyond. I also advocate for the use of deontic logic in
model checking, where modal logic tools are already well developed. Finally,
learning obligations from data is a compelling method to integrate deontic logic
with common modern systems.
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