
Worksheet 16: Introduction to the Dynamic Array Name:

An Active Learning approach to Data Structures using C 1

Worksheet 16: Dynamic Array Stack

In Preparation: Read Chapter 6 to learn more about the Stack data type. If you have not
done so already, you should complete worksheets 14 and 15 to learn about the basic
features of the dynamic array.

In Chapter 6 you read about the Stack data
abstraction. A stack maintains values in order
based on their time of insertion. When a value is
removed from the stack it is the value that has been
most recently added to the stack. The abstract
definitions of the stack operations are shown at
right.

As you learned in Worksheet 14, a positive feature of the array is that it provides random
access to values. Elements are accessed using an index, and the time it takes to access any
one element is no different from the time it takes to access another. However, a
fundamental problem of the simple array is that the size must be specified at the time the
array is created. Often the size cannot be easily predicted; for example if the array is
being filled with values being read from a file. A solution to this problem is to use a
partially filled array; an array that is purposely larger than necessary. A separate variable
keeps track of the number of elements in the array that have been filled.

The dynamic array data type uses this approach. The array of values is encapsulated
within a structure boundary, as is the current size of the collection. The size represents the
number of elements in the array currently in use. The size is different from the capacity,
which is the actual size of the array. Because the array is referenced by a pointer, an
allocation routine must be called to set the initial size and create the initial memory area.
A separate destroy routine frees this memory. You wrote these earlier in Worksheet 14.

Conceptual Stack Operations
void push (TYPE newValue)
TYPE top ()
void pop ()
Boolean isEmpty ()

Worksheet 16: Introduction to the Dynamic Array Name:

An Active Learning approach to Data Structures using C 2

The function dynArrayAdd(struct DynArr * da, TYPE v) adds a new value to end of
a dynamic array. Recall from Worksheet 14 that this function could potentially increase
the size of the internal buffer if there was insufficient space for the new value. This is
shown in the following two pictures. In the first picture there is space for the new value,
so no reallocation is needed. In the second picture there is no longer enough space, and so
a new buffer is created, the elements are copied from the old buffer to the new, and the
value is then inserted into the new buffer. You wrote the function dynArrayAdd in
worksheet 14. Do you remember the worst-case algorithmic execution time for this
function?

Your task in this worksheet is to write the code for the Stack functions push, pop, top and
isEmpty. These functions should use a dynamic array (passed as an argument) for the
storage area. Use an assertion to check that the stack has at least one element when the
functions top or pop are called. Your job will be greatly simplified by making use of the
following functions, which you developed in previous lessons:

struct DynArr {

TYPE * data;
 int size;
 int capacity;
 };

 /* initialize a dynamic array structure with given capacity */
void dynArrayInit (struct DynArr * da, int initialCapacity);

 /* internal method to double the capacity of a dynamic array */
void _dynArraySetCapacity (struct DynArr * da);

 /* release dynamically allocated memory for the dynamic array */
void dynArrayFree (struct DynArr * da);

 /* return number of elements stored in dynamic array */
int dynArraysize (struct DynArr * da);

 /* add a value to the end of a dynamically array */
void dynArrayAdd (struct DynArr * da, TYPE e);

 /* remove the value stored at position in the dynamic array */
void dynArrayRemoveAt (struct DynArr * da, int position);

 /* retrieve element at a given position */
TYPE dynArrayGet (struct DynArr * da, int position);

 /* store element at a given position */
void dynArrayPut (struct DynArr * da, int position, TYPE value);

Worksheet 16: Introduction to the Dynamic Array Name:

An Active Learning approach to Data Structures using C 3

define TYPE int

struct DynArr {
 TYPE * data;
 int size;
 int capacity;
};

void dynArrayPush (struct DynArr * da, TYPE e) {

}

TYPE dynArrayTop (struct DynArr * da) {

}

void dynArrayPop (struct DynArr * da) {

}

int dynArrayIsEmpty (struct DynArr * da) {

}

Questions

1. What is the algorithmic execution time for the operations pop and top?

2. What is the algorithmic execution time for the operation push, assuming there is
sufficient capacity for the new elements?

3. What is the algorithmic execution time for the internal method
_dynArraySetCapacity?

4. Using as a basis your answer to 3, what is the algorithmic execution time for the
operation push assuming that a new array must be created.

