Forecasting of Spatio-temporal Chaotic Dynamics with Self-Attention

Colin Shea-Blymyer
Oregon State University

sheablyc@oregonstate.edu

Abstract

Forecasting chaotic sequences is a difficult task for tra-
ditional machine learning techniques as small errors in ap-
proximation quickly lead to dramatic divergence. Recent
work has shown that recurrent neural networks (RNNs) and
reservoir computers (RCs) can effectively predict spatio-
temporal systems. We extend this work by implementing
a attention-based approach to dynamics forecasting, and
quantify its relative prediction accuracy on the forecasting
of the Kuramoto-Sivashinsky (KS) equation. We compare
this method’s performance and limitations to others that
rely on recurrent connections. We find that the attention-
based model’s capability to incorporate long-range depen-
dencies makes it a good fit for predicting complex dynam-
ics, but it lacks the speed and efficiency of RC models. This
study confirms the capability of self-attention architectures
to capture chaotic dynamics at least as well as architectures
with recurrent connections.

1. Introduction

Many important real-world systems exhibit spatio-
temporal chaotic dynamics, e.g. fluid turbulence and the
movement of electrical signals in the heart. Indeed, the
seminal event that led Edward Lorenz to found the field of
chaos theory was his discovery that a change from 6-digit
precision to 3-digit precision would drastically change his
weather pattern simulations [5]. From this, he determined
that weather modeling could not make long-term forecasts
[12]. This helps illustrate how difficult chaotic dynamics
are to learn — small amounts of error in a model can lead
to outcomes that diverge from the ground truth significantly.
This also helps to show how important a problem the effec-
tive modeling of such systems is — from weather to cardiol-
ogy, an accurate understanding of such systems is a crucial
component to our understanding of the world.

Deep learning (recurrent neural networks, in particular)
has greatly advanced the state of the art of system model-
ing [11]. These techniques can learn to model very com-
plex systems with great accuracy and great generality. In

Sizhen Li
Oregon State University

lisiz@oregonstate.edu

fact, recent work has shown that even chaotic systems can
now be forecasted beyond traditional limits of predictability
[13]. However, these learned models still have significant
drawbacks regarding their long-range effectiveness, train-
ing and memory complexity, and hyper-parameter selection
process.

In this work, we extend a recent effort to compare the
effectiveness of modeling chaos with different deep learn-
ing architectures [15]. Specifically, we investigate the effec-
tiveness of an attention-based architecture [14] at this same
task, and contrast it with recurrent architectures. Attention
architectures outperform recurrent architectures in other se-
quence prediction tasks, so it is prudent to benchmark the
approach against other popular techniques on this uniquely
difficult task.

The next section reviews the mechanics of various recur-
rent and attention architectures and the use of deep learning
for the prediction of chaotic systems. Section 3 describes
how we implement two architectures (one recurrent, one at-
tention) for testing, and section 4 concerns how these archi-
tectures were tested, evaluated, and provides results. Sec-
tion 5 concludes the paper with a summary of our results,
and a discussion of future work.

2. Background

Recurrent neural networks [4] (RNN) are a popular class
of models that have shown great promise in many time-
series forecasting tasks. RNNs are able to capture tempo-
ral behavior by adding a feedback connection which sends
a copy of previous values of hidden states, along with the
current input, as the input of a hidden cell. However, vanilla
RNNSs are hard to train because the vanishing and exploding
gradient problem originating from repeated parameter ma-
trix multiplication during back propagation through time.
Some variations have been proposed to alleviate these prob-
lems, such as the Long Short Term Memory network [6]
(LSTM) and Gated Recurrent Units [2] (GRUs), by utilizing
a residual connection. The previous hidden state is added to
the current cell state directly via residual connection which
bypasses the parameter matrix multiplication, so LSTM and
GRU can memorize longer time dependencies.

Figure 1. The parallel framework [13]. This framework trains
models (.RNN;_1,RNN;,RNN;;..) in parallel. Each model is
responsible for a spatial segment of the system G. To preserve
spatial continuity of local interactions, each model accepts inputs
from the spatial region it’s responsible for, and from buffers to ei-
ther side 1.

LSTM and GRU gained significant improvement over
vanilla RNNs. However, LSTM and GRU still have a se-
quential path from older past cells to the current one, so the
length of time dependency they can learn is limited. Be-
sides, one inevitable issue of RNN-based models is they
take a long time to train due to the fact that each step de-
pends on previous results. The proposal of Transformers
[14] and BERT [3] break the dominance of RNN-based
models in sequence prediction. They totally get rid of se-
quential order during training. The self-attention layer al-
lows each position in the input sequence to have direct
interaction with other positions with the same distance.
Those attention-based models not only achieved better re-
sults on lots of Natural Language Processing (NLP) tasks
than RNN-based models, but are also easier and faster to
train because they can process the whole sequence at a time.
In contrast to recurrent neural networks, reservoir comput-
ing (RC) does not train the recurrent connections in its net-
work [7]. Instead, a reservoir computer initializes a ran-
dom network of randomly weighted connections between
hidden, non-linear units; allows input to propagate through
the network; and then trains only the weights between the
network and the output. In this sense, the output layer is
selecting the evolution of hidden states that best match the
training data [|]. This may also be thought of as a recurrent,
non-linear embedding of the system used as a kernel trick.
Because only one layer of weights is trained, RCs do not
suffer from vanishing/exploding gradients and the training
time can be very short.

Previous work has shown that reservoir computers can
achieve state-of-the-art predictions for systems character-
ized by spatio-temporal chaos [13]. Similar results have
been achieved with LSTMs, as well [16]. These techniques
rely on the ability of RNNs to produce suitable non-linear
trajectories for systems with extreme sensitivity to initial

conditions. More recent work by a collaboration of these
two groups has performed a comparative study on recurrent
architectures and their ability to forecast chaos [15]. They
found that RCs perform better on systems with fully observ-
able states than other RNNs while requiring less memory
and time to train. On the other hand, LSTMs and GRUs
greatly outperform RCs when only partial knowledge of the
system state is given. In this work, we reproduce previous
experiments in comparing RNN architectures, and extend
the comparison with an implementation of an attention-
based model.

3. Methods

The use of sequential prediction techniques on chaotic
dynamics has seen success in the past, but has been re-
stricted to low-dimensional systems [8]. In order to pre-
dict systems with larger spatial dimension (like Lorenz’s at-
mospheric models), these previous techniques must be aug-
mented. To this end, we adopt the implementation of the
parallel reservoir scheme proposed in [13]. This framework
showed in | trains models in parallel — each model respon-
sible for a spatial segment of the system. To preserve spatial
continuity of local interactions, each model accepts inputs
from the spatial region it’s responsible for, and from buffers
to either side. Thus, neighboring models will have overlap-
ping inputs along the edges of their spatial segments (figure
1.

m+1
loss {

ENCODER

ENCODER

<

ENCODER

"

Figure 2. Our attention-based model. Like BERT, the model is a
stack of Transformer encoders and each encoder is a stack of self-
attention layers. The model predicts the embedding of the next
step based on the previous m time steps. The input combines the
space (purple) and position (blue) embeddings. On the top of the
figure, the loss is calculated based on the prediction (yellow) and
the ground truth (blue).

Unlike RNNs, in which the current output is fully based
on previous inputs, the self-attention structure empowers
each position to see the whole sequence. But for most tem-
poral tasks in real time, it’s impossible to know the future.
We pick up the output of the last position to predict the em-
bedding of the next time step after a fully connected layer.
Our method only predicts one step at a time like RNN-based
models, so we can’t seed up the training time. Our model
can gain benefit from the same distance between every two
positions to model long term dependency.

Our model is depicted in figure 2. Like BERT, the model
is a stack of Transformer encoders. Each Transformer en-
coder is a stack of self-attention layers. The model con-
sumes embeddings of the previous m time steps and pre-
dicts the space embedding of the next m + 1 time step. For
each time step, the input embedding combines the space and
position embedding. On the top of the figure, the yellow
and blue bars are predicted output and ground truth respec-
tively, the mean squared loss (which will be explained in
the Experiment section) are calculated and back propagated
through the whole graph. The size of the output is smaller
than the input because the input incorporates some neigh-
bour information in the parallel framework.

4. Experiment
4.1. Data Simulation

In mathematics, the Kuramoto-Sivashinsky equation
(called the KS equation or flame equation) is a fourth-order
nonlinear partial differential equation to model the diffu-
sive instabilities for various phenomena. It was derived by
Kuramoto [10] to model chaotic oscillatory behavior. The
equation reads as:

Ju M 9%u Ju

=V — 55 U (1)

ot Ozt 022 Oz
on the domain 2 = [0, L] with periodic boundary condi-
tions u(0,t) = w(L,). In order to spatially discretize equa-
tion 1, we select a grid size Ax with D = L/Ax + 1 as the
number of nodes. Further, we select v = 1, L = 200,
0t = 0.25 and a grid of dy = 512 nodes. We discretize
the equation 1 and solve using the fourth-order method for
stiff PDEs introduced in Kassam and Trefethen [9] up to
T = 6-10*. This corresponds to 24 - 10* samples. The first
4 -10* samples are truncated to avoid initial transients. The
remaining data are divided to a training and testing dataset
of 10° samples each.

4.2. Results on the Kuramoto Sivashinsky Equation

To assess the effectiveness of different architectures, we
compared their training time to convergence, their CPU
RAM memory used to train, and their average normal-
ized root mean square error (NRMSE) (equation 2). The
NRMSE is given by

NRMSE = <762) 2

where 0 is the model’s forecast at a time, o is the ground
truth for the predictions, and o is the standard deviation in
time of each state component. The (-) notation represents
the state-space average of the vector.

For implementations of recurrent activation based archi-
tectures, we used the models developed in [15], and trained
them on data generated by the Kuramoto-Sivashinsky equa-
tion. Some hyper-parameters were changed to be compat-
ible with our computing environment. In particular, the
number of parallel groups IV, was restricted by the number
of compute nodes we had access to. For all our recurrent
architectures (RC, LSTM, GRU), this parameter is set to 1.
This significantly reduces the effectiveness of RC models.
Where [15] reports an average NRMSE below 1.5 for all
its RC models, we find values to be closer to 1.75 for RC
models with a reservoir size of 1000; where they report a
training time for an RC with a reservoir size of 3000 that is
a small fraction of other RNNs, we find such an RC to re-
quire more time to train. The LSTM and GRU models were
created with two hidden layers of 32 hidden nodes. Other
parameters can be found in the appendix of [15].

When training our attention-based model in the parallel
framework on the Kuramoto-Sivashinsky equation, the to-
tal number of groups Ny is set to 16. The group-size of the
parallel model G is 32, as determined by dy/N,. The in-
teraction length [is set to 32. The hidden size is 120 and
the sequence length is 128. The number of transformer en-
coder layers and the number of heads in the self-attention
layer are set to 4 and 2 respectively. The average NRMSE
error is 1.327048 and the average running time of training
is fifteen minutes. All the results are summarized in table 1.

From grid search we learned that with the same model
and Ny, incorporating more neighbour information helps in
decreasing the testing error. The average NRMSE error for
the total number of groups N, € {4,8,16} is 1.3834, 1.363
and 1.374 respectively. So the performance doesn’t rely on
the number of groups according to our experiment results.

Training time | Memory | NRMSE
RC 1000 11s 288MB 1.771
RC 3000 85s 425MB 1.353
LSTM 81s 372MB 1.253
GRU 62s 398MB 1.253
Attention-based 15m 1G 1.324

Table 1. Results

5. Conclusion

We implement an attention-based model to predict a
spatio-temporally chaotic system. The advantage of the

Training Time (s)

1000

800

600

400

2004

L Bl B

T
RC 1000 RC 3000 LST™M GRU

T
Attention-based

Figure 3. our attention based architecture takes an order of magni-
tude more time to train.

Memory (MB)

4000

3000
2000

1000

L n 1 W B

RC 1000 ‘ RC 3000 ‘ LSTM GRU ‘ Attention-based

Figure 4. our attention based architecture takes an order of magni-
tude more memory to train.

NRMSE

) l
1.2+ " - - :
RC 1000 RC 3000 LST™M GRU Attention-based

Figure 5. our attention based architecture performs about as well
as recurrent architectures.

attention-based model is that every position in the sequence
has the same distance from other positions, so it can capture
longer-range dependencies than RNN-based models. How-

ever, like the language model in NLP, the model predicts
the embedding of next step based on the previous m steps.
Thus, the training process can’t be sped up to process the
whole sequence at a time.

In the future, we’d like to further explore the range
of attention-based architectures. Theoretically, their abil-
ity to encode very long-range time-dependencies would
make them ideal candidates for predicting chaotic dynam-
ics, but our empirical results suggest otherwise. Such time-
dependencies are especially important when the full dy-
namics of a system are unknown — a scenario where RCs
perform particularly poorly. Testing attention models on a
wider variety of chaotic systems could help better illumi-
nate their strengths and weaknesses as sequence models.
If it still holds that attention models are poor predictors of
chaos, then that may suggest a more inherent connection
between chaotic dynamics and recurrent connections.

References

[1] F. M. Bianchi, S. Scardapane, S. Lgkse, and R. Jenssen.
Reservoir computing approaches for representation and
classification of multivariate time series. arXiv preprint
arXiv:1803.07870, 2018. 2

[2] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical
evaluation of gated recurrent neural networks on sequence
modeling. arXiv preprint arXiv:1412.3555, 2014. 1

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert:
Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018. 2

[4] J. L. Elman. Finding structure in time. Cognitive science,
14(2):179-211, 1990. 1

[5] J. Gleick. Chaos: Making a new science. Open Road Media,
2011. 1

[6] S.Hochreiter and J. Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735-1780, 1997. 1

[7]1 H. Jaeger. The “echo state” approach to analysing and train-
ing recurrent neural networks-with an erratum note. Bonn,
Germany: German National Research Center for Informa-
tion Technology GMD Technical Report, 148(34):13, 2001.
2

[8] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting
chaotic systems and saving energy in wireless communica-
tion. science, 304(5667):78-80, 2004. 2

[9] A.-K. Kassam and L. N. Trefethen. Fourth-order time-
stepping for stiff pdes. SIAM Journal on Scientific Comput-
ing, 26(4):1214-1233, 2005. 3

[10] Y. Kuramoto. Diffusion-induced chaos in reaction systems.
Progress of Theoretical Physics Supplement, 64:346-367,
1978. 3

[11] M. Langkvist, L. Karlsson, and A. Loutfi. A review of un-
supervised feature learning and deep learning for time-series
modeling. Pattern Recognition Letters, 42:11-24, 2014. 1

[12] E.N. Lorenz. Deterministic nonperiodic flow. Journal of the
atmospheric sciences, 20(2):130-141, 1963. 1

[13]

(14]

[15]

[16]

J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott. Model-free
prediction of large spatiotemporally chaotic systems from
data: A reservoir computing approach. Phys. Rev. Lett.,
120:024102, Jan 2018. 1,2

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, .. Kaiser, and 1. Polosukhin. Attention is all
you need. In Advances in neural information processing sys-
tems, pages 5998-6008, 2017. 1, 2

P. R. Vlachas, J. Pathak, B. R. Hunt, T. P. Sapsis, M. Girvan,
E. Ott, and P. Koumoutsakos. Backpropagation algorithms
and reservoir computing in recurrent neural networks for the
forecasting of complex spatiotemporal dynamics. 2019. 1,
2,3

Z.Y. Wan, P. Vlachas, P. Koumoutsakos, and T. Sapsis. Data-
assisted reduced-order modeling of extreme events in com-
plex dynamical systems. PloS one, 13(5), 2018. 2

