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Image Reconstruction from Projections
X-ray computed tomography:

X-raying an object from different directions = 3D object representation
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FIGURE 5.35 Four
generations of CT
scanners. The
dotted arrow
lines indicate
incremental
linear motion.

Source

The dotted arrow
arcs indicate
incremental
rotation. The
cross-mark on
the subject’s head
indicates linear
motion

Detector

perpendicular to ,
the plane of the AN
paper. The

double arrows in
(a) and (b)
indicate that the
source/detector
unit is translated
and then brought
back into its
original position.
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Example: Backprojecting a 1D signal

Absorption profile
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FIGURE 5.32
(a) Flat region
showing a simple Beam
object, an input
parallel beam, and

a detector strip.

(b) Result of back-
projecting the
sensed strip data
(i.e., the 1-D absorp-
tion profile). (c) The
beam and detectors
rotated by 90°.

(d) Back-projection.
(e) The sum of (b)
and (d).The inten-
sity where the back-
projections intersect
is twice the intensity
of the individual
back-projections.
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...As We Increase the Number of Backprojections
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FIGURE 5.33

(a) Same as Fig.
5.32(a).

(b)—(e)
Reconstruction
using 1,2,3,and 4
backprojections 45°
apart.

(f) Reconstruction

with 32 backprojec-
tions 5.625° apart
(note the blurring).

halo effect




Example: Backprojecting a 1D signal

abc
FIGURE 5.34 (a) A region with two objects. (b)-(d) Reconstruction using 1, 2, and 4

backprojections 45° apart. (e) Reconstruction with 32 backprojections 5.625° apart.
(f) Reconstruction with 64 backprojections 2.8125° apart.
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Projection

y=axr+b

xcosh +ysinf = p

FIGURE 5.36 Normal representation of a straight line.



Radon Transform
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Complete projection, g(p, 0),
for a fixed angle —

NN

Q

A point g(pj, 6x) in
the projection

I

A point in the projection
g(pja ‘gk)

is the ray-sum along

x cos Oy, + ysin by = p;

Radon Transform

g(p,0) = / / flx,y)o(xcosd + ysinh — p)dxdy

continuous space coordinates

M—-1N-1

g(p,0) = Z Z f(z,y)d(xcosf + ysinf — p)

=0 y=0

discrete space coordinates

key tool for reconstruction from projections



Example: Radon Transform

A, 22+ y?<r? FIGURE 5.38 A disk

f($7 y) - 0 and a plot of its

, 0.W :
Radon transform,

derived analytically.
Here we were able to
plot the transform
because it depends
only on one variable.
When g depends on
both p and 6, the
Radon transform
becomes an image
whose axes are p and
0, and the intensity
of a pixel is
proportional to the
value of g at the
location of that pixel.
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Sinogram = Image of Radon Transform
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FIGURE 5.39 Two images and their sinograms (Radon transforms). Each row of a sinogram
is a projection along the corresponding angle on the vertical axis. Image (c) is called the
Shepp-Logan phantom. In its original form, the contrast of the phantom is quite low. It is
shown enhanced here to facilitate viewing.
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Properties of Objects from Sinogram

» Sinogram symmetric = Object symmetric

» Sinogram symmetric about image center = Object symmetric and
parallel to x and y axes

* Sinogram smooth = Object has uniform intensity
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Computed Tomography (CT)

Key objective:

Obtain a 3D representation of a volume from its projections

* How:

» Backproject all projections and sum them all in one image

By stacking all images we obtain the 3D volume
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Backprojection from the Radon Transform

A point g(pj, 6) in
Q the projection

« Given point ¢(p;,0%)
« Backprojection = copy the value of g(p;, %) on the entire line

Vp = fo.(z,y) = g(x cos by + ysin b, O)

= f(ay) = / " fola,y)do
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Backprojection from the Radon Transform

A point g(pj, 6) in
Q the projection

« Given point g(p;,0%)
« Backprojection = copy the value of g(p;, %) on the entire line

Vp = fo.(z,y) = g(x cos by + ysin b, O)

= f(xay) - OP 9($7y)d‘9
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Laminogram Obtained from Sinogram

» Backprojection for a specific angle

fek (:Ea y) = g(x COS Qk: + ) sin 01{:7 91@)
* Summation over all theta

Fay) =S foley)
6=0
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Laminogram Obtained from Sinogram

» Backprojection for a specific angle

fek (xay) = g(xcos@k + ySineknek)

« Summation over all theta

f(xay) %f@(iﬁ,y>
0=0
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Example Laminograms

Significant improvements can be obtained
by reformulating backprojections!

15

Relating
1D Fourier Transform of the projection
with
2D Fourier Transform of the image

from which the projection was obtained.

16



1D Fourier Transform of the Projection

G(w,0) = / 9(p, 0)e 92" dp

17

1D Fourier Transform of the Projection

G(w,0) = / 9(p, 0)e 92" dp

by definition

G(w,0) = / / / f(z,y)d(xcos b + ysinh — p)e 2™ dx dy dp
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1D Fourier Transform of the Projection

G(w,0) = / 9(p, 0)c =920 g

by definition

G(w,0) = / / / f(z,y)d(xcos b + ysind — p)e 2™ Pdx dy dp

— / / f(x’y)efj%rw(w cos 0+y sin a)dl' dy
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1D Fourier Transform of the Projection

G(w,0) = / 9(p, 0)c= 920 g

by definition

G(w,0) = / / / f(z,y)d(xcos b + ysinh — p)e 2™ dx dy dp

— / / f(x’y)efj%rw(w cos 04y sin a)dl' dy

= F(wcosf,wsinf)
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1D Fourier Transform of the Projection

G(w,0) =/ 9(p,0)e™ 727 dp

by definition

G(w,0) = / / / f(z,y)6(xcosf +ysinb — p)e 2™Pdy dy dp

— / / f(xyy)efj%rw(wcos 0+y sin a)daj dy

= F(wcosf,wsin®) Fourier Slice Theorem
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Fourier Slice Theorem

." v
2-D Fourier

Proiecti P transform
oiectio
rojection ~ F(u, v)

<\f(\\y) ‘ “\ H\
X,y

; YN : L

1-D Foul‘iel‘\‘

transform

1D FT =asliceof 2D FT
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Reconstruction Using Filtered Backprojections

by definition

f(z,y) / / (u,v) eﬂ”(“m“”y)du dv
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Reconstruction Using Filtered Backprojections

by definition
f(z,y) / / (u,v) eﬂ”(“m“”y)du dv

u=wcosh, v =wsinf, = dudv = wdwdl

2T
flz,y) = / / F(w cos 0, wsin §)e? 2w (@cosb+ysing) , g, qg
o Jo
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Reconstruction Using Filtered Backprojections

by definition

flz,y) = / / F(u,v)e?2 e gy, dy
u=wcosh, v =wsinf, = dudv = wdwdl

2T 00
flz,y) = / / F(w cos 0, wsin §)e? 2w (@cosb+ysing) , g, qg
o Jo

by Fourier Slice Theorem

2m e’}
f(gj’y):/ / G(w7e)ej27rw(xcose+ysin9)w dw db
0 0
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Reconstruction Using Filtered Backprojections

G(w,0+180°) = G(—w, 0)
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Reconstruction Using Filtered Backprojections

G(w,0 +180°) = G(—w,0)

f(x,y):/ / |w|G(w,e)ej27rw(xcos0+ysin9) dw do
0 JO
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Reconstruction Using Filtered Backprojections

G(w, 0+ 180°) = G(~w, 0)

f(x,y):/ / |w|G(w,e)ej27rw(xcos0+ysin9) dw do
0 JO

f(x’y):/ U w|G(w, 0)e’™ dw do
0 0 p=x cos +ysin 0
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Reconstruction Using Filtered Backprojections

G(w,0+180°) = G(—w, 0)

f(x,y):/ / |w|G(w,0)6j27rw(:ccos€+ysin9) dw db
0 0

f(z,y) = /0 /0 ]G w, )7 du

1D filtering

do

p=x cos O+y sin 6
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Box + Ramp Filter

Frequency
domain

Spatial
domain

"
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FIGURE 5.42

(a) Frequency
domain plot of the
filter |w| after band-
limiting it with a

box filter. (b) Spatial
domain
representation.

(c) Hamming
windowing function.
(d) Windowed ramp
filter, formed as the
product of (a) and
(c). (e) Spatial
representation of the
product (note the
decrease in ringing).

Frequency Frequency Spatial
domain domain domain
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Algorithm for Filtered Backprojection

1. Given projections g(p,0) obtained at each fixed angle 6

2. Compute G(w,0) = 1D Fourier Transform of each projection g(p,0)

3. Multiply G(w,8) by the filter function lwl modified by Hamming window
4. Compute the inverse of the results from 3.

5. Integrate (sum) over O all results from 4.
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Examples

"0

naive backprojection

Tr m

ramp windowed
ramp  windowed filter ramp filter
filter ramp filter
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