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In places with a lot of people in one space, crowd control is often an issue that is taken care of with humans
controlling traffic flow or with static barriers. Human traffic controllers can adapt to changing situations,
such as an evacuation or sudden influx of people during rush hour, but it poses a safety hazard for them.
Multi-agent robot systems provide a novel approach to flexible human traffic flow control for both day-to-day
traffic and emergency scenarios. Modern human traffic simulation approaches and reinforcement learning are
used as a test environment for determining robot behaviors and roles for changing human traffic flow and a
dynamic way. Results show that such a complex environment poses challenges for classical reinforcement
learning approaches, but such challenges may be overcome with more advanced techniques.

1 INTRODUCTION

In situations where crowds gather, crowd control is necessary for mitigating regular variances in
congestion and even more critical in effective evacuation during emergency scenarios. Maintaining
the flow of pedestrian traffic in emergency scenarios is vital to public safety. However, the static
traffic control measures common in places like subway platforms are not well equipped for adapting
to drastic changes in traffic flow, and employing humans to control traffic exposes them to the very
dangers the traffic is fleeing.

Crowd dynamics are complex, exhibiting a variety of behavior patterns as a homogeneous
system, as well as being composed of discrete actors with independent thoughts and actions. These
dynamics are a research field in and of themselves, and any crowd control system must make
choices and take actions while understanding the effect those actions will have on the crowd
dynamics. A poorly designed traffic control system that does not account for these behaviors risks
causing further traffic problems, rather than improving traffic flow.

A multi-robot solution could provide dynamic reconfiguration of the traffic space depending on
the situation at hand as compared to static barriers. Such a system could improve response time in
an emergency situation, as compared to the time required to deploy human responders. However,
this approach is not without challenges. In addition to the complexity of a crowd environment,
multi-agent systems introduce complexities regarding inter-agent communication and learning.

In this work we introduce two transient crowd flow scenarios and compare the effectiveness
of dynamic and static control measures in these scenarios. We implement these scenarios as
simulations to show the effectiveness of dynamic crowd flow control in changing traffic patterns.
We first review related work, then go into details of our solution and implementation, and finally
our results and conclusions.

2 RELATED WORK

In order to fully understand the domain we are working in, we look at four areas of related work.
We start with multi-robot group formation and behavior, as we plan to expand on these methods
to create our own multi-robot algorithms. Next we look at social navigation, to see how robots
currently navigate in human spaces. Then we examine human crowd dynamics, which are necessary
to understand so that we can use robots to improve traffic flow. Finally we look at simulations of
human crowds as we plan to modify an existing simulation to test our work.
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2.1 Multi-robot group formation and behavior

The first area of interest is multi-robot group behavior. For this project, the focus will be on
distributed group behavior methods, as in the real world, it is unlikely that the robots will have
a centralized system. One type of distributed control uses behavioral models, such as flocking.
Flocking involves all robots following a defined set of individual actions that lead to an overall
group behavior [2]. Early work in this area started in animation. In work by Reynolds, a flock
of birds is animated by modelling the birds as particles who react in certain ways to their local
environment, instead of creating a pre-planned trajectory for each bird [20]. This behavior based
approach was extended to robotics, with one application being unmanned ground vehicles working
as a team to reach goals and perform tasks [1]. One example of behavior rules bases the individual
behavior on the heading of the robot and the headings of the robots adjacent to it [9].

2.2 Social Navigation

Next, we examine social navigation to see how previous work has tackled the issue of robot
navigation in a human friendly way. One method for socially cognizant navigation is potential field
based planning [3, 11]. This approach involves creating different social “forces" that the robot is
influenced by to drive how the robot gets from one place to another. This may be used as a global
path planner, or as a local planner in combination with another planning method for the global
planning, such as A*. Work by Kruse et al. [11] takes into account that humans have agency and are
not just obstacles, and that the quality of the plan depends on the human acceptance more than its
effectiveness. Ferrer took inspiration from Helbing’s social force model of humans [8] and applied
it to the context of a companion robot that walks alongside a person [3, 4]. Converting human
social rules into cost functions and maps for planners is another popular approach for integrating
human social proxemics into motion planning. Kirby turned human navigation rules into cost
functions for a heuristic planner for a single robot that resulted in person-acceptable navigation
[10]. Simulations were run using the planner which validated that socially acceptable navigation
choices were made by the robot in different contexts.

Another method for social navigation is learning. Vasquez et al. [22] used inverse reinforcement
learning to model action motivation and context into learning. They used the ROS pedestrian
simulator as a testbed and evaluation metrics that were objective and subjective, such as human
proxemics and an influence model based on work by [7]. Okal and Arras [17] also used inverse
reinforcement learning to learn normative social structures for humans and create trajectories to
accommodate the humans. Results showed the robot was able to learn acceptable trajectories in
both large scale pedestrian simulation and a small in-person study [17]. Luber et al. [13] took a
different approach and used unsupervised learning on annotated surveillance data to generate
relative motion paths that well replicated human relative motion.

2.3 Human Crowd Dynamics

Another area of interest is the dynamics of crowds and how they are currently influenced. Work by
Helbing discusses the concept of social force, defined by an individual’s motivation, and how it
can be used in creating a model for pedestrian behavior [8]. The social force model assumes that
a person will go the most direct route to their destination, that each individual pedestrian will
want to keep some distance between themselves and others and that this distance is a function
of speed. The social force equation then consists of an attractive force towards the goal and a
repulsive force towards others. Simulations done showed that the social force model was able to
decently reproduce pedestrian movement. Additional work by Helbing studied human traffic flow
in different environments including bottlenecks, intersections, and corridors, with specific focus
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on how these features can effect evacuation of a space [6]. These simulations showed that the
geometry of the space effects how people exit the space, and that additions such as a zig-zag path
or columns can help reduce panic and congestion in crowds. Previous simulations and real life
experiments have shown that changing the environment in specific ways, such as adding pillars or
obstacles to a space, can aid in making evacuation more efficient, as seen in Figures 1 and 2 [6, 14].
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Fig. 1. Intersections modified with additional barriers, railings, obstacles, and visual signals to aid in optimizing
human traffic flow [6].
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Fig. 2. A real-life experiment involving a panicked evacuation scenario showed that particular placement of
an obstacle can aid in the efficiency of evacuation [6].
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2.4 Simulations of Human Crowds

In order to properly analyze any multi-robot solution, it must be tested within appropriate crowd
scenarios. Simulating these crowds and scenarios with dynamic environment changes is a multi-
agent system itself with its own body of research work and can be very computationally intensive.
Prior work in crowd simulation, both for day-to-day traffic scenarios and more urgent evacuation
scenarios includes a variety of methods for creating and bench-marking these simulations. In
order to mimic both crowd dynamics, as well as the more localized independent agent behaviors, a
standardized approach is to utilize a large, particle-style controller for the crowd, and localized
path planning to handle collision avoidance between agents and between agents and obstacles
[18, 19, 23]. Work by [18] and [21] focus on creating efficient collision avoidance and reasonable
behavior, but both lean on a statically defined environment to determine behaviors.

Work by [23] uses roles to help drive behaviors from a cognitive framework. Leader and follower
are the two roles, allowing flexible environments by focusing path planning and collision handling
more heavily on the leader agents. In contrast, [16] relies on very localized path planning and
collision avoidance, paired with the concept of incompressibility of agents to create behaviors
for very dense crowds. This efficiently handles collision avoidance while limiting the needs of
computing power. This approach, however, does not account for distant agents for planning, which
leads to some non-realistic motion and agent spreading. Further exploration of a cognitive model for
high density crowds was performed by [19]. This work provides agents with individual personalities
and rule sets, leading to unique behaviors based on agent types. This work functions in highly
dynamic environments.

3 METHODS

In order to influence human crowd behavior effectively, the robots create dynamic barriers to allow
them to reach their desired configuration and guide people on what to do. In a panic situation,
movement is more useful than lights or sound, as it would be likely that sound can be drowned out
by alarms and lights can add to the panic. The robots modulate their formations and movements
based on the crowd density and other factors (such as rush hour) to create optimal spaces for
pedestrian traffic.

For the purposes of this project, we focus only on planar, 2D movement for both the people and
robots. The robots will be simulated as differential drive mobile robots with degrees of freedom in
X, y, and 6. Our plan is to build on previously created crowd simulation models in Python, namely
PySocialForce[5], to create different human traffic simulation environments. We will build different
robot barriers and behaviors, as well as look at localized modes and sensing and communication
for adaptable positioning. The crowd response and response times to different barriers, behaviors,
and changing modes will be examined. Additionally, we will examine the flexibility and speed of
formation for the different behaviors, and use the data from the crowd and robots to determine the
most promising of the barrier-behavior-communication combinations.

3.1 Crowd Behavior

The crowd behavior used for simulation is modeled using the PySocialForce implementation of the
Extended Social Force Model[5, 15]. This implementation extends the base Social Force Model [8]
to simulate pedestrian social group walking behaviors. The base implementation uses only static
obstacles, and so the package is modified to allow for dynamic obstacles that utilize their own
learning method.
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3.2 Learning

The dynamic barrier system will include four agents, where each agent is one meter long. Two
agents are rotated 45° clockwise, and the other two are rotated 45° counter-clockwise. Each agent
has knows where all the pedestrians are, where the other robots are, and the general destinations
of each of the pedestrians. The agents do not know anything about the angle of rotation of the
other agents or the size of the agents. Each agent can move one meter backwards, forwards or not
move in both the x and y planes, leading to nine possible actions.

The agents will employ Q-Learning to minimize the time pedestrians spend traversing the
interchange in each scenario. To facilitate learning, the ten meter square interchange is sub-
sectioned into one meter bins. These location bins are then further binned based on the number of
pedestrians present, as well as if there is already an agent in that particular bin. The population
bins are broken into five possible densities, and each density state has an equivalent state that
includes the presence of an agent. This breakdown of the space leads to roughly 11! possible
states. This estimate does not account for the fact that only four of the 25 states can have agents at
any given time, and it is quite possible a significant number of these states will never be observed.

The crowd simulation model does not allow for dynamic generation of pedestrians or continuous
flow, so training was done by generating 50 second "snapshot" simulations of the pedestrian flow.
To accelerate the learning process with these snapshots, we run six snapshots in parallel at a time,
and then average the Q-values across the snapshots for each of the four agents. These averaged
Q-values are then used as starting Q-values for the next learning cycle.

In each step, all agents are rewarded with the number of people who have reached the exit at the
end of that step.

3.3 Scenarios

The conventional interchange shown in Figure 1 is used as the simulation layout for ease of
comparison to previous work. The space is modeled after a pedestrian interchange in a subway
system and has four points of ingress and four points of egress.

We investigate two scenarios in which we compare the performance of our dynamic barriers to
the performance of static barriers and that of no barriers. Performance is measured by the average
flow rate of the environment.

3.3.1  Rush Hour. In the rush hour scenario, barriers must reduce congestion at the intersection of
traffic flows from four pairs of ingress and egress points. The layout of this scenario can be seen
in Figure 3. Foot traffic will begin slowly and the influx of human agents will increase sharply
over time. Human agents will move from an assigned ingress point to an assigned egress point,
each starting with a velocity sampled from a normal distribution centered on 1.4 m/s (a standard
walking speed [12]). Barriers in this scenario must efficiently direct low and high volumes of traffic
to optimize traffic flow. For our rush hour intersection, our static barriers will be a center line
barrier in each aisle with a column in the center of the intersection, as seen in the top right of
Figure 4 based on the results of Helbing et al. [6]. This configuration is efficient for high densities,
which is appropriate for a rush hour situation [6].

3.3.2  Evacuation. In the evacuation scenario, many human agents enter the environment through
one of three ingress points with a very high velocity (around 2.8 m/s) with one point of egress.
Our base environment can be seen in Figure 5 This will likely form congestion at the egress point,
which the barrier system must try to disrupt. As the environment is also an intersection, we chose
to have the same barriers as the rush hour scenario based on prior work by Helbing et al. [7]. Our
static barrier configuration can be seen in Figure 6.
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Fig. 3. Environment for a rush hour situation with four points of ingress and egress.
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Fig. 4. Environment with static barriers for a rush hour situation with four points of ingress and egress.

3.4 Evaluations

Once learning is complete, we will run two cases for each scenario. The cases for each scenario will
use the same generated number of pedestrians and time steps. The first case uses static barriers
defined based on previous literature on pedestrian flow. The second case uses four dynamic barriers,
where two are cantilevered right and two are cantilevered to the left. Additionally, the g-tables
developed during the learning phase are used for these evaluation runs.

4 RESULTS

We will evaluate our system performance with the time to exit of 95% of people in the environment.
We are attempting to minimize the time to exit, and we aim for the time metric to be better than the
control experiment. In both scenarios, we expect to see that there will be an improved performance
using dynamic barriers over static ones in most cases.
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Fig. 5. Environment for an evacuation situation with one point of egress.
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Fig. 6. Environment with static barrier for an evacuation situation with one point of egress.

4.1 Rush Hour

We hypothesize that static barriers will improve the time to exit, as seen in prior work outline in
previous sections. We hypothesize that dynamic barriers will help improve time to exit in a rush
hour scenario, but not as significantly as in an evacuation scenario, as new people are entering the
space more frequently, keeping the density of people more constant than the evacuation scenario.
The less constrained setup of the rush hour scenario may make learning harder than the evacuation
scenario. The barriers are also expected to be less dynamic than the evacuation scenario as the rush
hour scenario changes at a slower pace.

4.2 Evacuation

We hypothesize that static barriers will improve the time to exit, as seen in prior work outlined in
previous sections. We hypothesize that dynamic barriers will help more in an evacuation scenario
than a rush hour scenario, as the number of people is constantly decreasing and no new people are
entering the space. The more constrained setup of this scenario may make learning easier, yielding
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Fig. 8. Static barriers in rush hour scenario. Red lines are dynamic barriers

better results. The barriers are also expected to be more dynamic in the evacuation scenario as it is
a faster paced scenario with the number of people changing quicker.

5 CONCLUSION

In this work we introduced the concept of dynamic robot barriers for increasing safety and efficacy
in human traffic control. Using a human crowd simulator, we used reinforcement learning to train
dynamic line barriers to increase traffic flow in an rush hour and evacuation scenario. Results
showed that, even for experiments with run-times longer than twelve hours, agents failed to
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converge on a policy. We suspect this is a consequence of the large state-action space exposed to
the agents, even after quantization and tiling.

Despite these setbacks, our dynamic barriers seem to perform on-par with the static barriers —
taking only a few more seconds on average to clear the intersection during a given scenario. This
may imply that the environment itself is insensitive to interventions, which would make it difficult
to engineer a reward for the agents that improves the throughput of the intersection. Further, the
limitations we imposed on the movement of our agents reduces the amount of influence they can
impose on the environment.

One goal of future work is to examine use of a neural network for learning, as opposed to classical
Q-learning. This would allow for the more complete state space definition, as well as allowing for
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Fig. 11. In the evacuation scenario, each epoch exposed many new states to the agents, even after 3000
epochs. Effective learning only begins happening once the agents have seen most of the states.

more control over the barriers so they can rotate as well as translate. In conjunction with this, it
would be interesting try different barrier shapes, for example, changing barrier lengths or including
circular barriers in addition to line barriers. Another avenue of future work is changing the rate of
people entering the simulation so we can more accurately replicate a rush hour situation to see
how the barriers change from light traffic to very heavy traffic. In addition to changing the people
flow, another avenue of future work is testing in different environments, such as a single hallway,
a room with only one exit, or a more complex intersection.
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