Inspectable Incrementality in Minimum Feedback Arc Set
Solving

Colin Shea-Blymyer
sheablyc @oregonstate.edu
Oregon State University
Corvallis, Oregon, USA

2 2
]

. e

C F

(a) A three cycle graph which demonstrates that greedily selecting the min-

imum weighted edge will not provide the minimum feedback arc set.

ABSTRACT

The minimum feedback arc set problem is the problem of finding
the least amount of edges in a directed, cyclic, graph, such that if
these edges are removed a directed, acyclic graph results. There
are exists several classic and approximate methods to solve the
minimum feedback arc set problem. In this study, we explore the
novel use of satisfiability-modulo theories (SMT) solvers to solve
the minimum feedback arc set problem. With an SMT solver, we
hypothesize that not only is an effective encoding possible, but by
employing advanced features of SMT solvers, such as incrementality
and unsatisfiable cores, we can provide users with decision points
to give users the ability to pause the solution routine, resample

particular edges, alter the problem or inspect intermediate results.

Our results are negative. We find an effective SMT encoding for
the minimum feedback arc set problem but the encoding produces
SMT problems that in practice are unreasonably slow. Similarly, we
find that to make effective use of incrementality and unsatisfiable
cores, one would require information which is itself an instance of
the minimum feedback arc set, and thus these features are ill suited
to this problem domain.

KEYWORDS

incremental SAT solving, minimum feedback arc set, SMT solving

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Jeffrey M. Young
youngjef @oregonstate.edu
Oregon State University
Corvallis, Oregon, USA

(b) A four cycle graph where each cycle depends on the edge (E, B).

ACM Reference Format:

Colin Shea-Blymyer and Jeffrey M. Young. 2021. Inspectable Incrementality
in Minimum Feedback Arc Set Solving. In Proceedings of ACM Conference
(Conference’l7). ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The minimum feedback arc set problem is a canonical NP-Complete
problem given by Karp [7]. Worse still, Kann [6] showed that the
problem is APX-hard. Despite these results finding the minimum
feedback arc set of a directed graph is desirable for many domains:
such as certain rank-choice voting systems, tournament ranking sys-
tems Karpinski and Schudy [8], and dependency graphs in general.

Solutions to the minimum feedback arc set problem are commonly
implemented in widely used graph libraries yet all suffer from a
distinct flaw. While each implementation provides a solution, the
implementations only do so without allowing the user to inspect
intermediate steps; which might contain useful domain information.
For example, the graph Figure 1b displays a directed graph which
encodes a single win tournament system. Each vertex is a player
and each edge encodes a win over a contestant, for example we
see that player E beat contestant B. Observe that the Figure 1b
contains cycles which implies that there is not a linear ordering
amongst the contestants of the tournament, and so any ranking of
the contestants would violate a win of one contestant over another.
Removing the minimum feedback arc set would remove the cycles,
which yields a linear order in the tournament that violates the fewest
number of wins. In this example, intermediate results are edges
which compose the minimum feedback arc set, thus if one had
access to the intermediate results one might choose to rematch the
opponents rather than remove the win. Crucially, the result of the
rematch may change the final minimum feedback arc set. Such a

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

procedure could therefore increase the confidence in the results of
the tournament.

To allow for inspectable incrementality we propose a novel di-
rection in solving the minimum feedback arc set problem based on
recent advances in satisfiability solving (SAT) and SMT solving. Our
approach is to utilize an SMT solver to detect cycles and minimize
the weight of the feedback arc set. Incrementality in this approach is
given through use of an incremental SMT solver and generation of
unsatisfiable cores. A minimum unsatisfiable core is the minimum
set of clauses in a SAT or SMT formula which prevent a SAT or
SMT solver run from finding a satisfiable assignment. An incremen-
tal solver provides the user the ability to add or remove constraints
and thereby direct the solver during runtime. Incrementality in our
approach is crucial as it allows the user decision points to interact
with the solution process. Thus, a user might observe a unsatisfiable
core which corresponds to a cycle and deliberately resample only
the edges in the discovered cycle.

Unfortunately, we find that incremental SMT for finding a min-
imum feedback arc set suffers from significant issues which seem
to be intractable. In addition to this result we make the following
contributions:

(1) An identification of the most intractable problems for an
incremental SMT encoding on the minimum feedback arc set
problem. (Section 3)

(2) An SMT encoding to find the minimum feedback arc set of
an arbitrary directed and cyclic graph. (Section 4)

(3) An empirical evaluation of the SMT encoding. (Section 6)

2 BACKGROUND AND RELATED WORK

In this section, we provide background on the minimum feedback arc
set problem, incremental SAT and SMT solving, and unsatisfiable
cores. We begin with preliminaries on graphs and feedback arc sets.
We close the section with a description of incremental SAT solving
and SMT solving.

On a directed graph G(V, E) a feedback arc set S is a set of edges
in E, such that removing them from the graph G results in an acyclic
graph. The minimum feedback arc set problem finds the S* of the
minimum size. For weighted graphs, one might desire S* to have
the minimum total weight of any S. Finding this $* is the minimum
weighted feedback arc set problem.

With the minimum feedback arc set problem defined, we provide
the following background on incremental SAT solvers and assume
knowledge of SMT solvers. Suppose, we have three related proposi-
tional formulas that we desire to solve.

p=aAbAche
q=an(bV-i)AcA(g—c)
r=zeo (aAbAche)

p is simply a conjunction of variables. In g, relative to p, we see that
the variables i and g are added, e is removed, and there are two new
clauses: (b V —i) and (g — c), both of which possibly affect the
values of b and c. In r, the variables and constraints introduced in p
are further constrained to a new variable, z.

Suppose one wants to find a model for each formula. Using a
non-incremental SAT solver results in the procedure illustrated in
Figure 2a; where SAT solving is a batch process and no information

Shea-Blymyer and Young.

p SAT result,
q SAT resulty
r SAT result,
(a) Brute force procedure, no reuse between solver calls.
p SAT resulty,
pop e
pop ¢
pop b

push (bV =i)
push ¢

push (g— ¢
SAT ——

resulty

resetAssertionStack

push ze (aAbAcAe)

SAT — result,

(b) Incremental procedure, reuse defined by POP and PUSH.

Figure 2: Comparison of incremental and non-incremental SAT
procedures.

is reused. Alternatively, a procedure using an incremental SAT solver
is illustrated in Figure 2b; in this scenario, all formulas are solved
by single solver instance where terms are programmatically added
or removed from the solver.

The ability to add and remove terms is enabled by manipulating
the assertion stack, to add or remove levels on the stack. The in-
cremental interface provides two commands: PUSH to create a new
scope and add a level to the stack, and pop to remove the topmost
level on the stack. Consider the following SMTLIB?2 program which
demonstrates three levels on the assertion stack. The SMTLIB2
standard [2] is an international standard that defines a general inter-
face for SAT and SMT solvers. The program follows the procedure
outlined in Figure 2b and solves p, g and r:

declare-const a Bool
declare-const b Bool
declare-const ¢ Bool
declare-const e Bool
assert a)
push)

(assert e)

(assert ¢)

(assert b)

(check-sat)

(pop)

()
()
()
()
(
(

Inspectable Incrementality in Minimum Feedback Arc Set Solving

(push)
(declare-const i Bool)
(declare-const g Bool)
(assert (or b (not i)))
(assert ¢)
(assert (=>g¢))
(check-sat)
(pop)
(reset)
(declare-const a Bool)
(declare-const b Bool)
(declare-const ¢ Bool)
(declare-const e Bool)
(declare-const z Bool)
(assert (= z (anda (and b (and c (and e))))))
(check-sat)

We begin by defining p, and assert a outside of a new scope so that
it can be reused for g. Internally, all levels on the assertions stack are
conjoined and asserted when a CHECK-SAT command is issued. Thus,
we reuse a by exploiting this conjunction behavior. Had we asserted
(and a (and b (and ¢ (and €)))), then we would not be able to reuse
only the assertion on a since it was created in conjunction with other
variables. The first PUSH command enters a new level on the assertion
stack, the remaining variables are asserted and we issue a CHECK-SAT
call. After the pop command, all assertions and declarations from
the previous level are removed. Thus, after we solve q the variables i
and g cannot be referenced as they are no longer in scope. Similarly,
after the first CHECK-SAT call and subsequent PoP, e, ¢ and b are no
longer defined.

In an efficient process one would initially add as many shared
terms as possible, such as a from p and then reuse that term as many
times as needed. An efficient process should perform only enough
manipulation of the assertion stack as required to reach the next SAT
problem of interest from the current one. However, notice that doing
so is not entirely straight forward; we were only able to reuse a from
p in g because we defined p in a non-intuitive way by utilizing the
internal behavior of the assertion stack. This situation is exacerbated
by SAT problems such as r, where due to the equivalence between
a new term and shared terms, we are forced to completely remove
everything on the stack with a RESET command just to construct
r. Thus incremental SAT solvers provide the primitive operations
required to solve related SAT problems efficiently, yet writing the
SMTLIB2 program to solve the set efficiently is not straightforward.

3 PROBLEMS WITH AN INCREMENTAL
ENCODING

Our original conception for this study was to explore the use of in-
cremental SAT and SMT solvers to solve the minimum feedback arc
set problem. However, we found fundamental problems with this ap-
proach during several courses of experimentation. In this section, we
review the problematic nature of the incremental approach thereby
enriching the problem. We provide a working non-incremental SMT
encoding in the next section.

The incremental approach was a combination of two SAT and
SMT features. First, we desired to encode the problem in such a
way that an UNsAT would be returned from the solver. With an
UNSAT returned, we could then query for an unsatisfiable core, that

Conference’17, July 2017, Washington, DC, USA

is, the set of constraints which prevent the solver from unifying.
Second, we sought to use scopes to add and remove clauses from
the incremental solver via pusH and pop calls. With scopes it is
possible to refine the constraints during the solving routine, possibly
simplifying the problem space. We hypothesized that by using scopes
and unsatisfiable cores we could reveal domain information to the
user and direct the solver to a solution in an efficient manner.

Unfortunately the incremental approach has numerous problems
for finding the minimum feedback arc set, which appear to be in-
tractable. First, in order to generate unsatisfiable cores constraints
must be added to the solver instance and watched. In and of itself,
this is not an intractable problem, the SMTLIB2 standard defines a
function to track constraints called ASSERT_AND_TRACK which takes
a constraint and a name. The name is then returned in the unsatis-
fiable core if the concomitant constraint is in the core. The issue
becomes a constant time cost incurred by parsing the unsatisfiable
core into a usable format for the solving routine to continue. The
pattern becomes: query for an unsatisfiable core, parse the core,
refine the constraints, and then repeat. Thus the constant time cost
is exacerbated for every core that is generated. In addition, there is
no guarantee that the unsatisfiable core itself is minimal, although
some SAT/SMT solvers, such as z3 [4] expose a setting to produce
minimal cores at the expense of performance.

The more serious issue is the use of scopes is problematic for
tackling the minimum feedback arc set problem at all. While scopes
would allow one to direct the solver to a solution, or explore possible
solutions, it requires knowledge of the problem domain which is not
readily available during the encoding process. In order to employ
scopes, one must know before the encoding step which constraints
are likely to change. This knowledge is required so that the con-
straints can be pushed onto the assertion stack as late as possible.
When these constraints are on top of the assertion stack (and thus
pushed last) they can be removed from the assertion stack with-
out removing constraints that we do not wish to refine. Without this
knowledge, there is a substantial risk that the we may need to remove
all, or almost all constraints from the solver just to repack the solver
and refine the query. In the worst case, this requires an additional
complete traversal of the graph. The issue is further exacerbated by
the minimum feedback arc set problem because it is not possible
to know before hand which edges, and thus which constraints, will
need to be refined. In fact finding the unique set of constraints that
will need to be refined is itself an instance of finding the minimum
feedback arc set!

4 APPROACH AND SMT ENCODING

Our approach is to translate an exact integer programming method
by Baharev et al. [1] to an SMT problem. The translation to an
SMT problem is straightforward, requiring no changes from linear
program encoding to an SMT encoding.

To find the minimum feedback arc set of a graph G, the method
requires a cycle matrix, a;;. The cycle matrix tracks which edges
are in which cycles in the graph. For some edge e;, if e; participates
in cycle i then a;; = 1 otherwise a;; = 0, indicating that e; does not
participate in the ith cycle. For example, consider the edge (B, D)
from Figure 1a and assume (B, D) has edge ID j = 3, if the Oth cycle
in Figure 1a is composed of edges: (A, B), (B, C), and (C, A), then

Conference’17, July 2017, Washington, DC, USA

(A,B) 0

B.C) 1 Cycle Cycle edges ‘
(C,A) 2 0 (A,B)—(B,C)—(C, A)
(B,D) 3 1 (D,E) = (E,F) — (F, D)
(lg, 11;:) ;_1 5 (A,B) — (B,D) — (D, E)
EF,C; > (E,F) > (F,C) — (C, A)
(ED) 7

Table 1: Table of Edge IDs and Cycle IDs for Figure 1a

ap3 = 0. Similarly, assuming (A, B) has edge ID j = 0, then agp = 1
because (A, B) participates in cycle 0.

With the cycle matrix, the method is composed of ¢ constraints,
where c is the number of cycles and a minimization over the sum of
edges. Each edge, (i, j) is encoded as a binary integer SMT variable
ej, where j is the edge’s unique ID. The SMT variable e; only ranges
from O to 1, indicating whether the jth edge is in the minimum
feedback arc set (e; = 1) or not (e; = 0). We express the constraints
in the following equations:

|E|
minimize Z ej (1)
J=1
|E|
(Zaijej) > 1, foreachi=0,1,2...,c 2)
J=1

Conceptually, Equation 1 requires the SMT solver to consider all
edges in the graph G and find the smallest number of edges which
compose a feedback arc set. The encoding of a feedback arc set
occurs in Equation 2. With the constraint);(...) > 1 for the ith
cycle, Equation 2 states that for each cycle in the graph G pick one
or more edges. By }.(ajjej) > 1, Equation 2 forces the SMT solver
to consider edges that occur in most cycles. The logic is easiest to
observe with an example, consider the graph shown in Figure 1a,
with the edge and cycle IDs shown in Table 1: For this graph, the
constraints generated by Equation 2 would be:

leg + leg + ley + Oez + Oeq + Oes + Oeg + Oey > 1 Cycle 0
Oeg + 0e; + 0ex + Oez + leg+ les + Oeg + ey > 1 Cycle 1
leg+0e;+ lex+ lez+ leg+ les + leg +0e7 > 1 Cycle 2

Where we see the edge ey (edge (A, B)) occurs in cycles 0, and 2
(as agp and azg = 1). Therefore, the easiest way for the SMT solver
to satisfy these constraints and the minimization constraint is to set
ep = 1. However, doing so will not satisfy the cycle constraints for
cycle 1, thus the solver must pick either e4 (D, E)), e5 ((E, F)), or
e7 ((F, C)). Again the simplest path is to pick ey, or e5 as setting
these variables to 1 satisfies more than one constraint. Thus, we
see that by this encoding the SMT solver is forced to minimize
the number of edges to pick, and therefore maximize the number
of cycle constraints satisfied by setting a given edge to 1, which
corresponds to finding the minimum feedback arc set of a graph.

Shea-Blymyer and Young.

S EXPERIMENTAL METHODOLOGY

To evaluate this approach, we construct a prototype SMT-enabled
algorithm and assess the prototype on Erdés-Rényi graphs. Erd6s-
Rényi graphs are generated according to two parameters: p, a metric
of connectedness for the graph, and k is the number of vertices in
the graph.

With these parameters we employ random generation to construct
sample graphs. We are interested in the individual effect k and p
have on runtime, in addition to the interactions effects between each
parameter. Consider the case where p and k are left unbound, yet
sis set to 1. This is the specific case where solving the minimum
weighted feedback arc set problem solves the minimum feedback
arc set problem. Thus, by setting s to 1 we generate graphs to solve
the minimum feedback arc set problem. Consider the case where s
is larger than one. In this case, edges must possess positive weights
and the weighted minimum feedback arc set may be different than
the minimum feedback arc set.

We provide the complete prototype implementation in Appen-
dix A. To ensure correctness we compared results from the SMT
routine to a built in method in the python library igraph which finds
the minimum feedback arc set. We observed no differences between
both methods.

6 RESULTS AND DISCUSSION

200

-
@
3
Time (min)

°
3

50

03 0.2

0.4
0.5

06
0.7 ity
0.8 nnectiV
5.0 09 Co

Figure 3: Results of the SMT encoding on randomly generated
Erddés-Rényi graphs. The z-axis is runtime in minutes, with con-
nectivity on the y-axis and vertex count on the x-axis. We see
that runtime explodes at an interaction point between vertex
count and connectivity.

Figure 3 displays the runtime of the prototype SMT method to
find a minimum feedback arc set for randomly generated Erd&s-
Rényi graphs. We observe that as the number of vertices increases
the runtime exponentially increases, for example with x = 5 vertices
the runtime is stable, however at x = 12 the runtime becomes greater
than 2 hours (clock time). Similarly, highly connected graphs the
runtime exponentially increases. Consider the difference between

Inspectable Incrementality in Minimum Feedback Arc Set Solving

Time (min)

0.2
0.4 03

05

7 co m;ect\"'\ﬂ

Figure 4: Results of the SMT encoding on randomly generated
Erdds-Rényi graphs without querying for a model. The z-axis is
runtime in minutes, with connectivity on the y-axis and vertex
count on the x-axis. We observe a is ~15x speedup compared to
Figure 3.

20% connectivity and 70% connectivity, at 20% we see the runtime
stay low as vertex count increases, however at 70% connectivity the
runtime quickly grows to the order of hours for a graph with just 10
vertices. Lastly, we observe an interaction between the vertex count
and connectivity parameters which creates a runtime barrier.

Our observations are not entirely unexpected. Since our method
is centered around a cycle matrix the number of cycles in the graph
should impact the runtime of the solver. What is unexpected in
our study is the magnitude of the runtime performance. Industrial
strength SAT and SMT solvers are used to solve constraints with
millions of variables and several million clauses [3], yet our results
here indicate a ludicrously difficult problem for the SMT solver to
solve.

We speculate on possible causes. First, it could be that our proto-
type is translating the constraints to its internal z3 instance poorly,
leading to a high degree of garbage collection pressure in the python
runtime. Second, our encoding could accidentally be creating SMT
problems that are in the phase change [5] region of the SMT solver.

The phase change of SAT and SMT solvers is the region where
difficult to solve problems occur. The phase change is characterized
by the ratio of clauses to variables. Conceptually if we have many
clauses but not many variables then we are over-constrained and thus
it is easy to find unsaT. However, if we have many variables and not
many clauses then we are under-constrained and it is easy to find SAT.
The difficult region for a SAT or SMT solver occurs when the num-
ber of clauses and variables are balanced. Thus, it could be the case
that our encoding creates SMT problems in this range. Similarly, it
could be that our encoding as a simple summation over symbolic
variables is naive. A more efficient implementation would use high
performance SMT structures such as BiT-VECTORs [2] which have
been successfully used to solve constraint networks in electronic de-
sign [3]. Lastly, we observed that in all cases omitting the GET-MODEL

Conference’17, July 2017, Washington, DC, USA

call lead to ~15x performance speedup (z-axis maximum is 16 min-
utes vs 250 minutes) as shown in Figure 4. This implies most of the
runtime cost is finding the exact edges in the minimum feedback arc
set rather than finding if there exists a minimum feedback arc set.

Third, there might be specific features of graphs which lead to eas-
ier or more difficult SMT problems. For example, previous research
has found that tournament graphs, such as Figure 1b are easier to
solve than the general case.

7 CONCLUSION

Solving minimum feedback arc set problems is essential in depen-
dency relations, and is an important feature of social choice prob-
lems. We introduced an SMT solution for this problem, but found
that computation time for even meager graph sizes is prohibitive.
This is surprising, given the application of SMT to much larger prob-
lems. Future work could explore the observed barrier between our
problem, and the effective performance of SMT in more complex do-
mains. This incongruity can likely be overcome, lending a powerful
solving method to the domain of MFAS.

REFERENCES

[1] Ali Baharev, Hermann Schichl, Arnold Neumaier, and Tobias Achterberg. 2021.
An Exact Method for the Minimum Feedback Arc Set Problem. Journal of Experi-
mental Algorithmics 26 (04 2021). https://doi.org/10.1145/3446429

Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2016. The Satisfiability Modulo
Theories Library (SMT-LIB). www.SMT-LIB.org.

A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. 2009. Handbook of
Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications. 10S
Press, NLD.

Leonardo de Moura and Nikolaj Bjgrner. 2008. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of Systems, C. R. Ramakr-
ishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
337-340.

Ian P. Gent and Toby Walsh. 1994. The SAT Phase Transition. In In Proc. ECAI-94.
105-109.

Viggo Kann. 1992. On the Approximability of NP-complete Optimization Problems.
(01 1992).

Richard M. Karp. 1972. Reducibility among Combinatorial Problems. Springer
US, Boston, MA, 85-103. https://doi.org/10.1007/978-1-4684-2001-2_9

Marek Karpinski and Warren Schudy. 2010. Faster algorithms for feedback arc set
tournament, Kemeny rank aggregation and betweenness tournament. In Interna-
tional Symposium on Algorithms and Computation. Springer, 3—14.

[2

3

[4

[5

[6

[7

8

A APPENDIX

Source code listings

from pprint import pprint
from functools import reduce
import z3 as z
import igraph as ig
import numpy as np

import matplotlib.pyplot as plt
import timeit

https://doi.org/10.1145/3446429
https://doi.org/10.1007/978-1-4684-2001-2_9

Conference’17, July 2017, Washington, DC, USA Shea-Blymyer and Young.

from tgdm import tgdm

import graphs as gs ## symbolize the edges

import utils as u

def MFAS_set_cover(s,graph):

"""Find the minimum feedback arc set by
encoding it as a minimum set cover.

The encoding requires a cycle matrix which we
find externally to the SAT

solver. Then given the cycle matrix we do the
following encoding:

Variables:

-mis |E]|

- w_{j} is the weight of edge j \in E (we
don't implement the weight matrix)

-y {j} is a symbolic edge; y_{j} =1 if
edge j is in the feedback edge set and 0
otherwise

- a is the cycle matrix

- a_{ij} is the value of edge j in cycle i;
a {ij} =1 if j participates, 0

otherwise
minimize (sum{j = 1}"{m}(w_{j} « y_{i}))
subject to:
sum_{j = 1}"{m}(a_{ij} « y {j}) >=
\forall i. y_{i} \in {0,1}

initialization

m = graph.ecount()

cycle_matrix = u.mk_cycle_matrix (u.
find_all_cycles (graph), m)

n, ¢ = graph.get_adjacency () .shape
num_cycles = len(cycle_matrix)
edge_list = graph.get_edgelist()

sym_to_edge_cache = {}
edge_to_sym_cache = {}

sum_var =y

def symbolize(i,j):
"given two indices, create a symbolic
variable"
new = z.Int('{0}->{1}".format(i,j))
return new

def constraint_1(i,s_edge):
""" Multiply the edge by its corresponding
value in the cycle matrix
edge = sym_to_edge_cache[s_edge]
value = 0
if edge in cycle_matrix[i]:
value = cycle_matrix[i][edge]

return (value » s_edge)

for source,sink in edge_list:
s_edge =
symbolize (source, sink)
an edge is either a 0 or a 1
s.add(z.Or([s_edge == 0, s_edge =
)

1)

sym_to_edge_cache[s_edge]
source, sink)
edge_to_sym_cache[(source, sink)]
s_edge

]
—

Perform constraint 1 and add it to the
solver instance
for i in range(num_cycles):
s.add(z.Sum([constraint_1(i,s_edge)
for s_edge in
sym_to_edge_cache. keys ()

1 >=1)

we want the smallest y possible
s.minimize (z.Sum([s_edge for s_edge in
sym_to_edge_cache.keys()]))

s.check ()
return s.model ()

Inspectable Incrementality in Minimum Feedback Arc Set Solving

Conference’17, July 2017, Washington, DC, USA

def runWithGraph(graph):

s = z.Optimize ()

return MFAS_set_cover(s, graph), u.
get_feedback_arc_set(graph)

def runErdosRenyi(n,p):

"""Given n vertices and a probability , p of
edges. Find the minimum

feedback arc set of an erdos-renyi graph

s = z.Optimize ()
g = ig.Graph.Erdos_Renyi(n, p, directed=True,
loops=True)

while g.is_dag():
g = ig.Graph.Erdos_Renyi(n, p, directed=True,
loops=True)

return MFAS_set _cover(s,g), u.
get_feedback_arc_set(g)

def runWattsStrogatz (dim, size, nei, p):
"""Given the dimension of the lattice ,
the lattice along all

dimensions, the number of steps within which two

vertices are connected

(nei), and the probability p, find the minimum

feedback arc set of a
watts - strogatz graph

s
g

z.Optimize ()

loops=True, multiple=False)
while g.is_dag():

g = ig.Graph.Watts_Strogatz (dim, size, nei, p,

loops=True, multiple=False)

return MFAS_set_cover(s,g), u.
get_feedback_arc_set(g)

size of

ig.Graph.Watts_Strogatz (dim, size, nei, p,

Module

utils .py

Copyright : (c¢) Jeffrey M. Young

; (c) Colin Shea-Blymyer

License . BSD3
Maintainer: youngjef@oregonstate.edu,

Stability

sheablyc@oregonstate . edu
experimental

Common utility functions

from z3 import =

import networkx as nx
from numpy import empty
from re import split

def

def

def

def

def

make_name(frm,to): return frm + "->" + to

parse_edge(edge): # return list (map(int 6 edge.

__str__().split("->")))

str_edge = edge.__str__ ()

inner = list (map(lambda x: x, str_edge.
split("->")))

return tuple (map(lambda x int(x), inner))

parse_core(core):

"""Parse an unsat core. An unsat core is
shallowly embedded as a list of z3

BoolRef objects such as: [1->2, 2->3, 3->4, 4-
>1], to operate on these we

need to coerce them to a string parse the
string and coerce the Ints out.

Input: List of strings, e.g., [1-52 , 2
->3 , 3->4 | 4->1]
Output: List of List of Ints, e.g., [[1, 2],

(2, 3], [3, 4], [4, 1]]

return list (map(lambda e: parse_edge(e), core)

)

edge_to_list_dict(g):
! Convert a graph to a dictionary of edges
ret = {}
for source,sink in g.get_edgelist():
if source not in ret.keys():
ret[source] = []

ret[source].append(sink)
return ret

remove_edge (g, source, sink) :

"""Given an igraph graph, a source vertex and
a sink vertex remove the edge

connecting the source and the sink from the
igraph graph. This function

mutates g.

Conference’17, July 2017, Washington, DC, USA

def

def

def

def

g.delete_edges(g.get_eid(source, sink))

flatten(list_o_lists):
return [e for sublist in list_o_lists for e in
sublist]

find_all_cycles (graph):
nx_graph = graph.to_networkx ()
return list (nx.simple_cycles(nx_graph))

pairs(ls, n = 1):
return list(zip(ls, Is[n:] + Is[:n]))

mk_cycle_matrix(cycle_edge_list, num_edges):

Shea-Blymyer and Young.

ps = [pairs(edges) for edges in
cycle_edge_list]
cycle_count = len(cycle_edge_list)
matrix =[]
for i in range(cycle_count):
cycle = {}

for pair in ps[i]:
cycle[pair] =1

matrix .append(cycle)
return matrix
get_feedback_arc_set(graph):
fas = graph.feedback_arc_set(method="ip")

return list (map(lambda x : graph.es[x].tuple,
fas))

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Problems with an Incremental Encoding
	4 Approach and SMT Encoding
	5 Experimental Methodology
	6 Results and Discussion
	7 Conclusion
	References
	A Appendix

