
CS 261 – Data Structures

Introduction to

C Programming

Why C?
• C is a lower level, imperative language

• C makes it easier to focus on important concepts
for this class, including

– memory allocation

– execution time complexity

• Lays groundwork for many other languages

2

Files: Interface and Implementation

• Interface files (*.h)
• Implementation files (*.c)

#include <stdio.h>

#include <stdlib.h>
#include “my_file.h”
int main (int argc, char *argv[]) {

/*your code*/ }
void my_function(double a) {

/*your code*/ }

– Every code must have main()
–main()does not need to contain the return statement

3

Interface File
• Interface files (*.h) have

– Declarations of variables

– Declarations of types,

– Preprocessor commands,

– Function prototypes -- header but no body:

• Example: int max(int a, int b);

terminated with a semicolon!

4

Declarations of Variables

• When you declare a variable, a memory
space is reserved for that variable

int i; /* 8 bytes for 64-bit machine */
double d;
long test[100];/* reserved 100 locations of size long */

• Note that the index for the above array goes from 0 to 99
test[100] = 4; /* ERROR !!!*/

5

Declarations of Types and Constants

• Examples:
/* constant TYPE is declared as type double */
define TYPE double

define TYPE char

/* Replaces MAX in code with 423 */
define MAX 423

6

Function Definitions

returnType functionName(arguments) {

declarations of variables;/*Must come first*/

commands;

}

7

Function Definitions -- Example
Return a sum of n integers:
long arrSum(int arr[], unsigned int n)
{
/*unsigned int i;/* Loop variable. */*/
long sum = 0; /* Sum initialized to zero. */

for (int i = 0; i < n; i=i+1) {
sum = sum + arr[i];

}
return sum;

}
Need to pass size of array
(not included in arr).

8

Variable and its Memory Location
double mass; /* variable */
long memory; /* variable */

mass = 0.01;

memory = & mass;

printf("%e, %p \n",mass,memory);

Output: 1e-2, ffbff958

9

Pointers

• A pointer is a variable that refers to a
memory location

10

Pointer Value vs. Thing Pointed At

the value of the pointer
vs.

the value of the thing the pointer points to:

D3C2

42

Value at location D3C2

Pointer

pVal

*pVal

11

Pointer Syntax

• Use * to
–declare a pointer,
–get value of pointer

• Use & to get address of a variable

double *ptr;
double pi, e;

12

Pointer Syntax -- Example

double *ptr;
double pi, e;

ptr = π

&pi ptr

??.???

e

??.???

pi

13

Pointer Syntax -- Example

double *ptr;
double pi, e;

ptr = π
*ptr = 3.14159;

&pi ptr

??.???

e

3.13159

pi

14

Pointer Syntax -- Example

double *ptr;
double pi, e;

ptr = π
*ptr = 3.14159;
ptr = &e;

&e ptr

??.???

e

3.13159

pi

15

Pointer Syntax -- Example

double *ptr;
double pi, e;

ptr = π
*ptr = 3.14159;
ptr = &e;
*ptr = 2.71828;

&e ptr

2.71828

e

3.13159

pi

16

Pointer Syntax -- Example

double *ptr;
double pi, e;

ptr = π
*ptr = 3.14159;
ptr = &e;
*ptr = 2.71828;
printf("%p %g %g %g\n",

ptr, *ptr, pi, e);
Output: ffbff958 2.71828 3.14159 2.71828

&e ptr

2.71828

e

3.13159

pi

17

Pointers – Memory Allocation
int *pVal; /* Pointer uninitialized to

unallocated integer value. */

Pointer

pVal
?

18

Pointers – Memory Allocation
int *pVal; /* Pointer uninitialized to

unallocated integer value. */

pVal = NULL; /* Initialize pointer to indicate that
it is not allocated. */

Pointer

pVal
Indicates
a �null�
pointer.

19

Pointers – Memory Allocation
int *pVal; /* Pointer uninitialized to

unallocated integer value. */

pVal = 0; /* Initialize pointer to indicate that
it is not allocated. */

.

.

.

/* Allocate integer and */
/* assign memory address to pVal. */

pVal = (int *) malloc(sizeof(int));

Pointer

pVal

???

Value

20

Pointers – Memory Allocation
int *pVal; /* Pointer uninitialized to

unallocated integer value. */

pVal = 0; /* Initialize pointer to indicate that
it is not allocated. */

.

.

.

/* Allocate integer and */
/* assign memory address to pVal. */

pVal = (int *) malloc(sizeof(int));

*pVal = 42;

Pointer

pVal

42

Value

21

Structures

struct Gate {
int type; /* Type of gate. */
struct Gate *left; /* Left input. */
struct Gate *right;/* Right input. */

};

22

Accessing Data Fields in the Stucture

struct Gate gate;

gate.type = 3;

but often combined with pointers …

23

Pointers and Structures
Pointers often point to structures.

struct Gate *p; /* no memory allocated */
struct Gate g; /* allocates memory */

p = &g;
p->type = 3;/* Set g.type that p points to */

24

Pointers and Structures
Pointers often point to structures.

struct Gate *p;
struct Gate g;

p = &g;
p->type = 3;/* Set g.type that p points to */

/* Same as (*p).type = 3 */
/* Same as g.type = 3 */

25

Dynamic Memory Allocation
• Use malloc(num-of-bytes)

• Use sizeof to figure out how many bytes

struct Gate *p =
(struct Gate *) malloc

(sizeof(struct Gate));

assert(p != NULL);/* Always check */

26

Function Arguments

• Pass-By-Value

• Pass-By-Reference

27

Function Arguments: Pass-By-Value

• Only values of variables are passed as arguments
to a function

• A copy variable is formed in the function

• The value of the argument is lost after returning
from the function

28

Pass-By-Value -- Example
void printing(void){

int test, n=5;
test = assignment(n);
printf("n=%d, test=%d",n,test);

}

int assignment(int n){ /* pass n by value */
n++;
return n;

}

Output: ?

29

Function Arguments: Pass-By-Reference

• Pointers to variables are passed as arguments to a
function

• The value of the argument is NOT lost after
returning from the function, since its memory
location is known and stored in the pointer

30

Pass-by-Reference -- Example
void set_pi(double *p) {

*p = 3.14159;
}
.
.
double d = 2.718281;
set_pi(&d); /* Pass d by reference */
printf("d = %g\n", d);

Output: ?
31

pointer

Structures and Pass-by-Reference Parameters

Very common idiom:

struct Vector vec;/* Note: not pointer */

/* Pass by reference */
vectorAdd (&vec, 3.14159);

32

Arrays Always Passed by Reference

void foo(double d[]){/* Same as foo(double *d) */

d[0] = 3.14159;
}
.
.
double data[4];
data[0] = 42.0;
foo(data); /* Note: No ampersand. */
printf("%g", data[0]);

33

Next Lecture

• Read Chapter 5 on ADTs
• Big-OH and Algorithms
• See posted reading and worksheets

34

