
Chapter 7: Queues and Deques 1

Chapter 7: Queues and Deques

After the stack, the next simplest data abstraction is the queue. As with the stack, the
queue can be visualized with many examples you are already familiar with from
everyday life. A simple illustration is a line of people waiting to enter a theater. The
fundamental property of the queue is that items are inserted at one end (the rear of the
line) and removed from the other (the door to the theater). This means that the order that
items are removed matches the order that they are inserted. Just as a stack was described
as a LIFO (last-in, first-out) container, this means a queue can be described as FIFO (first
in, first out).

A variation is termed the deque, pronounced “deck”, which stands for double-ended
queue. In a deque values can be inserted at either the front or the back, and similarly the
deck allows values to be removed from either the front or the back. A collection of peas
in a straw is a useful mental image. (Or, to update the visual image, a series of tapioca
buds in a bubble-tea straw).

Queues and deques are used in a number of ways in computer applications. A printer, for
example, can only print one job at a time. During the time it is printing there may be
many different requests for other output to be printed. To handle these the printer will
maintain a queue of pending print tasks. Since you want the results to be produced in the
order that they are received, a queue is the appropriate data structure.

The Queue ADT specification

The classic definition of the queue abstraction as an ADT includes the following
operations:

addBack (newElement) Insert a value into the queue

front() Return the front (first) element in queue

removeFront() Remove the front (first) element in queue

isEmpty() Determine whether the queue has any elements

The deque will add the following:

addFront(newElement) Insert a value at front of deque

back() Return the last element in the queue

removeBack() Return the last element in the queue

Chapter 7: Queues and Deques 2

Notice that the queue is really just a special case of the deque. Any implementation of the
deque will also work as an implementation of the queue. (A deque can also be used to
implement a stack, a topic we will explore in the exercises).

As with the stack, it is the FIFO (first in, first out) property that is, in the end, the
fundamental defining characteristic of the queue, and not the names of the operations.
Some designers choose to use names such as “add”, “push” or “insert”, leaving the
location unspecified. Similarly some implementations elect to make a single operation
that will both return and remove an element, while other implementations separate these
two tasks, as well do here. And finally, as in the stack, there is the question of what the
effect should be if an attempt is made to access or remove an element from an empty
collection. The most common solutions are to throw an exception or an assertion error
(which is what we will do), or to return a special value, such as Null.

For a deque the defining property is that elements can only be added or removed from the
end points. It is not possible to add or remove values from the middle of the collection.

The following table shows the names of deque and queue operations in various
programming languages:

operation C++ Java Perl Pyton

insert at front push_front addFirst unshift appendleft

Insert at back Push_back addLast Push append

remove last pop_back removeLast pop pop

remove first pop_front removeFirst shift popleft

examine last back getLast $_[-1] deque[-1]

examine first front getFirst $_[0] deque[0]

Applications of Queues

Given that queues occur frequently in real life, it is not surprising that they are also
frequently used in simulations. To model customers using a bank, for example, you could
use a queue of waiting patrons. A simulation might want to ask questions such as the how
the average waiting time would change if you added or removed a teller position.

Queues are also used in any time collection where time of insertion is important. We have
noted, for example, that a printer might want to keep the collection of pending jobs in a
queue, so that they will be printed in the same order that they were submitted.

Depth-first and Breadth-first search

Imagine you are searching a maze, such as the one shown at right.
The goal of the search is to move from the square marked S, to the
square marked F.

A simple algorithm would be the following:

F

S

Chapter 7: Queues and Deques 3

How to search a maze:
Keep a list of squares you have visited, initially empty.
Keep a stack of squares you have yet to visit. Put the starting square in this stack
While the stack is not empty:
 Remove an element from the stack
 If it is the finish, then we are done
 Otherwise if you have already visited this square, ignore it
 Otherwise, mark the square on your list of visited positions, and
 add all the neighbors of this square to your stack.
If you eventually reach an empty stack and have not found the start, there is no
solution

To see the working of this algorithm in action, let us number of states of our maze from 1
to 25, as shown. There is only one cell reachable from the starting position, and thus after
the first step the queue contains only one element:

This value is pulled from the stack, and the
neighbors of the cell are inserted back. This
time there are two neighbors, and so the stack
will have two entries.

Only one position can be explored at any time,
and so the first element is removed from the

stack, leaving the second waiting for later exploration. Two steps later we again have a
choice, and both neighbors are inserted into the stack. At this point, the stack has the
following contents:

The solution is ultimately found in fifteen steps. The following shows the path to the

solution, with the cells numbered in the order in which they were
considered.

The strategy embodied in this code doggedly pursues a single path
until it either reaches a dead end or until the solution is found. When a
dead end is encountered, the most recent alternative path is
reactivated, and the search continues. This approach is called a depth-

first search, because it moves deeply into the structure before
examining alternatives. A depth-first search is the type of search a single individual might
perform in walking through a maze.

Suppose, on the other hand, that there were a group of people walking together. When a
choice of alternatives was encountered, the group might decide to split itself into smaller
groups, and explore each alternative simultaneously. In this fashion all potential paths are
investigated at the same time. Such a strategy is known as a breadth-first search.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

21 22 23 24 25

16 17 18 19 20

20

backfront

the deque

19 15 backfront

22 18 15 backfront

14

13

12 11 10

6 5 4 3 0

7 8 9 2 1

Chapter 7: Queues and Deques 4

What is intriguing about the maze-searching algorithm is that the exact same algorithm
can be used for both, changing only the underlying data structure. Imagine that we
change the stack in the algorithm to a queue:

How to search a maze using breadth-first search:
Keep a list of squares you have visited, initially empty.
Keep a queue of squares you have yet to visit. Put the starting square in this queue
While the queue is not empty:
 Remove an element from the queue
 If it is the finish, then we are done
 Otherwise if you have already visited this square, ignore it
 Otherwise, mark the square on your list of visited positions, and
 add all the neighbors of this queue to your stack.
If you eventually reach an empty queue and have not found the start, there is no
solution

As you might expect, a breadth-first search is more thorough, but may require more time
than a depth-first search. While the depth-first search was able to find the solution in 15
steps, the breadth-first search is still looking after 20. The
following shows the search at this point. Trace with your finger the
sequence of steps as they are visited. Notice how the search jumps
all over the maze, exploring a number of different alternatives at the
same time. Another way to imagine a breadth-first first is as what
would happen if ink were poured into the maze at the starting
location, and slowly permeates every path until the solution is
reached.

We will return to a discussion of depth-first and breadth-first search in a later chapter,
after we have developed a number of other data structures, such as graphs, that are useful
in the representation of this problem.

Queue Implementation Techniques

As with the stack, the two most common implementation techniques for a queue are to
use a linked list or to use an array. In the worksheets you will explore both of these
alternatives.

Worksheet 18 Linked List Queue, Introduction to Sentinels

Worksheet 19 Linked List Deque

Worksheet 20 Dynamic Array Queue

Building a Linked List Queue

A stack only needs to maintain a link to one end of the chain of values, since both
insertions and removals occur on the same side. A queue, on the other hand, performs

17 12 9 7

18 13 4

19 14 5 2

16 11 8 6 0

15 10 3 1

Chapter 7: Queues and Deques 5

insertions on one side and removals from the other. Therefore it is necessary to maintain
a links to both the front and the back of the collection.

FirstLink =
LastLink =

2 4 3 7 5

We will add another variation to our container. A sentinel is a special link, one that does
not contain a value. The sentinel is used to mark either the beginning or end of a chain of
links. In our case we will use a sentinel at the front. This is sometimes termed a list
header. The presence of the sentinel makes it easier to handle special cases. For example,
the list of links is never actually empty, even when it is logically empty, since there is
always at least one link (namely, the sentinel). A new value is inserted after the end, after
the element pointed to by the last link field. Afterwards, the last link is updated to refer to
the newly inserted value.

Values are removed from the front, as with the stack. But because of the sentinel, these
will be the element right after the sentinel.

You will explore the implementation of the queue using linked list techniques in
Worksheet 18.

A Linked List Deque – using Double Links

You may have noticed that removal from the end of a ListQueue is difficult because with
only a single link it is difficult to “back up”. That is, while you have a pointer to the end
sentinel, you do not have an easy way to back up and find the link immediately preceding
the sentinel.

Count = 4
frontSentinel =
backSentinel =

Sentinel Sentinel5 3 8 3

One solution to this problem is to use a doubly-linked list. In a doubly-linked list, each
link maintains two pointers. One link, the forward link, points forward toward the next
link in the chain. The other link, the prev link, points backwards towards the previous

Sentinel 3 7 4 2

Chapter 7: Queues and Deques 6

element. Anticipating future applications, we now also keep a count of the number of
elements in the list.

With this picture, it is now easy to move either forward or backwards from any link. We
will use this new ability to create a linked list deque. In order to simplify the
implementation, we will this time include sentinels at both the beginning and the end of
the chain of links. Because of the sentinels, both adding to the front and adding to the end
of a collection can be viewed as special cases of a more general “add to the middle of a
list” operation. That is, perform an insertion such as the following:

picture

Similarly, removing a value (from other the front or the back) is a special case of a more
general remove operation:

after removal

before removal

c_start c_next

c_start c_next

In worksheet 19 you will complete the implementation of the list deque based on these
ideas.

A Dynamic Array Deque

The dynamic array that we used in implementing the ArrayStack will not work for either
a queue or a deque. The reason is that inserting an
element at the front of the array requires moving
every element over by one position. A loop to
perform this movement would require O(n) steps, far
too slow for our purposes.

If we tried adding elements to the end (as we did with the stack) then the problem is
reversed. Now it is the remove operation that is slow, since it requires moving all values
down by one position

2 4 7 3 9 1

4 7 3 9 1

2 4 7 3 9 1

4 7 3 9 126

Chapter 7: Queues and Deques 7

The root of the problem is that we have fixed the start of the collection at array index
position zero. If we simply loosen that requirement, then things become much easier.
Now in addition to the data array our collection will maintain two integer data fields; a
size (as before) and a starting location.

DataSize = 6
DataStart = 2
Data =

2 4 7 3 9 1

Adding a value to the end is simlar to the ArrayStack. Simply increase the size, and place
the new element at the end.

picture

But adding a value to the front is also simple. Simply decrement the starting point by one,
then add the new element to the front:

picture

Removing elements undo these operations. As before, if an insertion is performed when
the size is equal to the capacity, the array must be doubled in capacity, and the values
copied into the new array.

There is just one problem. Nothing prevents the data values from wrapping around from
the upper part of the array to the lower:

DataSize = 6
DataStart = 7
Data =

2 4 7 39 1

To accommodate index values must be computed carefully. When an index wraps around
the end of the array it must be altered to point to the start of the array. This is easily done
by subtracting the capacity of the array. That is, suppose we try to index the fifth element
in the picture above. We start by adding the index, 5, to the starting location, 7. The
resulting sum is 12. But there are only eleven values in the collection. Subtracting 11
from 12 yields 1. This is the index for the value we seek.

In worksheet 20 you will explore the implementation of the dynamic array deque
constructed using these ideas. A deque implemented in this fashion is sometimes termed
a circular buffer, since the right hand side circles around to begin again on the left.

Self Study Questions

1. What are the defining characteristics of the queue ADT?

Chapter 7: Queues and Deques 8

2. What do the letters in FIFO represent? How does this describe the queue?

3. What does the term deque stand for?

4. How is the deque ADT different from the queue abstraction?

5. What will happen if an attempt is made to remove a value from an empty queue?

6. What does it mean to perform a depth-first search? What data structure is used in

performing a depth-first search?

7. How is a breadth-first search different from a depth-first search? What data structure

is used in performing a breadth-first search?

8. What is a sentinel in a linked list?

9. What does it mean to say that a list is singly-linked?

10. How is a doubly-linked list different from a singly-linked list? What new ability does

the doubly-linked feature allow?

11. Why is it difficult to implement a deque using the same dynamic array

implementation that was used in the dynamic array stack?

Short Exercises

1. Show the state of a deque after the following sequence of operations: [more]

Analysis Exercises

1. A deque can be used as either a stack or a queue. Do you think that it is faster or

slower in execution time than either an dynamic array stack or a linked list stack?
Can you design an exercise to test your hypothesis? In using a Deque as a stack there
are two choices; you can either add and remove from the front, or add and remove
from the back. Is there a measurable difference in execution time between these two
alternatives?

Programming Assignments

1. Many computer applications present practice drills on a subject, such as arithmetic

addition. Often such systems will present the user with a series of problems and keep
track of those the user answered incorrectly. At the end of the session, the incorrect
problems will then be presented to the user a second time. Implement a practice drill
system for addition problems having this behavior.

Chapter 7: Queues and Deques 9

2. FollowMe is a popular video game. The computer display a sequence of values, and
then asks the player to reproduce the same sequence. Points are scores if the entire
sequence was produced in order. In implementing this game, we can use a queue to
store the sequence for the period of time between generation by the computer and
response by the player.

3. To create a maze-searching program you first need some way to represent the maze.

A simple approach is to use a two-dimensional integer array. The values in this array
can represent the type of room, as shown below. The values in this array can then tell
you the way in which it is legal to move. Positions in the maze can be represented by
(I,j) pairs. Use this technique to write a program that reads a maze description, and
prints a sequence of moves that are explored in either a depth-first or breadth-first
search of the maze.

10 2 3 4 5 6 7

98 10 11 12 13 14 15

4. In Chapter 5 you learned that a Bag was a data structure characterized by the
following operations: add an element to the collection, test to see if an element is in
the collection, and remove an element from the collection. We can build a bag using
the same linked list techniques you used for the linked list queue. The add operation
is the same as the queue. To test an element, simply loop over the links, examining
each in turn. The only difficult operation is remove, since to remove a link you need
access to the immediately preceding link. To implement this, one approach is to
loop over the links using a pair of pointers. One pointer will reference the current
link, while the second will always reference the immediate predecessor (or the
sentinel, if the current link is the first element). That way, when you find the link to
remove, you simply update the predecessor link. Implement the three bag
operations using this approach. Does the use of the sentinel make this code easier to
understand than the equivalent code was for the stack version?

5. Another implementation technique for a linked list queue is to link the end of the

queue to the front. This is termed a circular buffer. Two pointers then provide
access to the last filled position, and the last free position. To place an element into
the queue, the last filled pointer is advanced, and the value stored. To remove a
value the last free pointer is advanced, and the value returned. The following picture
shows this structure. How do you know when the queue is completely filled? What
action should you take to increase the size of the structure in this situation?
Implement a circular buffer queue based on these ideas.

Chapter 7: Queues and Deques 10

lastFree

lastFilled

On The Web

Wikipedia has well written entries for queue, deque, FIFO, as well as on the
implementation structures dynamic array, linked list and sentinel node. The NITS
Dictionary of Algorithms and Data Structures also has a good explanation.

