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Abstract This paper presents an approach to estimating the
2.1D sketch from monocular, low-level visual cues. We use a
low-level segmenter to partition the image into regions, and,
then, estimate their 2.1D sketch, subject to figure-ground
and similarity constraints between neighboring regions. The
2.1D sketch assigns a depth ordering to image regions which
are expected to correspond to objects and surfaces in the
scene. This is cast as a constrained convex optimization prob-
lem, and solved within the optimization transfer framework.
The optimization objective takes into account the curvature
and convexity of parts of region boundaries, appearance,
and spatial layout properties of regions. Our new optimiza-
tion transfer algorithm admits a closed-form expression of
the duality gap, and thus allows explicit computation of the
achieved accuracy. The algorithm is efficient with quadratic
complexity in the number of constraints between image re-
gions. Quantitative and qualitative results on challenging,
real-world images of Berkeley segmentation, Geometric Con-
text, and Stanford Make3D datasets demonstrate our high
accuracy, efficiency, and robustness.
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1 Introduction

Our goal is to estimate a layered depth map – called 2.1D
sketch [1, 12, 19, 40] – of the scene from a single image.
The term 2.1D sketch was first introduced by [40] as an ex-
tension to the primal sketch representation in [22, 36]. The
2.1D sketch is defined as a piece-wise planar representation
of surfaces and their relative depth ordering in the scene,
where the plane normals lie along the camera viewing direc-
tion.

Monocular estimation of 2.1D sketch is a long-standing
problem, encountered in many applications, including range
analysis [12,35,44,46], object recognition [20,24,25,34,49],
and image-based visualizations [26]. This problem is diffi-
cult, because there are infinitely many 3D scenes that could
explain the 2D image. In addition, the depth ordering of ob-
jects may be ill-defined, e.g., in the cases of self-occlusions
and entanglements.

A viable approach accounts for constraints about scene
layouts, and thus rules out implausible solutions. We here
focus on low-level constraints. Our approach is aimed as
an initial step of diverse higher-level vision systems, and
thus is not informed about any specific objects and surfaces
occurring in the scene, their numbers, scales, and layouts.
Low-level constraints may be inferred from image features,
and their perceptual organization. For example, a T-junction
unequivocally indicates the presence of a partial occlusion,
and thus variation in the scene depth. However, detection of
the low-level constraints is typically noisy. For instance, T-
junctions can be easily confused with T-like patterns in an
image texture.

We use regions as basic image features, since: i) region
boundaries often coincide with object boundaries, and thus
facilitate extracting local figure-ground constraints; and ii)
spatial locality of regions allows a piecewise planar approx-
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Fig. 1 Our approach: An input image is first segmented. We then estimate local Figure-Ground (marked as colored points) and Adjacent Layers
relationships (similar regions and hierarchically related regions) along shared boundaries between regions. Hierarchy is established based on region
nesting given by the segmentation tree which defines similarity relationship. A convex optimization uses these region relationships to estimate the
2.1D sketch. The optimization favors placing regions with similar appearance, and region-subregion pairs at near-by depth layers. The surfaces
estimated as closer to the camera are depicted with warmer colors.

imation of the 3D scene, where the regions correspond to the
frontally viewed planes.

As the right segmentation scale is unknown, we use a
hierarchical segmentation of the image in order to have a
high recall of true object boundaries, while maintaining the
minimum region size sufficiently large so as to enable robust
estimation of the 2.1D sketch. Thus, our goal is to assign a
depth ordering to all multiscale image regions. The resulting
depth map may merge a number of oversegmented regions
to a single-depth layer.

An overview of our approach is illustrated in Figure 1.
Given an image segmentation, we compute the depth map
as a 2D, piecewise constant function with discontinuities at
region boundaries. We first estimate two types of region re-
lationships, which are then used as soft constraints of con-
vex optimization for computing the 2.1D sketch. The first
relationship is the local figure-ground (FG) depth ordering
between neighboring regions that share a boundary. It is esti-
mated based on the local curvature and convexity of bound-
ary parts shared by the regions. Since a shared region bound-
ary can be split into a number of parts, two neighboring re-
gions may have a number of (noisy) FG relations, which
may not necessarily all be the same. The estimated FG polar-
ity is used in the convex optimization to favor placing the re-
gions closer (F) and farther away (G) from the camera in the
resulting depth map. The convex optimization uses the FG
relations to separate regions into different layers. The second
relationship is called Adjacent Layers (AL). Neighboring re-
gions that are similar in appearance (i.e., color and texture)
are estimated to have the AL relationship. In addition, all
region-subregion pairs in the hierarchical segmentation are
specified to have the Hierarchical Relationship (HR). This
relationship serves to indicate image parts which have been
oversegmented, or occupied by objects and their parts, i.e.,
image parts that correspond to surfaces of the scene which

indeed belong to adjacent depth layers. The convex opti-
mization uses the AL relationships to favor placing corre-
sponding regions at near-by depth layers (or even at a single
depth layer). This would amount to correcting oversegmen-
tation, or constraining the depth differences of objects and
their parts.1

The estimates of region relations are noisy, because they
are obtained from local, low-level cues, largely affected by
variations in illumination, scale, and viewpoint. The convex
optimization jointly considers all region relations, and cor-
rects the ones whose satisfaction would violate that the re-
sulting depths of regions represent a preorder relationship.
For example, a local F-G estimate of a pair of regions may be
switched in the convex optimization to G-F, and, similarly,
an AL estimate may be corrected to place the two regions at
relatively distant ordinal depths. We say that the 2.1D sketch
is consistent over a set of regions, if their estimated ordinal
depths are reflexive and transitive, i.e., represent preorder.
Our approach takes an input local cues estimates, and fuse
the information from all cue to get a the most consistent
depth representation.

Our formulation represents a tournament problem [4, 7,
9,31,48], where the goal is to rank n objects (i.e., image re-
gions) according to some transitive characteristic (distance
from the camera), by means of successive pairwise com-
parisons (i.e., FG, AL, and HR relations). The 2.1D sketch
can thus be defined as tournament, i.e., an acyclic, directed,
weighted subgraph of the graph of image regions, where
edge weights represent differences in the regions’ ordinal
depths. Therefore, finding the 2.1D sketch amounts to iden-

1 A region-subregion pair may not correspond to an object and its
part (e.g., sky seen through tree branches). In this case, even human
vision could not correctly identify their depths, without resorting to
higher-level semantic cues, which are beyond our scope.
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tifying a subset of directed edges with a minimum total weight,
whose removal leaves a maximum-weight acyclic subgraph.

The tournament problem is known to be NP-hard and
APX-hard [4,7,9,31,48], which means that there is no polynomial-
time approximation scheme to solve the problem within ev-
ery fixed percentage greater than zero. Therefore, estimat-
ing the 2.1D sketch is not only NP-hard, but also hard to
approximate. The literature presents a large number of ap-
proximations aimed at special graphs (e.g., planar graphs).
For general graphs, as is our case, recently reported approx-
imate algorithms claim to have the best efficiency-accuracy
trade off [38], with expected (1 + ϵ)-approximation guaran-
tee (e.g., ϵ = 2), and runtime which is singly exponential in
1/ϵ.

As one of the key contributions, this paper formulates
depth-map estimation as a constrained convex quadratic op-
timization, aimed at efficiently approximating the NP-hard
tournament problem. The convex problem is solved using
a new algorithm, specified within the optimization trans-
fer framework. Our algorithm is efficient with the quadratic
complexity in the number of constraints between image re-
gions. We empirically observe that its convergence rate is
close to exponential, i.e., the values of our non-negative ob-
jective function follow a decreasing exponential function over
the number of iterations. The algorithm provides explicit ac-
curacy guaranties of the solution.

The new algorithm is suited for our (and other) prob-
lem(s) with a large number of variables. This is empirically
validated via a comparison with the common gradient de-
scent with backtracking line search. In our experiments, we
typically observe relatively large values of the condition num-
ber of the Hessian, which negatively affects the convergence
rate of the gradient descent. In turn, this makes identify-
ing the right stopping criterion very hard. This is a funda-
mental problem, since the gradient descent does not provide
any guarantees of closeness of its result to the global opti-
mum. By contrast, the analytic tractability of our optimiza-
tion transfer can save many iterations of the backtracking
step size selection, and speed up convergence. This is be-
cause our algorithm admits a closed-form expression of the
duality gap, and thus allows for explicit computation of the
accuracy achieved at convergence. Our experiments demon-
strate that our algorithm consistently yields better solutions
than the gradient descent with backtracking line search.

This paper is organized as follows. Section 2 explains
our contributions relative to prior work. Section 3 describes
image segmentation, and estimation of FG and AL relations
between regions. Sections 4–6 formulate extracting the 2.1D
sketch as convex optimization. Sections 7–9 specify our op-
timization algorithm, and discuss its certificate of accuracy,
convergence, and complexity. Section 10 presents our ex-
perimental evaluation. Derivation of certain details of our

formulation and optimization algorithm are presented in the
supplement material.

2 Prior Work and Our Contributions

The literature on monocular extraction of the 2.1D sketch
can be broadly divided into two groups—namely, approaches
that exploit domain knowledge about constraints between
known objects and surfaces in the scene, and methods that
are agnostic about the image content. The former group is
typically aimed at interpreting specific scenes that have pre-
viously been seen in training, which allows them to learn
spatial context among objects in the scene, and thus esti-
mate the depth map [20, 23–25, 30, 34, 46, 49]. A thorough
review and comparison of our approach with this group is
beyond our scope. The latter group is related to our ap-
proach. They typically specify a depth-map model aimed at
capturing the perceptual organization of image features of a
wide range of previously unseen scenes. Representative ap-
proaches of this group include: (i)Contour-based 3D shape
recovery [25, 34, 35] (ii)“Dead leaves” model of occlusion
[15, 40]; (iii) Minimum description length of image support
maps [12]; and (iv) Markov Random Fields (MRFs) [39],
Layered MRFs [19, 45], and hierarchical graphical models
[14]. In general, these models have intractable inference.
This is usually addressed by making heuristic assumptions
about the number of depth layers present, and limiting the
range of spatial relationships among image features con-
sidered for perceptual grouping. These approaches typically
use only qualitative evaluation, often presented only on a
small set of images.

Below, we review popular low-level approaches that use
T-junctions and image defocus as features. T-junctions are
used in [14, 39, 40] to identify gradients of the depth map.
The gradients are inferred from stems and caps of the T-
junctions, and used to estimate either a diffusion map [39],
or a directed acyclic graph of T-junctions in which graph
edges point to partially occluded scene parts [14]. How-
ever, T-junctions can provide only the orientation of depth-
map gradients, whereas the gradient magnitudes have to be
heuristically estimated [14]. Explicit detection of T-junctions
may be avoided by directly minimizing the Mumford-Shah
segmentation functional to reconstruct occluded object bound-
aries, and thus estimate the 2.1D sketch [15]. Defocus of cer-
tain image parts can also be used as image feature [13, 16,
29, 32, 41, 42]. Estimating the surface of exact focus in real
images, however, is challenging, especially when the image
is corrupted by other types of noise (e.g., motion blur).

A special case of the 2.1D sketch is the figure-ground
perceptual organization of the scene. Note that our use of the
term figure-ground relationship between regions concerns
a distance ordering of the corresponding objects from the
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camera. In the literature, the notion of figure-ground is of-
ten used in a more general sense, where objects of interest
appear as foreground. It has been shown that figure-ground
perception is influenced by many low-level factors [17, 18,
43, 51], including: local shape characteristics of the region
boundary (e.g., convexity), its global shape characteristics
(e.g., symmetry, orientation), appearance of the region itself
(e.g., size, texturedness), and spatial layout of its surround-
ing regions. Typically, figure/ground assignment is made for
each pixel along a region boundary [17], or boundary seg-
ments between two junctions [43], based on the above fac-
tors. Also, image regions can be assigned figure-ground la-
bels, based on estimating their ordinal depths [33]. This method
uses the conditional random field (CRF) spanned over im-
age regions to estimate occluding and occluded scene parts,
based on low-level properties of region shapes and T-junctions.
They heuristically limit to a small number the set of image
regions input to their algorithm to handle complexity.

Similar to the second group of approaches, we use low-
level image features – namely, regions and their figure-ground,
appearance similarity, layout, and hierarchical relationships.
We address the computational issues of existing CRF/MRF
based methods by formulating depth-map estimation as a
convex optimization problem, and providing accuracy guar-
anties of the obtained solution. Our algorithm is efficient,
and may easily handle a large number of multiscale image
regions. A comparison with the common backtracking pro-
jection gradient descent algorithm, presented here, demon-
strates many advantages of our algorithm. We do not limit
the number of input regions, and show that accounting for
their hierarchical nesting improves performance. We are not
aware of any previous work that uses nesting of regions as
a depth cue. Prior work proposed evaluation metrics which
evaluate FG relationships across segmentation boundaries
[17, 43]. We use image segments, generated by the gPb-
OWT-UCM algorithm [6, 37], as input features to our ap-
proach. Since gPb-OWT-UCM segmentation first extracts
and then closes salient image contours to form segments, our
approach can be viewed as related to contour-based meth-
ods for 3D shape estimation [35]. To the best of our knowl-
edge, this paper presents the first quantitative results of low-
level, monocular, 2.1D sketch estimation on outdoors nat-
ural scenes datasets, including the Berkeley segmentation
datasets BSD300 [37] and BSD500 [6], Stanford Make3D
dataset [46], and Geometric Context Dataset [27]. Other work
focus is on indoor scenes such as [30, 47] which are out of
our scope. For evaluation, we extend FG annotations of the
BSD300 and BSD500 datasets. Specifically, BSD300 pro-
vides FG annotations of pairs of regions in only 200 im-
ages. We extend this annotation to additional 100 test im-
ages of BSD300. In addition, we provide FG annotations for
200 new images of BSD500. Our annotations will be made
public. This paper also specifies new quantitative evaluation

metrics that account for differences in human judgment of
the true depth orderings of surfaces in the scene.

Our preliminary approach has been published in [5], and
extended here by: (i) Formulating a quadratic optimization
over image regions, instead of pixels; (ii) Specifying a new
closed-form dual formulation, and thus providing arbitrar-
ily good certificates of our solutions; (iii) Deriving a new
optimization-transfer algorithm; and (iv) Presenting first-ever
quantitative results of monocular depth-map estimation.

3 Feature Extraction

This section presents our initial step, wherein we extract im-
age regions and estimate their FG and AL relations.

Access to image regions is provided by the state-of-the-
art, multiscale segmentation algorithm gPb-OWT-UCM, pre-
sented in [6, 37]. gPb-OWT-UCM first detects image con-
tours using a globalized probability of boundary (gPb) de-
tector, then, computes the Oriented Watershed Transform
(OWT) to close the contours, and thus produce all regions,
and, finally, constructs the Ultrametric Contour Map (UCM)
from region boundaries to represent the image by a strict hi-
erarchy of regions. Region boundaries in the UCM are char-
acterized by likelihoods of being true object boundaries. For
a given threshold (scale), the UCM yields a set of closed
contours with likelihoods above the threshold that partition
the image. As the threshold is decreased, new closed con-
tours are introduced in the image segmentation, partitioning
the previously obtained regions into finer-scale subregions.

To relax any assumptions about object scale, we use all
regions from a range of UCM scales, starting from an empir-
ically estimated optimal minimum scale (see Sec. 10). The
regions are then organized in a segmentation tree [3,21]. The
root represents the entire image, nodes closer to the root cor-
respond to large regions, and their descendant nodes repre-
sent smaller subregions. The segmentation tree encodes hi-
erarchical (parent-child) relationships (HR) between the re-
gions.

In the following, we explain how to estimate FG, AL,
and HR relationships of regions.

3.1 Local FG Relations between Regions

For every pair of neighboring regions, we estimate their lo-
cal FG relations at points regularly sampled along the shared
region boundary. We closely follow the approach of [17],
where the authors empirically evaluated the optimal values
of input parameters, which control the estimation of FG re-
lationships along region boundaries, on the BSD300 dataset.
Specifically, we regularly sample boundary points with the
step 10 boundary pixels apart. Circles with radius ρ = 22%

of the boundary length are placed at each sample point. The
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Fig. 2 Estimating the FG relationship of two neighboring regions, as
in [17]: (a) A circle (dashed) with radius ρ is placed at each sample
point along the shared boundary (bold black); the boundary splits the
circle into two semicircles. (b) Convexity of a semicircle is defined as
the sum of lengths of the straight lines connecting the center of mass
and the parabola fitted through the boundary points. (c) Lower region
is the angle between the vertical image axis and a line that connects the
centers of mass of the two semicircles.

boundary partitions each circle into two semicircles 1 and
2, as illustrated in Fig. 2. Each sample point p is charac-
terized by a descriptor, x(p), with the following three ele-
ments: (i) Area(p) is defined as a log ratio of the areas of
the two semicircles, Area(p) = log area(1)

area(2) ; (ii) Convexity(p)
is defined as a log ratio of the two semicircles’ convexities,
Convexity(p) = log conv(1)

conv(2) , where conv(1) is a the sum of
lengths of the straight lines connecting the center of mass
and the parabola fitted through the boundary points; and
(iii) Lower Region(p) is defined as the cosine of angle θ be-
tween the vertical image axis, and a straight line that con-
nects the centers of mass of the two semicircles (Fig. 2c).
θ is measured counter clockwise, from the vertical image
axis. The same descriptor x(p) was used in [17]. As in [17,
43], we classify x(p) to identify whether the semicircle 1
is figure or ground. The logistic regression based criterion,
P (figure|x(p)) = 1/[1 + exp(−ϖTx(p))] ≥ 0.5, is used
to declare that the semicircle 1 is figure and the semicircle 2
is ground. The model parameters ϖ are learned using iter-
atively reweighed least squares to maximize the joint likeli-
hood of training data, as in [17].

3.2 Adjacent-layer (AL) and Hierarchical Relationships
(HR) between Regions

Similar neighboring regions, and parent-child pairs of the
segmentation tree are estimated to have the AL relationship.
Region similarity is estimated as a χ2 distance between the
300-bin histograms of codewords present in two regions.
The dictionary of codewords is extracted per each image.

To this end, similar to the features used in [6]. We follow
the standard approach that is evaluated in [50]. We charac-
terize every pixel in the image with a descriptor consisting
of the following 11 features: (i) Lab color values; (ii) 4 re-
sponses of the rotationally invariant, nonlinear MR8 filter
bank; and (iii) 4 responses of the Laplacian of Gaussian fil-
ters. The pixel descriptors are clustered using the K-means
(with K = 300). Pixels grouped within one cluster are la-

Features Explanation
FG Figure-Ground relationships (cues).
AL Adjacent Layers relationships (cues).
HR Hierarchical relationships (cues).
ρ The radius of the circle used to extract features.
pn A point on an edge, where features are to be extracted at point n.
x(p) A vector of features extracted from point p.
ϖ A vector of logistic regression model parameters.

Primal Explanation
K Number of regions in an image.
dk A column vector of depth values assigned to region k
aj,n An element in matrix A defining FG relationships.
bj,m An element in matrix B defining AL and HR relationships.
α Exponential function input parameter for FG relations.
β Exponential function input parameter for AL and HR relations.
γ Regularization parameter.
ϵn An lower bound on nth depth difference.
δn An lower bound on mth depth difference.
hϵ(·) Function of ϵn, parametrized by α.
hδ(·) Function of δn, parametrized by β.
f(·) Primal objective function.
f̃(·) Surrogate function for the primal objective function.

Dual Explanation
ν, λ, ξ Lagrangian multipliers.
w A vector of all the Lagrangian multipliers.
g(·) Dual objective function.
g̃(·) Surrogate function for the dual objective function.

Table 1 Notation table of concepts used in Sec. 4-9.

beled with a unique codeword ID of that cluster. The his-
tograms of codeword occurrences within each region are
used to estimate their similarity with neighboring regions.

Given FG, AL, and HR relations, we estimate the 2.1D
sketch, such that the resulting depth ordering of regions is
consistent, as explained in the following section.

4 Problem Formulation

This section formulates estimating 2.1D sketch as a con-
strained convex optimization problem. We gradually intro-
duce each term of the objective function and constraints, in
three stages. Below, we first define necessary notation. Our
notation is also summarized in Table 1.

Matrices are denoted with bold-faced, capital letters, and
column vectors are denoted with bold-faced, small letters.
S = {1, 2, . . . ,K} denotes an image segmentation with K

regions. d = [d1, . . . , dk, . . . , dK ]T denotes a column vec-
tor of depth values assigned to all regions k ∈ S . Points
n = 1, . . . , N sampled along region boundaries are char-
acterized by local FG estimates (Sec. 3.1), which are repre-
sented by a sparse matrix, A = [a1, . . . ,an, . . . ,aN ]

K×N
.

Each column vector an is defined as follows. Let k(n) and
k′(n) denote the indices of two neighboring regions whose
shared boundary contains point n, where k(n) is classified
as figure, and k′(n) is classified as ground. Then, the nth FG
estimate can be represented by an ∈ RK as

ajn =


0 , j ̸= k(n), j ̸= k′(n),

−1 , if j = k(n) ,

1 , if j = k′(n) .

(1)
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From (1), the depth difference at nth point of a region bound-
ary can be computed as dk′(n) − dk(n) = aT

nd. In case there
exists a depth map, d∗, consistent with all FG estimates,
then aT

nd
∗ > 0 for n = 1, 2, . . . , N . Thus, finding d∗, could

be formulated as a linear feasibility problem:

−ATd ≺ 0, (2)

where ≺ denotes the element-wise < relation.
Finding the 2.1D sketch as in (2), however, suffers from

two drawbacks. First, (2) does not address potential errors in
FG estimation. Second, (2) does not have a unique solution.
If d′ is a solution of (2), so is d′′ = c · d′, for all c > 0.
Without proper regularization, a solution of the form c · d,
where c → 0, may introduce numerical issues. To overcome
these issues, we relax the constrains in (2) as

aT
nd ≥ ϵn, n = 1, 2, . . . , N, (3)

where ϵn ∈ R is an (unknown) lower bound on nth depth
difference. Importantly, the relaxation in (3) allows for neg-
ative values of ϵn, and thus addresses incorrectly estimated
FG relations. Since we expect that FG estimation error is
relatively low, we seek d∗ and ϵ∗ = [ϵ∗1, . . . , ϵ

∗
n, . . . ϵ

∗
N ]T, so

as to encourage most ϵ∗n values to be positive. This can be
achieved by minimizing objective

∑N
n=1 hϵ(ϵn;α), which

is monotonically decreasing in ϵn, for n = 1, 2, . . . , N . We
define hϵ(ϵn;α) as a convex function of ϵn, parameterized
by an input parameter, α > 0. Specifically, in our experi-
ments, we use hϵ(ϵn;α) = exp(−αϵn). From (3), the depth
estimation can be formalized as

min
d,ϵ

γ

2
∥d∥22 +

N∑
n=1

hϵ(ϵn;α)

s.t. −ATd+ ϵ ≼ 0,

(4)

where ≼ denotes the element-wise ≤ relation. (4) maxi-
mizes depth differences of every pair of neighboring regions,
such that each figure region is closer to the camera relative
to its respective ground region pair, and the resulting depth
ordering of all regions is consistent. The quadratic regular-
ization of d in (4), with regularization parameter γ, prevents
solutions ϵn → ∞, n = 1, ..., N .

Finding the 2.1D sketch as in (4) does not explicitly ad-
dress errors in image segmentation (e.g., oversegmentation),
and does not take into account that object and their parts
should be at near-by depths. Therefore, we extend (4) so
as to account for the AL relationships between regions. Let
m = 1, 2, . . . ,M index all pairs of regions in S , estimated
as having the AL relationship. Similar to A, we define ma-
trix B = [b1, . . . ,bm, . . . ,bM ]K×M , where each bm is a
column vector that encodes the AL and HR relationship of
the mth pair of regions, k(m) and k′(m), as

bjm =


0 , j ̸= k(m), j ̸= k′(m),

−1 , if j = k(m),

1 , if j = k′(m).

(5)

Small depth differences can be enforced by adding the fol-
lowing constraint to our optimization in (4):

|bT
md| ≤ δm, δm ≥ 0, m = 1, 2, . . . ,M, (6)

We enforce depth differences δ = [δ1, . . . , δm, . . . , δM ]T to
be close to zero. This can be achieved by minimizing objec-
tive

∑M
m=1 hδ(δm;β), which is monotonically increasing in

δm, for m = 1, 2, . . . ,M . We define hδ(δm;β) is a convex
function of δm, parameterized by an input parameter, β > 0.
In our experiments, we specify hδ(δm;β) = exp(βδm).

Adding constraint (6) to (4), we obtain the primal prob-
lem:

min
d,ϵ,δ

f(d, ϵ, δ) =
γ

2
∥d∥22 +

N∑
n=1

hϵ(ϵn;α) +
M∑

m=1

hδ(δm;β)

s.t. −ATd+ ϵ≼ 0, BTd− δ ≼ 0, −BTd− δ ≼ 0.

(7)

Note that there is no need to explicitly constrain 0 ≼ δ in
(7). From (7), we seek to: (i) maximize depth differences of
neighboring regions so the figure is closer to the camera rel-
ative to the ground, (ii) minimize depth differences between
region pairs believed to represent the same scene layer, and
(iii) produce a consistent depth ordering.

The following section presents a solution of (7) which is
common practice. That method will serve as a baseline for
our new approach, presented in Sec 6.

5 The Unconstrained Formulation

A common practice is to rewrite (7) as an unconstrained,
convex minimization problem, and, then, solve it using a
gradient descent method, as follows.

First, note that the two right-hand side inequalities in
(7) could be replaced with the inequality |BTd| ≼ δ. It
follows that a solution of (7) must satisfy both constraints
−ATd+ ϵ ≼ 0 and |BTd| − δ ≼ 0 with equality. This can
be proved by contradiction. Assume that a specific set of ar-
gument values d, ϵ, δ is a solution of (7) that does not lie on
the boundary of an inequality involving ϵn. Then, ϵn can be
enlarged, which will lower hϵ(ϵn;α) and thus the objective
function f as well. This contradicts the assumption that the
aforementioned set of argument values is a solution of (7).
The proof for an inequality involving δm is similar.

Consequently, (7) could be rephrased as follows:

min
d

γ

2
∥d∥22 +

∑N
n=1 hϵ(a

T
nd;α) +

∑M
m=1 hδ(|bT

md|;β).

(8)

This is an unconstrained, convex minimization problem, which
could be solved using a gradient descent method.2

2 Note that Newton’s and other Hessian based methods would not
be better alternatives to the gradient descent in our case, due to a large
number of unknown variables in d (on the order of 102).
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Specifically, to solve (8), we here use the popular gradi-
ent descent with backtracking line search [8, p. 464], whose
convergence is known to be at least linear and better than
that of other gradient descent methods. We apply the fol-
lowing gradient descent rule:

d(t) = d(t−1) − σ · ∂u(d)
∂d

, t = 1, 2, ... (9)

where ∂u(d)
∂d in (11) is the gradient of the unconstrained ob-

jective in (8) and step σ is optimized in every iteration t

using the backtracking line search.

∂u(d)

∂d
= γd− α

N∑
n=1

aTn exp(−αaTnd) (10)

+ β

M∑
m=1

sign(bT
md)bT

m exp(β|bt
nd|)

The main advantage of the gradient descent to solving
(7) is simplicity. However, as our experiments demonstrate,
a number of disadvantages makes it unsuitable for solving
our vision problem. One issue is that its convergence rate
depends critically on the condition number of the Hessian,
i.e., the ratio of the smallest eigenvalue to the largest one [8,
p. 475]. In our experiments, we typically observe relatively
large values of the condition number of the Hessian. It is
well-known that this negatively affects the convergence rate
of the gradient descent. In some cases, the gradient descent
is so slow that it is very hard to identify the right stopping
criterion, resulting in poor solutions. This is a fundamental
problem, since the gradient descent does not provide any
guarantees of closeness of its result to the global optimum.

Poor performance of the gradient descent on monocu-
lar estimation of 2.1D sketch, both in terms of accuracy and
convergence rate, has motivated us to seek an alternative so-
lution to (7). In the following section, we specify the dual
formulation of (7), which allows us to derive a new opti-
mization algorithm. Our algorithm admits a closed-form ex-
pression of the duality gap, and thus allows for explicit com-
putation of the accuracy achieved at convergence. Our ex-
periments demonstrate that the new algorithm consistently
yields better solutions than the aforementioned gradient de-
scent with backtracking line search.

6 The Dual Formulation

This section presents the dual formulation of (7) which has
a number advantages over the unconstrained formulation.
First, the dual formulation presents simpler constraints for
our problem – specifically, separable non-negativity constraints.
Second, in general, the dual formulation cannot always be
derived in closed-form. Our approach allows a closed-form

derivation of the dual, and, consequently, an explicit compu-
tation of the duality gap. This, in turn, allows us to provide
arbitrarily good certificates of our solution [8].

The dual formulation can be derived from the following
Lagrangian of (7):

L=
γ

2
∥d∥22 +

N∑
n=1

hϵ(ϵn;α) +
M∑

m=1

hδ(δm;β)

+νT(−ATd+ϵ) + λT(−BTd−δ) + ξT(BTd−δ),(11)

where ν, λ, and ξ are vectors of non-negative Lagrange mul-
tipliers, corresponding to the inequality constrains in (7).
Given (11), we reformulate our 2.1D sketch estimation as

max
ν≽0,λ≽0,ξ≽0

min
d,ϵ,δ

L (d, ϵ, δ;ν,λ, ξ). (12)

Since L is smooth with respect to d, ϵ, and δ, the opti-
mal parameters, d∗, ϵ∗, and δ∗, can be readily found from
∂L /∂d = 0, ∂L /∂ϵ = 0, ∂L /∂δ = 0. From the defini-
tions of the regularizing functions, hϵ(ϵn;α) = exp(−αϵn),
n = 1, . . . , N , and hδ(δm;β) = exp(βδm), m = 1, . . . ,M ,
appearing in (11), we derive:

d∗ =
1

γ
(Aν +B(λ− ξ)), (13)

ϵ∗n =
1

α
log

α

νn
, n = 1, 2, . . . , N, (14)

δ∗m =
1

β
log

ξm + λm

β
, m = 1, 2, . . . ,M. (15)

By substituting d∗, ϵ∗, and δ∗ in (11), we obtain the follow-
ing dual objective in terms of the Lagrange multipliers:

min
ν,λ,ξ

g(ν,λ, ξ) =
[ 1

2γ
∥Aν +B(λ− ξ)∥22

+

(
N∑

n=1

νn
α

log
νn
α

−
N∑

n=1

νn
α

)

+

(
M∑

m=1

λm + ξm
β

log
λm + ξm

β
−

M∑
m=1

λm + ξm
β

)]

s.t. ν ≽ 0,λ ≽ 0, ξ ≽ 0

(16)

The dual formulation in (16) is presented as minimization,
rather than the standard maximization, for maintaining the
convex formulation. The dual formulation, given by (16),
is solved by applying optimization transfer (OT) to the ob-
jective g(ν,λ, ξ). We first compute the surrogate functions
g̃(ν,ν(t)), g̃(λ,λ(t)), and g̃(ξ, ξ(t)), then they are mini-
mized with respect to ν, λ, ξ as defined in the next section.

7 Optimization Transfer

There is a variety of solvers for convex optimization that
we initially thought could be applied to our dual optimiza-
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tion problem (16). However, in our implementation of avail-
able MATLAB solvers and cvx [11], we encountered mem-
ory and convergence issues due to the large number of con-
straints. This is most likely because these solvers are not
able to efficiently exploit the structure of (16). Specifically,
it is well-known that cvx approximates entropy terms in a
given objective function. Thus, cvx approximates our two
terms

∑
n νn log(νn) and

∑
m(λm + ξm) log(λm + ξm) in

(16), resulting in convergence issues. Therefore, in this pa-
per, we present a new optimization transfer algorithm that
efficiently addresses the above issues.

Optimization transfer (OT) has been successfully used
in image processing [2,52], and problems with a large num-
ber of variables [28]. The analytic tractability of OT enables
convergence speed-ups, and thus large computational sav-
ings, relative to competing methods. For example, in com-
parison with the standard backtracking projected gradient
descent method, OT avoids the computationally intensive
step of selecting the backtracking step size. We proceed with
a general description of OT, and its application to our prob-
lem.

In OT, instead of directly minimizing a given function
f(x) with respect to x, one considers minimizing a surro-
gate function f̃(x,x′), where (i) f(x) ≤ f̃(x,x′) for all x
and x′; and (ii) f(x′) = f̃(x′,x′) for all x′. In this way, the
generally intractable minimization of f(x) is transferred to
the following iterative minimization of the surrogate:x(t+1) =
argminx f̃(x;x

(t)). It is straightforward to show that solu-
tions x(t) are guaranteed to decrease the original objective
f(x) using the following sequence of relations: f(x(t+1)) ≤
f̃(x(t+1),x(t)) ≤ f̃(x(t),x(t)) = f̃(x(t)). The first inequal-
ity is due to property (i), the second inequality is due to
minimizing the surrogate, and the last equality follows from
property (ii). The main challenge in OT is to find a suit-
able f̃(x,x(t)) that satisfies the two key requirements: (1)
f̃(x,x′) can be minimized with respect to x in closed-form,
yielding closed-form iterations; and (2) f̃(x,x(t)) is a tight
upper bound of f(x) for reduced computational complexity.

We apply OT to the objective of (16) with respect to
each parameter ν, λ, and ξ, separately, while fixing the other
two. This coordinate descent yields efficient update rules. In
the sequel, we explain how to minimize the three surrogate
functions to (16), one for each ν, λ, and ξ. To this end, we
will need the following auxiliary column vector and matrix:

w , [νT,λT, ξT]T, C , [A,B,−B]. (17)

7.1 Minimization with respect to ν

We first identify the ν-dependent terms in the objective of
(16), and, then, derive their surrogate function. g̃(ν,ν(t))
denotes the surrogate of g(ν,λ, ξ) consisting of the terms
that depend on ν. Since g̃(ν,ν(t)) upper bounds g(ν,λ, ξ),

we consider bounding the first and second terms in (16) to
derive g̃(ν,ν(t)).

The full derivation of g̃(ν,ν(t)) is presented in the sup-
plement material. As detailed in the supplement material,
g̃(ν,ν(t)) is separable over individual elements of ν, g̃(ν,ν(t)) =∑N

n=1 g̃(νn, ν
(t)
n ). Consequently, the minimization of g̃(ν,ν(t))

with respect to ν can be solved separately using the follow-
ing N convex problems: minνn≥0 g̃(νn, ν

(t)
n ), n = 1, 2, . . . , N .

Solving each of these problems analytically gives the fol-
lowing update rules for νn, n = 1, 2, . . . , N :

ν(t+1)
n = ν(t)n max

[
0, 1−α[w(t)]TCTAen+γ log(ν(t)n /α)

ακν(t)n +2γ

]
.

(18)

7.2 Minimization with respect to λ

As in Sec. 7.1, we first identify the λ-dependent terms in
the objective of (16), and, then, derive their surrogate func-
tion. g̃(λ,λ(t)) denotes the surrogate of g(ν,λ, ξ) consist-
ing of the terms that depend on λ. To derive g̃(λ,λ(t)),
we consider bounding the first and third terms in (16). In
the supplement material we present the full derivation of
g̃(λ,λ(t)), and shows that it can be conveniently written as
g̃(λ,λ(t)) =

∑M
m=1 g̃(λm, λ

(t)
m ). This separability allows

us to minimize g̃(λ,λ(t)) with respect to λ via solving the
following M convex problems separately: minλm≥0 g̃(λm, λ

(t)
m ),

m = 1, 2, . . . ,M . The analytical solution of these problems
gives the following update rules for λ(t)

m , m = 1, 2, . . . ,M :

λ(t+1)
m = max

[
0, λ(t)

m −β[w(t)]TCTBem+γ log[(ξ(t)m +λ(t)
m )/β]

βκ+ 4γ/(ξ(t)m + λ(t)
m )

]
.

(19)

7.3 Minimization with respect to ξ

Note that the ξ-dependent terms in the objective of (16) dif-
fer from those depending on λ only by one term, which uses
−B, instead of B. Hence, from (19), we can immediately
write the update rules for elements of ξ as

ξ(t+1)
m =max

[
0, ξ(t)m +

β[w(t)]TCTBem−γ log[(ξ(t)m +λ(t)
m )/β]

βκ+ 4γ/(ξ(t)m + λ(t)
m )

]
.

(20)

8 The Solution and Dual Convergence

Since our dual in (16) is convex, convergence of the update
rules (18)–(20) to the globally optimal Lagrange multipli-
ers ν∗, λ∗, and ξ∗ is guaranteed. Given ν∗, λ∗, and ξ∗, our
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solution of the primal parameters, d∗, ϵ∗, and δ∗, can be
computed from expressions (13)–(15). This solution is op-
timal, because our primal problem in (7) is convex and sat-
isfies the Slater’s feasibility conditions [8, p. 226-227]. By
the Slater’s theorem, our duality gap converges to zero, i.e.,
the primal and dual objectives at convergence are equivalent,
f(d∗, ϵ∗, δ∗) = g(ν∗,λ∗, ξ∗).

This is illustrated in Fig. 3, which shows our results for
an image from the BSD dataset [37]. Fig. 3 plots the du-
ality gap values, i.e., the differences [f(d(t), ϵ(t), δ(t)) −
[−g(ν(t),λ(t), ξ(t))]], after iterations t = 1:12000. The fig-
ure also illustrates the corresponding depth map estimates,
d(t). Fig. 3 shows that the duality gap converges to zero,
and thus the dual solution immediately provides the opti-
mal solution for the primal. Importantly, the log-linear plots
of our convergence rates in Fig. 3 are linear functions after
a small number of initial iterations. This suggests that the
duality gap has an exponential decay in the number of iter-
ations. For example, in Fig. 3, after point C, there is very
little difference in the resulting depth maps, as the number
of iterations increases. In our experiments, we generally ob-
serve that for reducing the duality gap by an order of magni-
tude, we need to additionally run our algorithm only a fixed
number of iterations. In addition, the plots suggest that our
convergence rate is relatively insensitive to large changes of
the input number of regions, and tends to become faster for
fewer regions, as expected.

Note that in addition to the depth map estimate, d∗, the
other two components of our solution can be useful for higher-
level algorithms (e.g., object recognition). Specifically, ϵ∗

and δ∗ can be used as cues about: (i) Confidence in the ob-
tained solution, and (ii) Errors in the low-level segmentation,
and local estimation of FG, AL, and HR relations. For exam-
ple, negative ϵ∗n (or large δ∗m) indicates that the correspond-
ing low-level estimate of the FG (or AL or HR) relation
is not globally consistent. Consequently, the relevance of
regions with such relationships for higher-level algorithms
could be appropriately down-weighted. Conversely, regions
with large positive values of ϵ∗ could be assigned relatively
high confidence, and relevance, depending on particular ob-
jectives of high-level algorithms.

9 Complexity

From (18), (19), and (20), our per-iteration complexity is
dominated by two terms: [w(t)]TCTAen and [w(t)]TCTBem,
where w(t) and C are given by (17). We first explain com-
plexity of CTA and CTB, and then state the overall com-
plexity.

The terms CTA and CTB have computational complex-
ity O((N +M)2). This is because the columns of either the
K × N matrix A, or the K × M matrix B contain only
2 nonzero elements per column. Note that CTA and CTB

can be computed prior to running the OT iterations. Thus,
computing CTA and CTB adds only a fixed complexity of
O((N +M)2) to the overall complexity of the algorithm.

As w(t) changes in every iteration, the computation of
[w(t)]TCTA and [w(t)]TCTB can be done in O((N+M)2).
Intuitively, when updating one of the O(N +M) Lagrange
multipliers, we compute values of all other O(N +M) La-
grange multiplies associated with all pairwise constraints
between image regions. This amounts to a computational
complexity of O((N +M)2) per iteration.

From our experiments, the OT algorithm presented in
Sec. 7 yields the duality gap with an exponential decay in
the number of iterations. Consequently, in practice, it suf-
fices to choose a finite number of T iterations, because they
would improve the accuracy of our algorithm by T orders
of magnitude. Thus, our overall computational complexity
is O(T (N +M)2).

10 Results

We test different aspects of our approach through a set of
variants. Each variant differs in certain steps depending on
the cues used to infer the layering. We refer to Figure/Ground
cues as (FG), Adjacent Layers as (AL), and Hierarchical Re-
lations as (HR). In each variant we evaluate the effect of
adding extra cues, compared to the default approach, V(FG-
AL-HR), which allows us to evaluate their relative impact
on performance, as described below.

Default setup – V(FG-AL-HR): In this variant we use
all available cues. First, images are segmented by gPb-OWT-
UCM [6], at various Pb values. We start from Pb0 = 40%,
and vary Pb to 100% of the maximum value 255, in incre-
ments by 10%, Pb = Pb0:10:100 in [%]. Then, the resulting
regions are organized in the segmentation tree by their size
and nesting. For every pair of neighboring regions, we reg-
ularly sample points along the shared boundary at ρ = 22%
of the boundary length, and estimate the polarity of FG re-
lations associated with the sample points (Sec. 3.1). The
FG classifier is learned on the training images of BSD300
dataset [37]. Then the top 50% of most similar neighboring
regions are said to have the AL relations. Similarly, the top
50% of most similar parent-child regions in the segmenta-
tion tree are said to have HR relations (Sec. 3.2). Finally, the
FG, AL, and HR relations are input to our depth map esti-
mator. We quantitatively evaluate and illustrate our results
on the leaf regions of the segmentation tree.

Variants of our approach: V(FG-AL) does not account
for the hierarchical relations of regions. V(FG) only account
for Figure ground relationships. Variants V(FG-AL) and V(FG)
are obtained only for a single scale of gPb-OWT-UCM, for
Pb0 = 40% of the maximum Pb value.

Baselines: We compare V(FG-AL-HR), V(FG-AL), and
V(FG) with the following three baselines. The first method,



10 Mohamed R. Amer et al.

Number of iterations

Fig. 3 The linear-log plots of convergence rates of the duality gap after t = 1:12000 iterations, for an image from the BSD dataset [37]. The
letters A–H denote our color-coded depth map estimation (warmer colors are closer to the camera) after a certain number of iterations. As can
be seen, there is little difference in the results from C to H, for significantly different numbers of iterations. We observe a linear relation on the
log-linear plots, i.e., an exponential decay of the duality gap in the number of iterations. The different plots indicate different numbers of regions
in the input image segmentation, obtained starting from different initial gPb threshold values: 20, 40,..., 100 (see Sec. 3). As can be seen, our
convergence rate is relatively insensitive to large changes in the input number of regions, and becomes faster for fewer regions.

called Random, assigns random ordinal depths to input re-
gions. The second method, called Vertical, assigns depth dis-
tances to image regions that are inversely proportional to
their vertical distances from the image top. That is, Vertical
assumes that the top of the image is farther away from the
camera (e.g., sky) than the bottom of the image (e.g., road).
The third method, called Gradient(FG-AL-HR), is the gra-
dient descent, described in Sec. 5.

Ideal setting: We define two ideal settings, GT(FG), and
GT(FG-AL)3, where we provide ground truth information to
our algorithm to estimate our upper performance bound.

Datasets: Our focus is on outdoors natural scenes. We
use the following datasets for evaluation: (i) Stanford (Make3D)
[46]; (ii) Geometric context dataset (GCD) [27]; and (iii)
Berkeley segmentation datasets BSD300 and BSD500 [6,
37]. Other datasets such as [30, 47] are constructed using
indoor scenes which are out of our scope.

Make3D consists of 400 training and 135 test images
of natural and urban outdoor and indoor scenes. Continu-
ous, absolute 3D coordinates of points in the scene are pro-
vided for every image. To generate ground truth for our eval-
uation, we flatten the 3D coordinates as follows. We first
segment the images, and, then, average 3D coordinates of

3 Since we do not have ground truth annotations for the AL rela-
tions, we use the computed ones for GT(FG-AL).

Fig. 4 Generating ground truth for an example image from Make3D:
(left to right) Continuous 3D coordinates are flattened within each re-
gion obtained from gPb-OWT-UCM to compute ordinal depths of the
regions. The color codes of depths in the leftmost and rightmost im-
ages are different, since the former shows absolute depths and the lat-
ter shows estimated ordinal depths; however, FG relations should be
the same.

points within every segment. This immediately gives ordi-
nal depths of the segments, as illustrated in Fig. 4. Note
that our process of generating ground truth for the Make3D
dataset may result in errors. The ground-truth depth layering
of the scene is obtained by first segmenting the images into
regions, followed by using the average laser-estimated depth
of every region. Thus, error in ground truth may come from
undersegmented parts of the scene.

GCD consists of 50 test and 250 train images of outdoor,
natural and urban scenes. GCD provides annotations of oc-
clusion boundaries, which we directly map to FG relations
of our regions.
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Fig. 5 FG accuracy of GT(FG-AL) on BSD300 when introducing error
in the input ground-truth FG relations by randomly picking 20%, 30%
and 40% of points sampled along region boundaries and reversing their
ground-truth polarity. We set β = 10, and vary input parameters α and
γ.

Fig. 6 FG accuracy of GT(FG-AL) on BSD300 for different values of
input parameters α, β, and γ. The plots have a plateau, where our per-
formance is relatively insensitive to variations in α, β, and γ values.

BSD300 and BSD500 consist of natural scenes with a
wide range of objects in various spatial layouts, and at a
wide range of depths and scales. BSD300 has 200 training,
and 100 validation images. BSD500 adds 200 new testing
images to BSDS300. Ground-truth segmentations are pro-
vided for each image. However, BSD300 and BSD500 do
not have annotations of ordinal depths of the ground-truth
segments. Instead, BSD300 provides FG annotations of 200
images [17]. We extend this original FG annotation to an-
other 100 images in BSD300, and to yet another 200 im-
ages in BSD500. In ambiguous cases: (i) When a FG relation
gradually changes polarity along the shared boundary (e.g.,
the road and policeman in Fig. 1), we annotated a unique
FG interpretation; and (ii) When high-level semantic cues
are not sufficient to identify a FG relation, we randomly an-
notate one region of the two as figure. Our FG annotations
of BSD300 and BSD500 will be made public.

Evaluation metrics: We use the following metrics: (i)
Precision and recall of AL estimates; (ii) Hamming distance
between the ground-truth and estimated depth maps; and
(iii) Accuracy of FG assignments.

AL accuracy is only computed for BSD, because Make3D
do not provide ground-truth segmentations. For BSD im-
ages, we say that two regions of gPb-OWT-UCM are cor-
rectly assigned the AL relationship by our depth-map esti-
mation, if they both fall within the same ground-truth seg-
ment.

The Hamming distance serves to evaluate the consis-
tency of our results. It is evaluated only for Make3D, be-
cause only this datasets provide the ground-truth 2.1D sketch.
We compute the Hamming distance by comparing corre-
sponding elements of two quadratic matrices, W2.1D and
WG. Elements of W2.1D are defined as sgn(di − dj), where
di and dj are the estimated ordinal depths of regions i and
j. Similarly, elements of WG are computed as sgn(d

′

i − d
′

j),
where d

′

i and d
′

j are the ground-truth (flattened) depths of
regions i and j. Such a region-based Hamming distance is
referred to as region-based error (RBE).

The FG accuracy is computed as a percentage of cor-
rect FG estimates, associated with all points sampled along
shared region boundaries as done in [17]. FG error is defined
as (100 - FG accuracy)/100. For Make3D, FG accuracy is
directly computed on the segmentation obtained from gPb-

OWT-UCM, where the ground truth is computed by flatten-
ing the true depths within each region, as explained in the
paragraph above. For BSD300 and BSD500 images, there
are two different types of evaluations, one is similar to [17]
where the error is computed on a subset of the points sam-
pled along the contour. The other type as in [6, 43], where it
is a computed on all points on the edges. FG accuracy is es-
timated so as to reduce the effect of gPb-OWT-UCM errors
in segmentation. In particular, we first dilate region bound-
aries of the ground-truth segmentation. Then, we compute
accuracy of FG estimates along only those region bound-
aries produced by gPb-OWT-UCM which are within a 5-
pixel vicinity of the dilated ground-truth boundaries. All the
results reported are for the per pixel FG error, with excep-
tion of Tab. 2 which is reported on sampled points along the
contours.

10.1 Quantitative evaluation

To our knowledge, this paper presents the first quantitative
evaluation of monocular 2.1D sketch estimation. Prior work
uses only qualitative evaluation (e.g., [1, 12, 14, 19, 39, 40]),
or evaluates only FG relationships of regions [17, 33, 43].

Empirical Parameter Estimation: GT(FG-AL) is eval-
uated on BSD300, to estimate our upper performance bound
when the input consists of human segmentation, and ground-
truth FG relations. In Tab. 5, we show that GT(FG-AL) out-
performs GT(FG).

Figures 5–6 show GT(FG-AL)’s sensitivity to the spe-
cific choices of parameters α, β, and γ. For Fig. 5, we set
β = 10, vary α and γ, and introduce noise in the ground-
truth FG relations by reversing their polarity at randomly
picked 20%, 30% and 40% of all pairs of neighboring re-
gions. As can be seen, GT(FG-AL) achieves nearly perfect
99.1% FG accuracy, when the level of noise up to 20%. A
visual inspection of these error cases shows that they are
typically ill-defined, such that even human annotators make
a random guess. In such cases, GT(FG-AL)’s interpretation
is typically acceptable, but different from the human anno-
tation, and thus counted as error. The choice of β = 10 is
justified on Fig. 6. The figure shows GT(FG-AL)’s perfor-
mance for 40% of FG noise, and various α, β, and γ values.
We use 40% of FG noise, since our local FG estimation us-
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Approach Lower-Region Area Convexity All 3 Features
Our local (BSD300) 65.1 66.4 64.3 72.7
classifier (BSD500) (67.6) (69.1) (65.2) (76.7)

[17] (BSD300) 64.4 67.8 60.1 74.2

Table 2 Local FG estimation, of pixels sampled along the contours
of the image with distance ρ, in [%] on BSD300–200 images, and
BSD500 (given in the parentheses), computed as in [17]. Due to im-
plementation differences, our results on BSD300 slightly differ from
those in [17].

Approach Lower-Region Area Convexity All 3 Features
Our local (BSD300) 62.4 63.1 60.8 70.3
classifier (BSD500) (64.1) (66.3) (62.7) (73.6)

[43] (BSD300) – 55.6 – –
[33] (BSD300) 61.9 – 68.4 –

Table 3 Local FG estimation, per pixel, in [%] on BSD300–200 im-
ages, and BSD500 (given in the parentheses), computed as in [33, 43].
Due to implementation differences, our results on BSD300 slightly dif-
fer from those in [33, 43].

ing a classifier at boundary points typically has an error rate
of 40%. As can be seen, the plots have a plateau, where our
performance is the best and relatively insensitive to param-
eter variations around α = 10, β = 10, and γ = 10, used in
all our experiments.

Classifiers and Features: Tab. 3 shows average accu-
racy of our local FG estimation on BSD300 and BSD500,
and demonstrates how much our depth-map estimation im-
proves the initial processing stage. As in [17], we extract im-
age features: “lower-region”, “convexity”, and “area”, from
circles centered at points which are regularly sampled along
region boundaries (Sec. 3.1), and test performance when us-
ing either each individual feature, or all three features jointly.
In the former case, the FG classifier is a deterministic rule
that declares the semicircle with a larger feature value (e.g.,
larger “convexity”) as figure. In the latter case, we apply the
logistic regression to the descriptor that consists of all three
features, where the classifier is learned on training images
of BSD300. Due to small implementation differences, our
results on BSD300 slightly differ from those in [17].

For comparison with [33, 43], our local FG results are
evaluated on the 200 images of BSD300 (100 training, and
100 test images). As can be seen in Tab. 3, the best perfor-
mance is achieved when combining all three features with
the logistic regression, which we use in our variants V(FG-
AL-HR),V(FG-AL), and V(FG).

Tab. 4 shows our FG accuracy after the depth-map esti-
mation by V(FG-AL-HR) and V(FG-AL) using Pb and gPb.
Tab. 5 shows our FG accuracy after the depth-map estima-
tion using human segmentation. From our local FG results
in Tab. 3 and FG accuracy in Tab. 5, V(FG)-H improves per-
formance of the logistic regression by 14.3% on BSD300,
and 10.7% on BSD500. Also, from Tab. 5, replacing ground-
truth FG relations, used in GT(FG), with logistic regression
responses, used in V(FG)-H, downgrades V(FG)-H’s perfor-

Variants BSD Make3D
FG accur. FG accur. RBE

V(FG-AL-HR)–gPb 74.9 (72.1) 92.6 10.3
V(FG-AL)–gPb 73.4 (72.2) 90.2 10.1

V(FG)–gPb 71.8 (69.3) 83.9 15.7
Vertical–gPb 63.8 (59.1) 79.3 15.5
Gradient–gPb 69.2 (66.3) 84.2 12.1

V(FG-AL-HR)–Pb 71.2 (70.4) 89.3 12.8
V(FG-AL)–Pb 70.8 (71.0) 86.7 12.2

V(FG)–Pb 70.1 (68.6) 81.8 16.3
[43]–Pb 68.9 NA NA
[33]–Pb 69.1 NA NA

V(FG)–M 68.2 (63.6) 86.4 16.5

Table 4 FG accuracy and RBE in [%] on BSD300-200 images,
BSD500 (given in the parentheses), and Make3D. For comparison with
[25,33,43], we report their results when using Pb as input. V(FG) uses
Meanshift segmentation (–M), Pb-UCM (–Pb), or gPb-OWT-UCM (–
gPb) as input. Vertical and Gradient use Pb-UCM (–Pb), or gPb-OWT-
UCM (–gPb).

mance by 10.6% on BSD300 and 10.5% on BSD500 relative
to that of GT(FG).

Finest segmentation scale: Fig. 7 shows the FG error
and RBE of V(FG-AL-HR) and the baselines Random and
Vertical. As can be seen, the FG error and RBE change as
a function of the number of regions in the input segmen-
tation produced by gPb-OWT-UCM. The Pb threshold on
region boundaries is varied, starting from Pb0 to 100% of
the maximum Pb value, in increments by 10%. As the ini-
tial threshold Pb0 is increased, the total number of regions
in the multiscale segmentation becomes smaller, and, con-
sequently, our depth-map estimation runs faster. However,
Fig. 7 shows that the fewer regions in the input segmenta-
tion, the larger the FG error and RBE of V(FG-AL-HR).
Our FG accuracy decreases when Pb0 falls below 20%. We
do not find that regime of segmentation interesting, and thus
we do not include these results in Fig. 7. This is because the
resulting oversegmentation for Pb0 ¡ 20% consists of nu-
merous tiny superpixels (of size 3-4 pixels), whose bound-
aries cannot provide robust cues for our approach. Thus, we
choose Pb0 = 40% as a satisfactory trade-off between com-
plexity and accuracy. Our Pb0=40% is higher than the PB
thresholds used in [33, 43]. From Fig. 7, our FG error be-
comes larger as the Pb0 value increases. Therefore, our com-
parison with [33,43] in Tab. 4 is unfair to us. Yet, we achieve
better FG accuracy. On BSD500, for certain Pb0 values, the
baseline method Random produces FG error which differs
from the expected 0.5. This is because of the aforementioned
“alignment” of the computed and ground-truth boundaries to
reduce the effects of segmentation error, which leads to eval-
uating only the “aligned” subset of FG relations. V(FG-AL-
HR) outperforms Vertical by 11.1% and 13% on BSD300
and BSD500 respectively.

Impact of Input Segmentations: Tab. 4 shows V(FG)’s
RBE and FG accuracy for distinct input segmentations. V(FG)–
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BSD – FG accur
Vertical–H 67.6 (61.9)
Gradient–H 90.7 (93.1)
GT(FG)–H 95.2 (94.8)

GT(FG-AL)–H 97.8 (98.5)
V(FG)–H 84.6 (84.3)

[33]–H 82.8
[43]–H 78.3

Table 5 FG accuracy in [%] on BSD300-200 images, BSD500 (given
in the parentheses). For comparison with [25, 33, 43], we report their
results when using ideal human segmentation (–H) as input. Vertical
and Gradient use human segmentation.

gPb uses the gPb-OWT-UCM segmentation with Pb0 = 40%
[6]. V(FG)–M uses the Meanshift segmentation [10] as shown
in Fig. 14. For fair comparison of V(FG)–gPb and V(FG)–
M, we empirically searched for the optimal combination of
Meanshift’s three input parameters: feature bandwidth bf ,
spatial bandwidth bs, and minimum region area Smin. Specif-
ically, we varied these parameters as bf = 5.5:0.5:8.5, bs =
4:2:10, and Smin = 100:200:900, and reported in Tab. 4 the
best results on a given dataset. Tab. 4 shows that V(FG)–gPb
outperforms V(FG)–M on all datasets. This is typically be-
cause Meanshift generally produces oversegmentation. As
a result, V(FG)–M usually infers a larger number of depth
layers than the ground truth. Therefore, we use gPb-OWT-
UCM for V(FG-AL-HR).

Impact of Hierarchy: Tab. 4 shows that accounting for
hierarchical region relationships in V(FG-AL-HR) improves
performance relative to that of V(FG) and V(FG-AL) on all
the datasets. As can be seen in Tab. 4, V(FG-AL-HR) out-
performs the baseline Vertical–H which uses the human seg-
mentation as input.

Comparison with Gradient Descent: Tab. 4 shows V(FG-
AL-HR) outperforms Gradient, for the same input regions
and their relationships, on all three datasets. Convergence
of Gradient is declared when the objective function of (8)
has not changed for 100 consecutive iterations, usually con-
sidered appropriate in practice. However, on our datasets,
Gradient often fails to find a good (local) optimum when it
meets the stopping criterion, resulting in worse depth-map
estimates than V(FG-AL-HR). Gradient also incurs a larger
running time than V(FG-AL-HR), due to the costly back-
tracking line search, as illustrated in Fig. 13, whereas our
algorithm does not “waste” computational resources on pa-
rameter fine-tuning.

Comparison: On the GCD dataset, V(FG-AL-HR) yields
FG accuracy of 71.4%. We compare V(FG-AL-HR) with the
state-of-the-art higher-level approach of [25], where occlu-
sion boundaries are estimated in a single image. The main
difference from V(FG-AL-HR) is that [25] uses training ex-
amples of different types of surfaces to learn typical surface
layouts (e.g., the sky and ground are always on the top and
bottom of the image), and a number of additional image fea-

Fig. 7 The FG error and RBE of V(FG-AL-HR), and the two base-
lines Random and Vertical, using each individual feature “area”, “con-
vexity”, and “lower-region”, and “all” three features on BSD500, and
Make3D. The segmentation threshold is Pb0, i.e., the finest scale of the
multiscale segmentation used. As Pb0 increases, we get fewer regions
from gPb-OWT-UCM [6], and consequently worse performance (best
viewed in color).

tures, including 3D geometric context cues. The additional
domain knowledge that they incorporate in their conditional
random field model (CRF) for labeling watershed contours
in the image gives FG accuracy of 79.9% with retraining the
CRF on GCD [25]. Their advantage of 8.5% comes at the
price of larger running times measured in minutes per im-
age [25], and inability to address atypical scene layouts (e.g.,
like in BSD500) which have not been previously seen in
training. By contrast, V(FG-AL-HR) is a low-level, generic
approach capable of addressing atypical, previously unseen
surface layouts, and runs in less than 5 seconds on GCD im-
ages.

Running Time: For BSD images with 480×320 pixels,
gPb-OWT-UCM extracts multiscale regions, whose num-
ber is on the order of 102. In our MATLAB implementa-
tion, V(FG-AL-HR) takes about 5 seconds per image on
a 2.66GHz, 3.49GB RAM PC (excluding the segmentation
time).

10.2 Qualitative evaluation

Figures 8–12 show examples of our results. As can be seen,
V(FG-AL-HR) successfully estimates the ordinal depths of
image regions. The captions of the figures explain in more
detail some key properties of our approach. For example,
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(a) Input images (b) Human segmentation (c) Ground truth FG (d) V(FG)-H (e) V(FG-AL)-H

Fig. 8 Example images from BSD300 [37], and their depth map estimates (depth layers closer to the camera are color-coded with “warmer”
colors; the colors are normalized and distributed evenly over the estimated depth range for each image): (b) Local FG estimates of the logistic
regression at points along region boundaries in the human segmentation (cyan marks foreground, and magenta indicates background); (c) Ground
truth labeling of edges with FG labels. (d) V(FG)-H’s depth map estimate; (e) V(FG)-H’s estimation significantly improves by accounting for the
AL relationships (see the merged trees behind the cops into a single layer; also the elongated snow region between the skier and the stick is placed
at the correct depth layer with the rest of the snow area in the image);

in Fig. 8, we show cases when accounting for hierarchi-
cal relationships between region-subregion pairs in V(FG-
AL-HR) improves performance relative to that of V(FG-
AL). Fig. 10 shows that the baseline method Vertical fails
in images where objects violate the assumption that their
ordinal depths are inversely proportional to their distances
from the image top, whereas V(FG-AL-HR) successfully
handles these cases. Also, Fig. 11 shows examples when ac-
counting for the AL relationships between regions in V(FG-
AL-HR) improves V(FG)’s performance. As can be seen,
V(FG-AL-HR) handles oversegmentation well by merging
regions which are estimated to have the AL relationship.
However, in the case when important boundaries are not
detected in the image by a low-level segmenter, our opti-
mization framework does not have necessary constraints to
infer depth. Fig. 11 also qualitatively compares the result
of V(FG-AL-HR) with that of the higher-level approach of
[25]. V(FG-AL-HR) is not aware of any particular objects
and typical scene layouts, and yields a similar depth map
to that of [25]. Fig. 13 illustrates a comparison of V(FG-
AL-HR) with Gradient. As can be seen, Gradient takes a
longer running time to stop at a worse local optimum than

V(FG-AL-HR). Finally, Fig. 12 illustrates our results on an
example image from Make3D dataset.

11 Conclusion

We have presented a new approach to monocular extrac-
tion of the 2.1D sketch that does not have access to domain
knowledge about typical object occurrences and scene lay-
outs. It takes as input a multiscale image segmentation, and
relationships between image regions – namely, local esti-
mates of figure-ground along region boundaries, appearance
similarity between neighboring regions, and parent-child re-
lationships. Given this input, ordinal depths of the regions
are found by optimization transfer of a convex optimization
problem. A new optimization transfer algorithm has been
derived. The algorithm provides explicit guarantees of solu-
tion accuracy. Its complexity is quadratic in the number of
constraints, which makes it generally well-suited for convex
problems with a large number of variables. We have empiri-
cally observed that the convergence rate of our algorithm is
close to exponential.
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(a) Input images (b) gPb-OWT-UCM (c) V(FG-AL)-gPb (d) V(FG-AL-HR)-gPb

Fig. 9 Example images from BSD300 [37], and their depth map estimates (depth layers closer to the camera are color-coded with “warmer”
colors; the colors are normalized and distributed evenly over the estimated depth range for each image): (b) The finest segmentation scale of gPb-
OWT-UCM [6] for the initial threshold of Pb0 = 40%, and local FG estimates of the logistic regression; (c) V(FG-AL)’s depth map estimate; (d)
V(FG-AL-HR)’s depth map estimate improves over that of V(FG-AL), as V(FG-AL-HR) additionally accounts for hierarchical relations between
region-subregion pairs. The depth maps of V(FG-AL-HR) and V(FG)-H may differ in certain ordinal depths (i.e., color codes), since V(FG-AL-
HR) and V(FG)-H use different segmentations. But both V(FG-AL-HR) and V(FG)-H identify consistent depth orderings of their input regions.

To our knowledge, we have presented the first quanti-
tative evaluation of monocular 2.1D sketch estimation. For
evaluation, we have mapped the ground-truth continuous,
3D coordinates of scenes in Stanford Make 3D dataset (Make3D)
[46] to discrete ordinal depth maps. This discretized ground
truth has allowed for computing a new metric of our per-
formance — region-based Hamming distance. We have also
evaluated our figure-ground assignments to pairs of neigh-
boring regions on Geometric context dataset (GCD) [27],
and Berkeley segmentation datasets (BSD300 and BSD500)
[6, 37]. The results demonstrate that our algorithm success-
fully estimates the ordinal depths of input image regions cor-
responding to unique depth layers in the scene. Also, the re-
sults show that our algorithm is relatively insensitive to a
specific choice of input parameters.

We have empirically observed that accounting for hier-
archical relationships between regions, and appearance sim-

ilarity between neighboring regions generally improves per-
formance. This improvement is typically in terms of placing
oversegmented image regions onto the same ordinal depth
in the 2.1D sketch. Failures occur typically due to errors in
the input low-level segmentation. Specifically, when impor-
tant boundaries are not detected in the image by a low-level
segmenter, our optimization framework does not have nec-
essary constraints to infer depth changes in the scene.

We have also considered a simpler approach to solving
the original convex optimization problem using the gradient
descent with backtracking line search. In our experiments,
the gradient descent consistently takes a longer running time
to stop at a worse local optimum, yielding worse depth-map
estimates, than our approach.
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(a) Input image (b) gPb-OWT-UCM (c) V(FG-AL)-gPb (d) V(FG-AL-HR)-gPb (e) Vertical-gPb

Fig. 10 An example image from BSD 300 [37]: see the caption for Fig. 8. (b) The finest-scale segmentation of gPb-OWT-UCM [6] for Pb0 = 40%,
and local FG estimates of the logistic regression (foreground and ground are marked cyan and magenta); (c) V(FG-AL)’s depth map estimate; (d)
V(FG-AL-HR) outperforms V(FG-AL) by merging oversegmented regions; (e) Vertical on gPb-OWT-UCM fails, due to the presence of objects
that violate the assumption that their ordinal depth is inversely proportional to their distance from the image top; our approach successfully handles
these cases.

(a) Input image (b) gPb-OWT-UCM (c) V(FG) (d) V(FG-AL-HR) (e) Hoiem et al. [25] (f) Depth map of [25]

Fig. 11 An example image from GCD: (b)–(d) see the caption of Fig. 8. V(FG-AL-HR) improves upon V(FG) by accounting for the AL relation-
ships (e.g., V(FG-AL-HR) places the windows of the house at the same depth layer). V(FG-AL-HR) is limited by the segmentation errors. (e)–(f)
The results of the high-level CRF-based approach, presented in [25]. While V(FG-AL-HR) is not aware of any particular objects and typical scene
layouts, it accurately yields a consistent depth map, which is nearly the same as that in the results of the high-level approach of [25].
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Fig. 13 (a) Input image. (b) Iterative minimization of the objectives in (7) by V(FG-AL-HR), and (8) by Gradient. Gradient meets the stopping
criterion early, and yields a worse local optimum than V(FG-AL-HR). Also, due to backtracking line search, Gradient takes longer to reach the
stopping criterion. (c) and (d) Depth-map estimates after a specified number of iterations by Gradient and V(FG-AL-HR).

Fig. 14 (a) Input image. (b) Segmentation using the meanshift algorithm with Smin = 300 (c) The result of V(FG-AL). Some small regions got
merged with bigger regions in the depth-map estimate by V(FG-AL) due to accounting for similarity between regions.


