
Chapter 8: Bags 1

Chapter 8: Bags and Sets

In the stack and the queue abstractions, the order that elements are placed into the

container is important, because the order elements are removed is related to the order in

which they are inserted. For the Bag, the order of insertion is

completely irrelevant. Elements can be inserted and removed entirely at

random.

By using the name Bag to describe this abstract data type, the intent is

to once again to suggest examples of collection that will be familiar to

the user from their everyday experience. A bag of marbles is a good

mental image. Operations you can do with a bag include inserting a

new value, removing a value, testing to see if a value is held in the

collection, and determining the number of elements in the collection. In

addition, many problems require the ability to loop over the elements in

the container. However, we want to be able to do this without exposing details about how

the collection is organized (for example, whether it uses an array or a linked list). Later in

this chapter we will see how to do this using a concept termed an iterator.

A Set extends the bag in two important ways. First, the elements in a set must be unique;

adding an element to a set when it is already contained in the collection will have no

effect. Second, the set adds a number of operations that combine two

sets to produce a new set. For example, the set union is the set of values

that are present in either collection.

The intersection is the set of values that appear in both collections.

A set difference includes values found in one set but

not the other.

Finally, the subset test is used to determine if all the values found in one collection are

also found in the second. Some implementations of a set allow elements to be repeated

more than once. This is usually termed a multiset.

The Bag and Set ADT specifications

The traditional definition of the Bag abstraction includes the following operations:

Add (newElement) Place a value into the bag

Remove (element) Remove the value

Contains (element) Return true if element is in collection

Size () Return number of values in collection

Iterator () Return an iterator used to loop over collection

As with the earlier containers, the names attached to these operations in other

implementations of the ADT need not exactly match those shown here. Some authors

Chapter 8: Bags 2

prefer “insert” to “add”, or “test” to “contains”. Similarly, there are differences in the

exact meaning of the operation “remove”. What should be the effect if the element is not

found in the collection? Our implementation will silently do nothing. Other authors prefer

that the collection throw an exception in this situation. Either decision can still

legitimately be termed a bag type of collection.

The following table gives the names for bag-like containers in several programming

languages.

operation Java Collection C++ vector Python

Add Add(element) Push_back(element) Lst.append(element)

remove Remove(element) Erase(iterator) Lst.remove(element)

contains Contains(element) Count(iterator) Lst.count(element)

The set abstraction includes, in addition to all the bag operations, several functions that

work on two sets. These include forming the intersection, union or difference of two sets,

or testing whether one set is a subset of another. Not all programming languages include

set abstractions. The following table shows a few that do:

operation Java Set C++ set Python list comprehensions

intersection retainAll Set_intersection [x for x in a if x in b]

union addAll Set_union [x if (x in b) or (x in a)]

difference removeAll Set_difference [x for x in a if x not in b]

subset containsAll includes Len([x for x in a if x not in b]) != 0

Python list comprehensions (modeled after similar facilities in the programming

languages ML and SETL) are a particularly elegant way of manipulating set abstractions.

Applications of Bags and Sets

The bag is the most basic of collection data structures, and hence almost any application

that does not require remembering the order that elements are inserted will use a variation

on a bag. Take, for example, a spelling checker. An on-line checker would place a

dictionary of correctly spelled words into a bag. Each word in the file is then tested

against the words in the bag, and if not found it is flagged. An off-line checker could use

set operations. The correctly spelled words could be placed into one bag, the words in the

document placed into a second, and the difference between the two computed. Words

found in the document but not the dictionary could then be printed.

Bag and Set Implementation Techniques

For a Bag we have a much wider range of possible implementation techniques than we

had for stacks and queues. So many possibilities, in fact, that we cannot easily cover them

in contiguous worksheets. The early worksheets describe how to construct a bag using the

techniques you have seen, the dynamic array and the linked list. Both of these require the

Chapter 8: Bags 3

use of an additional data abstraction, the iterator. Later, more complex data structures,

such as the skip list, avl tree, or hash table, can also be used to implement bag-like

containers.

Another thread that weaves through the discussion of implementation techniques for the

bag is the advantages that can be found by maintaining elements in order. In the simplest

there is the sorted dynamic array, which allows the use of binary search to locate

elements quickly. A skip list uses an ordered linked list in a more subtle and complex

fashion. AVL trees and similarly balanced binary trees use ordering in an entirely

different way to achieve fast performance.

The following worksheets describe containers that implement the bag interface. Those

involving trees should be delayed until you have read the chapter on trees.

Worksheet 21 Dynamic Array Bag

Worksheet 22 Linked List Bag

Worksheet 23 Introduction to the Iterator

Worksheet 24 Linked List Iterator

Worksheet 26 Sorted Array Bag

Worksheet 28 Skip list bag

Worksheet 29 Balanaced Binary Search Trees

Worksheet 31 AVL trees

Worksheet 37 Hash tables

Building a Bag using a Dynamic Array

For the Bag abstraction we will start from the simpler dynamic array stack described in

Chapter 6, and not the more complicated deque variation you implemented in Chapter 7.

Recall that the Container maintained two data fields. The first was a reference to an array

of objects. The number of positions in this array was termed the capacity of the container.

The second value was an integer that represented the number of elements held in the

container. This was termed the size of the collection. The size must always be smaller

than or equal to the capacity.

size capacity

As new elements are inserted, the size is increased. If the size reaches the capacity, then a

new array is created with twice the capacity, and the values are copied from the old array

into the new. This process of reallocating the new array is an issue you have already

solved back in Chapter 6. In fact, the function add can have exactly the same behavior as

the function push you wrote for the dynamic array stack. That is, add simply inserts the

new element at the end of the array.

Chapter 8: Bags 4

The contains function is also relatively simple. It simply uses a loop to cycle over the

index values, examining each element in turn. If it finds a value that matches the

argument, it returns true. If it reaches the end of the collection without finding any value,

it returns false.

The remove function is the most complicated of the Bag abstraction. To simplify this task

we will divide it into two distinct steps. The remove function, like the contains function,

will loop over each position, examining the elements in the collection. If it finds one that

matches the desired value, it will invoke a separate function, removeAt, that removes the

value held at a specific location. You will complete this implementation in Worksheet 21.

Constructing a Bag using a Linked List

To construct a Bag using the idea of a Linked List we will begin with the list deque

abstraction you developed in Chapter 7. Recall that this implementation used a sentinel at

both ends and double links.

Count = 4
frontSentinel =
backSentinel =

Sentinel Sentinel5 3 8 3

The contains function must use a loop to cycle over the chain of links. Each element is

tested against the argument. If any are equal, then the Boolean value true is returned.

Otherwise, if the loop terminates without finding any matching element, the value False

is returned.

The remove function uses a similar loop. However, this time, if a matching value is

found, then the function removeLink is invoked. The remove function then terminates,

without examining the rest of the collection. (As a consequence, only the first occurrence

of a value is removed. Repeated values may still be in the collection. A question at the

end of this chapter asks you to consider different implementation techniques for the

removeAll function.)

Introduction to the Iterator

As we noted in Chapter 5, one of the primary design principles for collection classes is

encapsulation. The internal details concerning how an implementation works are hidden

behind a simple and easy to remember interface. To use a Bag, for example, all you need

know is the basic operations are add, collect and remove. The inner workings of the

implementation for the bag are effectively hidden.

Chapter 8: Bags 5

/* conceptual interface */
 Boolean (or int) hasNext ();
 TYPE next ();
 void remove ();

When using collections a common requirement is

the need to loop over all the elements in the

collection, for example to print them to a window.

Once again it is important that this process be

performed without any knowledge of how the

collection is represented in memory. For this reason

the conventional solution is to use a mechanism termed an Iterator.

Each collection will be matched with a set of

functions that implement this interface. The

functions next and hasNext are used in

combination to write a simple loop that will

cycle over the values in the collection.

The iterator loop exposes nothing regarding the

structure of the container class. The function

remove can be used to delete from the collection

the value most recently returned by next.

Notice that an iterator is an object that is separate from the collection itself. The iterator is

a facilitator object, that provides access to the container values. In worksheets 23 and 24

you complete the implementation of iterators for the dynamic array and for the linked list.

Self Organizing Lists

We have treated all list operations as if they were equally likely, but this is not always

true in practice. Often an analysis of the frequency of operations will suggest ways that a

data structure can be modified in order to improve performance. For example, one

common situation is that a successful search will frequently be followed relatively soon

by a search for the same value. One way to handle this would be for a successful search

to remove the value from the list and reinsert it at the front. By doing so, the subsequent

search will be much faster.

A data structure that tries to optimize future performance based on the frequency of past

operations is called self-organizing. We will subsequently encounter a number of other

self-organizing data structures. Given the right circumstances self-organization can be

very effective. The following chart shows the results of one simple experiment using this

technique.

LinkedListIterator itr;
TYPE current;
…
ListIteratorInit (aList, itr);
while (ListIteratorHasNext(itr)) {
 current = ListIteratorNext(itr);
 … /* do something with current
*/
}

Chapter 8: Bags 6

Simple Set Operations

Any bag can be used to construct a set. Among the basic functions the only change is in

the addition operation, which must check that the value is not already in the collection.

Operations such as set union, intersection and difference can all be implemented with

simple loops. The following pseudo-code shows set union:

setUnion (one, two, three) /* assume set three is initially empty */
 for each element in one
 if value is found in two
 add to set three

The algorithmic execution time for this operation depends upon a combination of the

time to search the second set, and the time to add into the third set. If we use a simple

dynamic array or linked list bag, then both of these operations are O(n) and so, since the

outer loop cycles over all the elements in the first bag, the complete union operation is

O(n
2
).

Simple algorithms for set intersection, difference, and subset are similar, with similar

performance. These are analyzed in questions at the end of this chapter. Faster set

algorithms require adding more structure to the collection, such as keeping elements in

sorted order.

The Bit Set

A specialized type of set is used to represent positive integers from a small range, such as

a set drawn from the values between 0 and 75. Because only integer values are allowed,

this can be represented very efficiently as binary values, and is therefore termed a bit set.

Worksheet 25 explores the implementation of the bit set.

Chapter 8: Bags 7

Advanced Bag Implementation Techniques

Several other bag implementation techniques use radically different approaches. Indeed,

three of the following chapters will be devoted in some fashion or another to bag data

structures. Chapter 9 explores the saving possible when elements are maintained in order.

Chapter 10 introduces a new type of list, the skip list, as well as an entirely different form

of organization, the binary tree. Finally, Chapter 12 introduces yet another technique,

hashing, which produces some of the fastest implementations of bag operations.

Self Study Questions

1. What features characterize the Bag data type?

2. How is a set different from a bag?

3. When a dynamic array is used as a bag, how is the add operation different from

operations you have already implemented in the dynamic array stack?

4. When a dynamic array is used as a set, how is the add operation different from

operations you have already implemented in the dynamic array stack?

5. Using a dynamic array as the implementation technique, what is the big-oh

algorithmic execution time for each of the bag operations? Is this different if you use

a linked list as the implementation technique?

6. What is an iterator? What purpose does the iterator address?

7. Any bag can be used as the basis for a set. When using a dynamic array or linked list

as the bag, what is the algorithmic execution time for the set operations?

8. What is a bit set?

Short Exercises

1. Assume you wanted to define an equality operator for bags. A bag is equal to another

bag if they have the same number of elements, and each element occurs in the other

bag the same number of times. Notice that the order of the elements is unimportant. If

you implement bags using a dynamic array, how would you implement the equality-

testing operator? What is the algorithmic complexity of your operation? Can you

think of any changes to the representation that would make this operation faster?

Analysis Exercises

Chapter 8: Bags 8

1. There are two simple approaches to implementing bag strucutures; using dynamic

arrays or linked list. The only difference in algorithmic execution time performance

between these two data structures is that the linked list has guaranteed constant time

insertion, while the dynamic array only has amortized constant time insertion. Can

you design an experiment that will determine if there is any measurable difference

caused by this? Does your experiment yield different results if a test for inclusion is

performed more frequently that insertions?

2. What should the remove function for a bag do if no matching value is identified? One

approach is to silently do nothing. Another possibility is to return a Boolean flag

indicating whether or not removal was performed. A third possibility is to throw an

exception or assertion error. Compare these three possibilities and give advantages

and disadvantages of each.

3. Finish describing the naïve set algorithms that are built on top of bag abstractions.

Then, using invariants, provide an informal proof of correctness for each of these

algorithms.

4. Assume that you are assigned to test a bag implementation. Knowing only the bag

interface, what would be some good example test cases? What are some of the

boundary values identified in the specification?

5. The entry for Bag in the Dictionary of Algorithms and Data Structures suggests a

number of axioms that can be used to characterize a bag. Can you define test cases

that would exercise each of these axioms? How do your test cases here differ from

those suggested in the previous question.

6. Assume that you are assigned to test a set implementation. Knowing only the set

interface, what would be some good example test cases? What are some of the

boundary values identified in the specification?

7. The bag data type allows a value to appear more than once in the collection. The

remove operation only removes the first matching value it finds, potentially leaving

other occurrences of the value remaining in the collection. Suppose you wanted to

implement a removeAll operation, which removed all occurrences of the argument. If

you did so by making repeated calls on remove what would be the algorithmic

complexity of this operation? Can you think of a better approach if you are using a

dynamic array as the underlying container? What about if you are using a linked list?

Programming Projects

1. Implement an experiment designed to test the two simple bag implementations, as

described in analysis exercise 1.

2. Using either of the bag implementations implement the simple set algorithms and

empirically verify that they are O(n
2
). Do this by performing set unions for two sets

Chapter 8: Bags 9

with n elements each, of various values of n. Verify that as n increases the time to

perform the union increases as a square. Plot your results to see the quadratic

behavior.

On the Web

The wikipedia has (at the time of writing) no entry for the bag data structure, but does

have an entry for the related data type termed the multiset. Other associated entries

include bitset (termed a bit array or bitmap). The Dictionary of Algorithms and Data

Structures does have an entry that describes the bag.

