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Abstract

Suppose a set of arbitrary (unlabeled) images containsiér@cpccurrences of 2D objects from an
unknown category. This paper is aimed at simultaneouslirsplthe following related problems: (1)
unsupervised identification of photometric, geometrial &opological properties of multiscale regions
comprising instances of the 2D category; (2) learning aomdiiased structural model of the category in
terms of these properties; and (3) detection, recognitimhssegmentation of objects from the category
in new images. To this end, each image is represented by athegecaptures a multiscale image
segmentation. The trees are matched to extract the maximaliching subtrees across the set, which
are taken as instances of the target category. The extraotetees are then fused into a tree-union
that represents the canonical category model. Detectamognition, and segmentation of objects from
the learned category are achieved simultaneously by findiatghes of the category model with the
segmentation tree of a new image. Experimental validatiorbenchmark datasets demonstrates the
robustness and high accuracy of the learned category modieén only a few training examples are

used for learning without any human supervision.

I. INTRODUCTION

Suppose we are given a set of arbitrary images which contaguént occurrences of 2D
objects belonging to an unknown visual category, defined hera collection of subimages that
share similar geometric and photometric properties, amdiroin similar spatial configurations.
Whether, and where, any objects from the category occur ipegific image is not known.
We are interested in extracting instances of the categany fthe image set, and in obtaining
a compact model of the extracted 2D objects. A model derivech fsuch training can then be
used to determine whether a new test image contains objexts the learned category, and
when it does, to segment all instances of the category.

We define a category model in terms of the structure of imagjems (or segments) comprising

the 2D category instances. Specifically, the category medeluse captures the canonical



properties of regions: (i) geometric properties, such aa and shape; (ii) photometric properties,
such as gray-level contrast with the surround; and (iiiptogical properties, such as the layout
and recursive embedding of segments. Thus, two criticahddee at the foundation of our
approach. First, we use regions as features for derivingdlbegory model, since they are rich
descriptors, usually stable to small illumination and \pexnt changes, robust to common (e.g.,
additive) noise, facilitate simultaneous object detectamd segmentation, and they naturally
capture the recursive definitions of object parts. Secoral ,ewploit the ubiquitous structural
properties of objects — specifically, the spatial layout amclrsive containment of their parts.
This leads to a representation of category instances d¢mtgisf a finitely deep recursion of
regions. The depth is finite because the region size is uppended by the object size that
can occur in a given size image, and lower bounded by the pizel The resulting finite-size
hierarchy model facilitates learning of objects as a whgléglarning category-specific parts that
exhibit smaller intra-category variations compared to \@habjects.

Our approach consists of the following major steps. (1) Sagnthe images to identify all
homogeneous-intensity regions at all degrees of homotepetsent. (2) Match the training
images to identify frequently occurring subimages thatehsiwnilar geometric, photometric and
topological properties. Interpret the maximally matchingcurring subimages as evidence and
instances of some category. (3) From these category iregabtain a hierarchical model of
region properties defining the category. (4) Use the cajegurdel to detect, recognize, and
segment all instances of the category in a new unseen imggielimeating all defining regions
of each instance.

As our literature review in the next section indicates, nm&ir work requires human super-
vision, to provide a label of the object category that théntrey images contain. To the best
of our knowledge, this paper presents the first attempt atptetely unsupervised learning of
an unknown visual category that frequently occurs in anti@tyi (unlabeled) image set. The
need for human input to specify a category is eliminated biynolg a category as a set of
subimages sharing similar geometric, photometric andlégpoal properties of their constituent
regions. As we demonstrate in the sequel, this definitiomléxjaate for addressing a wide range

of real-world, rigid and articulated, object categoriex;luding faces, cars, horses, cows, etc.
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A. Relationship to Prior Work

In general, object recognition approaches consist of foajomstages: (i) feature extraction,
(i) object representation, (iii) training, and (iv) reaagjon. This section reviews prior work and
points out the differences with our approach with regardaocheof these stages. Other related
work will be discussed in the subsequent sections.

The first stage — feature extraction — uses image regionsiesit points, curve fragments,
image-filter responses, or a combination of these as imageirés. Since our focus is on
region features obtained via low-level segmentation, wi evnit here a review of the work
that uses other types of features, for brevity. Regiondbdeature extraction has been used
for object representation for a long time [1]-[9]. Regiome aigher-dimensional features, and
thus, in general, richer descriptors, more discriminatased more noise-tolerant than interest
points and curve fragments. Regions offer many advantages point and edge features for
the same problems. For example, region boundaries coimditiethe boundaries of objects and
their subparts, allowing for simultaneous object deteciod segmentation. Also, regions make
various constraints, frequently used in object recognjtguch as those dealing with contiguity,
smoothness, containment and adjacency, implicit and resigcorporate than other types of
lower-dimensional features (e.g., keypoints).

For the second stage — object representation — most apg®opeltition extracted features into
clusters, called “parts.” They represent the objects deejlanar or hierarchical graphs, whose
nodes usually encode intrinsic appearance propertieseskttparts,” and whose edges capture
the spatial relationships among the “parts.” For examgle,gictorial structures [10], [11] and
constellation models [12] are planar graphs with a useciipd number of “parts,” configured in
a pre-specified model structure. Hierarchical models gre&jly derived by hierarchical cluster-
ing of features [13]-[28]. This hierarchical clusteringidze performed with respect to a statistical
dependence that exists among subsets of features, or singppatial containment relationships
between a large feature cluster (e.g., large region) armbitstituent subclusters (e.g., embedded
subregions). These two bases of clustering lead to asceddacendant connections between
nodes in a hierarchical model. In some models, nodes may dredloy multiple parent nodes
(e.g., [14], [21]-[23]). The model structure is typicallprdrolled by a pre-specified hierarchy
depth or branching factor, or by minimizing model complgxiia the minimum description
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length principle. In contrast, our hierarchical model akoa priori unknown hierarchy depth,
and an arbitrary number of nodes forming arbitrary spabafigurations, all of which are learned
from training images.

Our goal to derive the canonical model of a visual categasynfa given set of 2D examples
has been pursued by many researchers. Early work is chazadtéy restricted problem domains
and heuristic algorithms that make use of the domain knayddd.g., example images show only
one object from a given class on a uniform background withreat-world problems, such as
occlusion, and illumination and viewpoint changes). Faaragle, the seminal work of Winston
[29] considers addition and subtraction of features fronewaiving model as successive positive
and negative exemplars are presented, each designed toeiskfy one relevant feature to the
model. In [30], a hierarchical object shape representasolearned from exemplars, where a
supervised decomposition of the curvature primal sketcinoéxample into subparts is followed
by augmenting the hierarchical model with these subpartthab the matching subparts are
consolidated into a single instance in the model. Anoth@r@gch to automatic construction of
object shape models recursively merges pairs of primitiveres elements that satisfy a set of
user-specified generalization criteria [31]. In [32], arhrehical category model is incrementally
refined through matching the segmentation trees of a givieofssmages with the model, where
matching is done top-down, in a greedy manner, only betwegioms at the same tree level, such
that a bad match between two regions penalizes attemptstth rtieeir respective descendants.
In [33], a tree model of an object shown in a given input imagkearned by matching the input
image to a sequence of templates provided by the user. Tlageediso been efforts to generate
a prototypical graph from a set of examples represented gshgr For example, a heuristic,
genetic search algorithm is proposed in [34] to learn a nmediraph from a given set of graphs.
The related problem of graph clustering using a spectraleeitiing of graphs is explored in [35].
It is important to note that these graph-theoretic apprescio not accommodate many-to-many
node correspondences, as required when dealing with r@dd-exemplars characterized by large
structural variations. These problems have been recedtlyeased by a number of approaches.
For example, in [8], an object shape model, which represamanar region-adjacency graph,
is learned by searching for plausible region groupingsoAis [36], a hierarchical shape model
is learned by many-to-many matching of graphs represemtivagye blobs and their proximity

relations. Our approach differs from prior work in that werfpem many-to-many matching
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among example segmentation trees and fuse the matchesrtaHeda tree-union as the canonical
model of a visual category. As we will demonstrate in thisgraphese attributes advance the
state of the art, e.g., in terms of handling more challengésd-world images containing partial

occlusion, clutter, and common variations in imaging ctiods.

With respect to training, in the third stage, different aggmhes involve different degrees of
supervision in learning the aforementioned object reprag®ns. Most early work requires that
training images be diligently selected to ensure that tloeyain a single occurrence of the object
class of interest preselected by the user, where each eoceris manually segmented from the
rest of the image. Recently, a number of semi-supervisetbappes have been proposed [12],
[37]-[43], where learning broader object classes, caliggories, in more challenging images
with clutter and occlusion is addressed, and where mangmheetation of object examples is
not required. However, these approaches still involve aiioggint amount of human labor to label
training images with respect to a pre-specified category toatain. Also, a careful preparation
of images containing a “background” category is requirelisTis because “background” is
treated as an additional object category, although it isde@ihed in any intrinsic way, but as the
absence of all prespecified object categories. Thus, gmleof “background” training images
becomes a difficult problem, which is solved by the user cimgpa training dataset that is
sufficiently distinctive from the images of target objectegries. This degree of supervision
is sometimes reduced, so that each training image may reordabeled, by using alternate
constraints, e.g., specifying the total number of usemeeficategories present in the training
set and the number of their occurrences in each trainingenaagnput parameters [44], [45]. In
contrast, we attempt learning an unknown visual categogy égompletely unsupervised manner.
The absence of supervision here means that it is not knowrih@h@nd where any objects
from the category appear in a specific image from the set.  Teuse training images may
not contain any example of the frequently occurring (tgrgategory, while others may contain
multiple instances of multiple categories. Also, unlikem@approaches, aimed at learning a
discriminant object classification function (e.g., [38Ne do not require the training set to be
large. In addition, we do not need to model the background esegory by itself, and, hence,
do not require a careful preparation of the background itrgidataset.

Finally, object recognition, in stage four, is typicallyadwated only through image classifica-

tion in terms of whether the learned object class/categomprésent or absent [12], [27], [38],
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[42]-[44]. There are also approaches that attempt objeetilation by placing a bounding box
around a detected object, or by thresholding a probalgilistip that a pixel belongs to the object
given the detected features [37], [40], [41]. These estmatre imprecise (bounding box) or
non-deterministic (probability map), to begin with, and durther worsened by the fact that
both locations of detected features and thresholds forcolgpealization are image dependent.
To overcome these issues, some methods hypothesize thauother of target objects present
in the image [37]. Few approaches [45], like ours, delinghte boundaries of all instances
of the learned categories appearing in the image, i.e.,l&meously conduct object detection,

recognition and segmentation.

B. Overview of Our Approach

In this section, we present an overview of the main steps ofamproach and point out
their motivation and contributions. (1) We begin with theet#ion of image regions which are
the basic features of our models. An image is represented sgygmentation tree [46]—[48]
which captures the low-level, spatial and photometric,geatructure in a hierarchical manner.
Nodes at upper levels correspond to larger, more saliemheets, while their children nodes
capture embedded, less salient details (e.g., segmertisswigller gray-level contrasts with
the surround). Each node is associated with the geometdcpantometric properties of the
corresponding segment, while the tree structure captinesniutual containment (topological)
properties of segments. Therefore, the segmentationérgessas a rich description of the image.
(2) Given an image set that contains frequent occurrences afnknown category, we expect
that subimages with category specific values of the abovpepties will be abundant in the
set. Each such subimage will correspond to one or more ®&shinethe segmentation tree, thus
leading to frequent occurrences of subtrees with similaperties. The category subtrees can be
detected by a tree matching algorithm that searches fordimmon subtrees of the given image
trees having a large similarity measure. This similarityaswere is defined in terms of the tree
structure, as well as the geometric and photometric priggedssociated with tree nodes. The
result is a set of subtrees from each image that have craageirsimilarity measures above a
chosen level. The tree matching algorithm identifies eyastlich region properties are shared
by the matching subtrees. These subtrees are interpretéustamces of the target category

whose intercategory variability depends on the chosen @vthe similarity measure. (3) The
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extracted subtrees may represent complete object occeser their parts. Extraction of only
object parts occurs when they remain unaltered, while tg@meproperties of other parts, and
hence of entire objects, are changed due to, e.g., partiéliions, or illumination, viewpoint,
or scale variations across the images. Therefore, theatattraimilar subtrees provide for many
observations of entire objects or their parts in the categbus allowing robust estimation of
the entire, characteristic region structure of the categdit of these subtrees can be fused (i.e.,
partially matched and registered) within a canonical graygtich we call the tree-union. Hence,
the tree-union subsumes all extracted category instaandghus represents the learned category
model. The tree-union specifies: how segmented regionseatgsively laid out to comprise an
object from the category, and what their geometric and phetdc properties are. (4) When a
new image is encountered, any matches between its seginaritate and the category model
will denote the presence of the category, and simultangayscify the exact boundaries of the
recognized objects and their constituent image regions. Albck-diagram of our approach is
given in Fig. 1.

As a result of these basic steps, the performance of our apprbas desirable invariance
characteristics with respect to: (i) Translation, in-g@d®otation and Object-Articulation (changes
in relative orientations of object parts): because the segation tree itself is invariant to these
changes; (ii) Scale: because subtree matching is basethtmeg@roperties of nodes, not absolute
values; (iii) Occlusion in the training set: because swddrare registered and stitched together
within the tree-union encoding the entire (unoccludedggaty structure; (iv) Occlusion in the
test set: because subtrees corresponding to visible opgtd can still be matched with the
model; (v) Small Appearance Changes (e.g. due to noisepusecchanged regions may still
be the best matches; (vi) Region Shape Deformations (eug.,tal minor depth rotations of
objects): because changes in geometric/topological piiepeof regions (e.g., splits/mergers)
are accounted for during matching; and (vii) Clutter: begaclutter regions, being non-category
subimages, are not repetitive and therefore frequent.

The preliminary version of our approach is presented in.[48]is paper contributes the
following major extensions to [48]: (i) additional regiorrgperties are used; (ii) similarity
between two trees is estimated using a new measure; (iilpwmni48] all region properties are
equally weighted for recognition, we here present an dlgorifor finding the optimal weights

of region properties; and (iv) a more extensive experimenaluation of the proposed approach
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Fig. 1. Block-diagram of our approach: (a) A set of input irregontains frequent occurrences of a car category. A specifi
image in the set may not contain cars, or may show more tharcanélso, cars may appear at different scales, and may be
partially occluded. (b) Pairwise image matching; blackioeg indicate maximally matching subimages. (c) Extracebtrees
representing maximally matching subimages shown in (P)T¢de-union represents a model of the car category leamoed f
the extracted similar subtrees shown in (c). The relatigmiicance to recognition of model nodes is marked with défe

shades of gray. (e) Simultaneous object detection, reiogniand segmentation in a new image.

addressing both rigid and non-rigid object categories és@nted.

This paper is organized as follows. The segmentation tred, ragion properties selected
for modeling a category are defined in Sec. Il. Sec. Il disegsthe tree matching algorithm.
Learning the category model is presented in Sec. IV. Optwebhting of region properties

used to learn the model is discussed in Sec. V. Experimeantalation is presented in Sec. VI.

II. SEGMENTATION TREES ANDREGION PROPERTIES FORCATEGORY MODELING

An input image is represented by a segmentation tree, autaising a multiscale segmentation
algorithm, presented in [46], [47], [49]. The segmentatadgorithm partitions an image into
homogeneous regions of a priori unknown shape, size, gwsjl-lcontrast, and topological
context. Here, a region is considered to be homogeneousidtizans in intensity within the
region are smaller than intensity change across its boyndegardless of its absolute degree of
variability. Consequently, image segmentation is pergmrat a range of homogeneity values, i.e.,
intensity contrasts. As the intensity-contrast sensjtigarameter increases, regions with smaller
contrasts than the current parameter value strictly mekgaveep of the parameter values thus
results in the extraction of all the segments present in thage. The segmentation tree is
derived by organizing the segmented regions into a treectsie, where the root represents
the whole image, nodes closer to the root represent largenggwhile their children nodes

capture smaller embedded details, as depicted in Fig. 2.nlingber of nodes (typically 50—
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Fig. 2. Seiqmentation trees of sample Caltech-101 imagds (Jé&) segmentafions obtained for two sample intensiptcast
values from the exhaustive range [1,255]; (right) samplgesoof the corresponding segmentation tree, where the epotsents
the whole image, nodes closer to the root represent largenggwhile their children nodes capture smaller embeddsédlild.
The number of nodes (typically 50-100), branching factgpifally 0-10), and the number of levels (typically 7—10xifferent

parts of the segmentation tree are image dependent, anchatitally determined.

100), branching factor (typically 0-10), and the numbereels (typically 7—10) in different
parts of the tree are image dependent.

Each node is characterized by a vector of properties of the correspgnagion, denoted as
¥,. We use intrinsic photometric and geometric propertieshef tegion, as well as relative
inter-region properties describing the spatial layout lné region and its neighbors. In this
way, v, encodes the spatial layout of regions, while the tree siracitself captures their
recursive containment. The properties are defined to altalesand rotation-in-plane recognition
invariance. In particular, elements ¢f, are defined relative to the corresponding properties of
v's parent-node:, and thus ultimately relative to the entire image.

Let w, v, and u denote regions forming a child-parent-grandparent tripleen, the prop-
erties of each regiom we use are as follows: (1) normalized gray-level contiastdefined
as a function of the mean region intensity gvé%; (2) normalized areai,=A, /A,
where A, and A, are the areas of and u; (3) area dispersiom D, of v over its children
wel(v), ADUém Zwec(v)(aw—WF, whereac,) is the mean of the normalized areas of
v's children; (4) the first central momept!; (5) squared perimeter over areavlﬁﬁ@e”%zew;

(6) angle~, between the principal axes ofand u; the principal axis of a region is estimated

as the eigenvector of matrixﬁ [Zi) Z;} associated with the larger eigenvalue, where jilse

— —
are the standard central moments; (7) normalized displaneﬁn)vé\/;_ d ., where| d ,| is the
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centroid of v

Fig. 3. Properties of a region associated with the corredipgnnode in the segmentation
_____ tree: Regiornu (marked red) contains a number of embedded regions, vz, ... (marked
blue). The principal axes af andv subtend angle,,, the displacement vectak, connects
the centroids ofu and v, while the context vecto®, records the general direction in

which the siblingsv1,v2, ... of v are spatially distributed.

distance between the centroidswofand v, and 470 is measured relative to the principle axis
of parent node, as illustrated in Fig. 3;/A, represents an estimate of the diameter of parent
region u; and (i) context vecto@vé Zses@) ﬁjvm where S(v) is the iet ofv’s sibling
regionss, and| d ,,,| is the distance between the centroidsvadind s, and £ d s is measured
relative to the principle axis of their parent nodeas illustrated in Fig. 3, the context vector
records the general direction sees its sibling regions and disallows matching of scrachble
layouts of regions at a specific tree level. In summary, thetoreof region properties associated
with nodev is 1,=[g,, a,, AD,, ul, PA,, V., Zv, 52]? Each element ofp, is normalized over

all multiscale regions of all training images to take a valnehe interval[0, 1]. This list of

useful region properties, can be easily modified to refleetrtbeds of different applications.

IIl. EXTRACTING CATEGORY INSTANCES

To extract recurring similar subimages from the given imagelT={t, ts, .. .ty }, all pairs

of segmentation tree§, ¢ )eTxT are matched to identify those pairs that have a similarity
measure above a chosen threshold (see Fig. 1). Prior worltynnggs only the intrinsic geometry
and appearance of regions for their matching. We extend thiehimg criteria to include the
information about the mutual containment of regions, whsokxpected to improve the robustness
of cross-image region matching. Thus, given two segmamtatiees, our matching algorithm
pairs those nodes whose associated region properties jnatdhrecursively the same holds
for their descendant nodes. As another means of makingctixinaof category instances more
robust, our matching algorithm explicitly accounts for ttaet that certain image regions are
less likely to be preserved across the images than othergx@ample, low contrast regions may
split or merge with bordering regions due to slight changethe directions of lighting, viewing

and object orientation. This in turn changes the segmemtdtee structure, and thus requires
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matching to explicitly account for these uncertainties.abosomplish these objectives, we resort
to the well-known framework of edit-distance graph matghjs0]-[55].

While there are many diverse techniques for matching imagehy representations used
in computer vision, we briefly review only the two most commapproaches to focus our
presentation. The structural properties of graphs can ptuead by the eigenvectors of the
associated adjacency matrix [26], [35], [56], [57]. Howeuwhe spectral approaches to graph
matching encounter the major difficulty that structuraliffedent graphs may have the same
spectrum. Another group of approaches involves transfagrthie two graphs by applying basic
edit operations on nodes and edges — such as insertionpdeleterging, splitting and relabeling
— until the transformed graphs become isomorphic. The gb#hese methods is to minimize
the cost of modifications needed in the two graphs to matcim theferred to as edit-distance.
One great advantage of edit-distance matching over thetrgpepproaches is that edits can
be naturally interpreted in the image domain, allowing omeappropriately define edit costs,
while in general this is not the case for algebraic maniputetof spectral graph representations.
However, traditionally, the edit-distance methods areetlasn the assumption that there exist
only one-to-one node correspondences in matching [50]-sHich is usually too restrictive
for our case, as stated above. This problem can be addregsednbidering many-to-many
matching. For example, in [58], a subset of graph nodes argedento a single node (merger)
when the difference between their attributes is smallen taachosen threshold, after which
this combined node is matched to a node or merger in the ottaahg thereby conducting
many-to-many matching. However, since the magnitude okeraitiibute disparities is a priori
unknown, this method is very sensitive to threshold sedectin [55], many-to-many matching is
considered within the edit-distance framework. This applhp however, has a large bias toward
favoring one-to-one node correspondences over one-tgsreante the heuristically defined cost
of matching a single node with many is higher than the cost afching two single nodes.
Spectral-based approaches also present promising swWutio many-to-many matching [59],
[60]; however, it is not clear how to use these methods toielyl account for splits and
mergers betweehordering regions in our segmentation trees.

In this paper, we use our edit-distance matching algorithesented in [48], [61]. For com-
pleteness, below, we briefly review its main charactessand point out the major improvements

made here. Our algorithm extends Torsello and Hancock'soapgh [54] by searching for
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correspondences between individual regions, as well ageleet groups of contiguous regions
in two given segmentation trees. This amounts to consigeoine-to-one, one-to-many, and
many-to-many region correspondences, all at the same timée in [54] where only one-
to-one matching is allowed. Specifically, the segmentatiers are first modified by inserting
and appropriately connecting new nodes (i.e., regiongresenting mergers, as illustrated in
Fig. 4. Each merger is the union of a few neighboring siblimgles under a parent node. It
instantiates the hypothesis that the children are formedtdwan incorrect split, caused by, e.g.,
lighting changes etc., and therefore they should be restogether as a single node. To cover all
possibilities under a given node, mergers are made comegmpto all members of the power set
of the node’s children sharing the same boundary. Mergerstieliminate their source nodes in
the tree. Instead, each merger is inserted as a parent ofdtgechnodes, which converts the trees
into directed acyclic graphs (DAGS), as depicted in Fig.dcdhd, for each DAG thus obtained,
we construct its transitive closure by adding new edges datvwall ancestor-descendant node
pairs in the DAG (Fig. 4). The reason for constructing trawsiclosures is that their matching is
more flexible than matching DAGs and trees, allowing matdfedl descendants, instead of only
children, under a visited node. Thus, we will formulate segmation-tree matching as a search
for the maximum subtree isomorphism between the transifivseures of segmentation DAGSs.
This search will be constrained, because the resultingmaxi similarity common subtree must
respect ascendant-descendant relationships of the inéés. These consistency constraints will
disallow many node-pairs from being candidates for matghand thus improve the overall

matching efficiency. Below, we present our matching altonit

A. Formulation of the Matching Algorithm

Given two transitive closures of the segmentation DAGsaioletd from the segmentation
trees as explained above, our edit-distance matchingitgoidentifies two legal, minimum-
cost sequences of basic edit-operations applied to the W@s) respectively, which produce
their common subtrees, and preserve the original node ejgicand ascendant-descendant
relationships. The edit-operations considered here sbo$ionly node removals and matches.

A candidate node when paired with another nodé, is either considered matchable, with an
INote that the transitive closure of a DAG is also a DAG.
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input segmentation trees augmented trees with mergers transitive closures  two maximally matching common subtrees

Fig. 4. Matching segmentation trees: Input tree is first eded into a DAG by inserting mergers (only a few sample nrsrgee
marked red for clarity), which represent the union of a fewghkoring sibling nodes under a parent node. Mergers qoores

to all members of the power set of children sharing the sammdary under each node. Then, the transitive closure of the
DAG is constructed by adding new edges between all ancdssirendant node pairs in the DAG (only a few sample edges are
marked red for clarity). Matching segmentation trees anwtm a search for the maximum subtree isomorphism betwesen th

two transitive closures of the DAGs.

edit-costm,,, or considered unmatchable and “removed,” with a cost ptapwl to its salience
r,. The total cost associated with the sequence of edit opesatiepresents the edit-distance,
i.e., a measure of similarity between the two DAGs. It can li@as that finding the maximum
similarity edit-sequence between two DAGS, consisting iy code removals and matches, is
equivalent to finding the maximum similarity subtree isoptosm [53], [54]. Therefore, the goal
of our matching algorithm can also be interpreted as findimgimum subtree isomorphism. To
specify the matching algorithm, we use the following deifims.

Definition 1. (Topological consistency) Leétandt’ be two transitive closures of the segmentation
DAGs. Node pair(v,v'), wherevet andv’et’, is said to be topologically consistent with, '),
where uet and v'et’, if the topological relation between and u (i.e., presence/absence of
ascendant-descendant relationship) is the same as thioda@d relation between’ and «'.
Topologically consistent node pairs are denotedwas’)~(u, u’'),

Definition 2. (Consistent bijection) Lef : U—U’ be a bijection between two subsets of nodes
U andU’ in two DAGs. f is consistent itv(v, u)eU, (v,u)~(f(v), f(u)).

Definition 3. (Matching algorithm) Given two transitive closures of teegmentation DAGs
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t=(V, E,¥) andt'=(V', E', V'), whereV and E are the sets of nodes and edges, @8nd a
function that assigns a vector of region propertiggo each node € V/, the matching algorithm
finds a consistent bijection (i.e., subtree isomorphigm)—U’, whereUCV andU’'CV”’, which

maximizes their similarity measu®, defined as

S = fcr?/axXV Z [min(rwrv’) - mvv’] . (1)
e (vu")ef

From (1), the algorithm seeks consistent matches)~(f(v), f(u)) among nodes € V and

v" € V' whose saliencies, andr, are high, but cost,, is low. Therefore, by selecting highly
salient nodes in the matching result, the algorithm minéwithe total penalty for removing the
other nodes from the two graphs while finding their commongsajbh. The literature reports
different strategies for defining the edit-costsandm,,,, ranging from heuristic to information-
theoretic definitions [51], [52], [54]. In this paper, thed®saliencyr, and the cost of node

matchingm,,, are defined in terms of region propertig¢sas
T = £T’l/)”’ and My = ‘TU - TU'| = max(rv, TU’) - min(rv, TU’) ) (2)

where £ is a vector of coefficients weighting the relative significanto recognition of the
corresponding region properties if,, and whoseL2-norm is||&||=1, and£>0. In [48], [61],
region properties are equally weighted, i.&.= 1/|v,|, where|,| is the number of region
properties used. In this paper, we examine their relativerdmtions to recognition, thus obtain-
ing an optimal weighting of region properties, as discusae$ec. V. Note that,,, m,, € [0, 1].

From (1) and (2) we have

Sy = fclrnwix‘/t, Z(v,v’)ef [2min(r,, ry) — max(ry, ry) + 1] (3)

where 1 is added to make the expression in the brackets rgative, which does not change the
solution f. Thus, we formulate matching as an optimization problenemgiby (3). The result of
matchingt andt’ is the set of nodes paired by a consistgrand comprising the two maximum
similarity common subtrees afandt’, respectively.

In our preliminary work [48], we used a different definitio similarity measureS%¢ =
MAX fCVixVy D (v oryes [Tv T Tor = [To = Torl] = maxXycvixv, D0, 0)ep 2 min(ry, ry). Hence, to max-
imize S99, the matching algorithm pairs only those nodes whose satisrare large, but does
not explicitly verify the discrepancy between their asatail region properties. As demonstrated

in Sec. VI, the new definition of similarity measure given I3y {(mproves performance.
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The optimization problem of (3) can be solved recursivebgtdm-up, starting from leaf nodes.
Suppose that at any stage during matching, for all descésdar « in ¢, and for all descendants
v of v/ in ¢ we have previously computes,,,. Then, our goal is to find the optimal set of

consistent descendant pairs v')eC,,/, while maximizingS,, . From (3), we have
Suu’ =2 min(rua Tu’) - max(ru, Tu’) +1+ Z(v,v’)ec , va’~ (4)

As shown in [52], [54], the optimal’,,, can be found as the maximum weight clique of the
association graphz,,,=(V.,, E.,,S) characterizing the directed acyclic subgraphs rooted at
and«’. In particular,V,, is the set of all possible matchgsv, v')}, where thev andv’ are all
descendants underneathin ¢ and«’ in t/, respectively.S is a function that assigns a weight
equal to the similarity measurg,,, to every nod€v,v’). £, is the set of undirected edges that
connect only consistent nodé¢s, v')eV,,. Thus, imposing the structural constraints in finding
a consistent subtree isomorphism is done in a simple manméngdthe construction of the
association graph,,. To solve the maximum weight clique problem, we use the \edwn
game (replicator) dynamics approach thoroughly discussef@2]. This algorithm uses the
Motzkin-Straus theorem to transform the maximum cliquebfgm, known to be NP-hard, into
a continuous quadratic programming problem with compje&it|V.,|?) in the number of nodes
in ..

From (4),S,... is directly proportional to both the quality of match betwdée region prop-
erties associated with the node péir «') and the size of matched subtree structure underneath
them. Once computed,,. is used to recursively find the similarity measure of subgsapoted

at the ancestors of and«’. In this vein,S,,, values of all node pairtv, v")etxt’ are obtained.

B. Unsupervised Selection of Maximally Matching Subtrees

The matching algorithm presented in the previous sectiamsexd to extract similar subtrees
from the given set of segmentation tréBs-{t;, ¢5,...t);}. Thanks to relatively small training
sets considered in this paper, a total\éf M —1) tree pairs are matched to identify their common
subtrees, whose similarity measuigsare above a chosen threshold. The appropriate selection
of this threshold in unsupervised settings is a challengesgarch topic beyond the scope of this
paper. A straight forward strategy that we use here is bagetthe frequency histogram of all

Sy Values observed over all node paftsv’) across allM (M —1) image-tree pairs, denoted as
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H(S). Note thatS accounts for all the properties we have chosen to define gargte namely,
photometric, geometric and topological properties of aagi Small variations irS,,, values
across subtrees representing category instances are tgpéeted, as they reflect intra-category
inter-instance variations. It therefore follows that theguency histograrf(S) will be in general
characterized by a number of modes, each correspondingdodnt occurrences of instances
from a different category present in training images. Siogeobjective is to identify the most
frequently occurring similar subimages that correspond single most frequent category in the
training set, we extract all those similar subtrees wh8ge values are high (i.e., belong to a
category) and fall in the largest mode in the histogram, (mast frequently occur).

For detection of the histogram modes, we use the well-knalaxation labeling algorithm
of [63], which uses the contextual information of neighbgrihistogram bins to reduce local
ambiguities in the histogram values, and yields reliabsilts after only a few iterations. After
detecting histogram modes, we identify the interval of &nity measure values that contains
the mode with the aforementioned category properties. Bllymwe compute[Smin, Smay =
arg MaXmodes Y semodesS * 11(S). All subtrees inT with S, values in the intervalSmin, Smax]

are identified as category instances.

C. Computational Complexity

Two major steps contribute to the computational complesdtgliscovering category instances:
augmentation of given trees with merger nodes, and actutdhing of the resulting DAGSs. Let
s denote the average number of sibling regions that share teopanf their boundary under a
node. Note that is considerably smaller than the average number of a notédren (typically
0 < s < 3), and thus the size of the power set of contiguous siblinggpally not very large.
Then, given a segmentation tree wijtli| nodes, the complexity of transforming the tree into a
DAG by inserting merger nodes 3(2°|V|).

In the next step, we solve®|V| x 25|V| maximum weight clique problems, as explained in
Sec. llI-A. The replicator dynamics algorithm used for thigpose converges for such problems
after only a few iterations. Each iteration involv@$|.<7|?) multiplications, where.«| is the total
number of nodes in the association graph whose maximum weligine is computed. Thus, the
complexity of tree matching i©([2¢|V|]*), which typically amounts t@(10'°) computations,

performed in approximately 20-30 seconds on a 2.8GHz, 2GBARXC, for images used in
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experimental evaluation discussed in Sec. VI. In compangibh the standard edit-distance tree
matching approaches (e.g., [54]), typically used for maighbinary images with silhouettes of
objects, ours increases computational compleXity6*)~0O(10%) times. This increase is justified
by significant improvements in matching performance as altre$ simultaneously accounting
for many-to-many, one-to-many and one-to-one node cooregnces, which in turn allows us
to address more complex, real images with clutter and occius

To extract category instances, we conduct pairwise magabfid/ image trees, after which the
relaxation labeling algorithm is used for finding the optimeode of the frequency histogram of
similarity measures, as explained in Sec IlI-B. The comipyexf relaxation labeling i< (nf?),
wheren=4 is the number of histogram bins within the sliding window dise the algorithm,
and /=2 is the number of classes (mode, valley) we consider.

Overall, if each segmentation tree Thhas no more thafl’| nodes, then the complexity of

extracting similar subtrees froffi is O(M?16°|V|).

V. LEARNING THE CATEGORY MODEL

The set of extracted similar subtre@s—= {t,, 1., ..., tx}, in the sequel simply referred to as
trees, may represent fully or partially visible objects loé tliscovered category, as well as some
outlier objects that do not belong to the category. We arerésted in obtaining a compact,
canonical model of the target category frdn In this section, we explain how to integrate the
information from all visible category parts by fusing theds ofD into a tree-union, and thus
derive the category model.

Tree-unions are well studied graph structures, the detaitatment of which can be found,
for example, in [53], [64]-[68]. The tree-unidh is the smallest directed acyclic graph (DAG),
which contains every tree iB. Ideally, 7 should be constructed by first finding the maximum
common subtree db, and then by adding to the common subtree, and approprietelyecting,
the remaining nodes from). However, finding this maximum common subtree would entail
factorial complexityO(N'!) in the number of treed’ in D which can be arbitrarily largéSince

such an algorithm is computationally infeasible for realrting setsD which are usually very

2Typically, in our experiments, the number of training imadé is much smaller than the number of extracted similar subtree

N, since multiple instances of the same category may co-decarsingle image.
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large, we resort to a suboptimal sequential approach. |h garation7 is extended by adding

a new treet from D until every tree fromD has been added to the tree-union, as illustrated
in Fig. 5. As can be seen, the selecteds first matched against the current estimaie,
which results in their common subtree and then the unmatched nodes frorare added and
appropriately connected toin order to form7 "+,

For matchingt and 7™, we use the same algorithm presented in Sec. lll-A. Afteriragid
the unmatched nodes, the result is a DAG with multiple deeégbaths between nodes, which
preserve the node ascendant-descendant relationshipsifroAs detailed in [66], [68], the
matching algorithm of Sec. IlI-A can be used for matching$rand DAGs under the condition
that a given path in the tree can match only one path in the DA@®osing the same three
consistency constraints as used in matching, namely: €5gpve node connectivity, (2) preserve
ancestor-descendant relationships, and (3) disallowipheilpaths between nodes, is done in a
simple manner during the construction of the associati@plyr.A,.., for each visited node
pair (u,u')etx7, as explained in Sec. IlI-A. To define the saliencyand the cost of node
matchingm,,, of nodesv € 7, which are used for computing the similarity measure in (3),
we record the region properties, associated with all nodeseD that got matched with in
the previousr iterations. Then, a region-property vectgy, associated withv € 7™ can be
defined in terms of the statistics of these recorded vedtgrs}. In this paperg), is computed
as the median vector of the matched regions’ properiigs= mediaq, }. Other statistics,
e.g., the mean vector, may also be used. In our experimesitsy the median yields slightly
better performance over the mean. Finally, similar to thinitens in (2), we havevv € 7™,

Ty é €T¢vs andmvv’ é |Tv — Ty

, Where& specifies the relative significance to recognition of
the region properties inp,.

Due to sequential matching of trees i their different orderings may result in different
tree-unions. This problem is addressed in [66] by mergirgg flmose trees with the maximum
similarity measure. This strategy, however, does not atcfr possible outliers ifD. Outliers
may be present if) because of unsupervised extraction of similar subtreesrefbre, for our
purposes, it is necessary to use an algorithm that finds tstealp@roximation of the tree-union,
while at the same time accounting for outlierslinOur basic assumptions is tHatcontains trees
with similar structure and node properties, so that eackenod” should have approximately

the same frequency of matching with nodedlinNodes in7 that come from outliers are likely
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Algorithm 1. Learning Tree-Unioril
Input - D= {t1,t2,..,tN}
1 fori=1: N—-1do

&tl /E}{; j{{gﬂ 2 Find random permutation of the input set(D);

° FAS °° 3 Find maximum similarity, consistent, common subtree
‘3}2%% 9 %;. Bl AT (O o of t; andts in 2;(D) (Section IlI-A) ;

g°° S e & 4 Add and appropriately connect the unmatched nodes fiom

) : t1 andty to 7, to form 7(2);
5 for n =3, N do

Fig. 5. Construction of tree-uniofi from the extracted set dfg Find 7 of 7(»—=1 andt,, :
similar treesD={t1,t2,...,tn}: In each iteration, a selected Add and appropriately connect the unmatched nogles
treet from D is first matched against the current estimaté’, from t,, and7(»~1) to 7, to form 7(™);
which yields their maximum common subtredmarked black). ?1(0; )= 7O,
Then the unmatched nodes framare added and appropriate% Con;pute nod(; frequencieseT (z;), %:#i?mﬁg}ﬁﬁ?
connected (marked gray), to ford " *1). The result is a; Find entropyH (#;) = — 37 (s,) #v 108 00
directed acyclic graph (DAG). 12 end

13 Output: 7 = 7 (), where? = arg miny, H(#;)

to have a relatively lower frequency of matching with nodesDi These frequencies can be
conveniently described by their entropy. Since majoritytreles inD are likely to represent
category instances, node frequencies/oWwill be characterized by a small entropy. Therefore,
to learn the category model, we obtain a set of tree-unighér,),...,7 (rg)} for various
permutationse; of D. Then, we compute for each nodec 7 (#;) the frequency of its matches

with nodes inD, ¢,= omaches The phegt approximation of the tree-union is selected based

# of nodes inD *
on entropyH(»;) = —Eveﬂm v, log ¢, which achieves a minimum for the sets containing
all isomorphic trees. Thus, the permutatienfor which H is minimum over alle,, . .., 2z is

selected to comput& (»;) as the best approximation of the tree-union. In the case dfipteu
solutions, 7 (#;) with the smallest number of nodes is selected.

Algorithm 1 summarizes our learning of the tree-union. Theice of the number of permu-
tations R is subject to the trade off between accuracy and computdticomplexity. Suppose
no tree inD has more thanV/| (typically about 20) nodes. Note thdt| is much smaller than
the typical number of nodes in segmentation trees. Therilasito the complexity of matching
explained in Sec. IlI-C, the complexity of learning the tiggon is O(RN16°|V|*). In our
experiments, we sef = N — 1.

The segmentation tree of a previously unseen image is nthtefith the learned category
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model for identifying similar subtrees, representing gatg instances. For this matching, one
may use the aforementioned definition of node saliencyf nodesv € 7. Alternatively, r,
may also be defined so as to account ¢Qr Thus, in our experiments, we use two definitions
of r,: (i) 7, & &, and (i) r, £ ©,&€T,. As demonstrated in Sec. VI, the latter definition
improves recognition performance, since it forces the Matgalgorithm to remove from the
subtree isomorphisnf all those nodes iry” with low frequency of occurrence i, which are

likely to come from outliers irD.

V. LEARNING THE OPTIMAL WEIGHTS OFREGION PROPERTIES

We have assumed that the relative significance to recognitidhe various region properties
included invy can be expressed by the perceptual weight vegtam (2). Estimation of the
weights¢ is ideally done in a supervised psychophysical setting eimegal, there is very limited
past work on determining the perceptually valid weights edion properties without human
supervision. In this paper, we approximate these ideal htsigy a vecto which maximizes
the similarity measures of those image regions that aréylikebelong to a category. To this end,
we first select a subset of image regions from the given sahafjes having small differences
in their properties (i.e., which are similar and thus caatid to represent a frequently occurring
category), and then optimize over the selected subset, as detailed below.

For each node paifv,v')etxt’, Vt,t'€T, we compute the empirical distribution of node-

property differences|y,—,

, Where ||-|| denotes the vector 2-norm. If a category occurs in
the given image set, the distribution of these differencey tme expected to form two main
modes. One mode would correspond to pairs of regions comg@ribe category subimages,
having small||s,—,|| values. The other mode would consist of arbitrary regionmspaiith
larger ||¢,—./|| values. Since there are more dissimilar than similar regitime latter mode
would have considerably larger distribution values. Ofrsey each mode would also contain
contributions from chance similarities and differences.

The frequency histogram thus obtained is modeled as thecomgponent Gaussian mix-
ture density,P(||v,— v ||)=m% (|| —1u || ) +m%(||[10s—2w||). The means, variances of the
Gaussian distribution¥, and ¥, and the mixing coefficients; and 7, are computed via
the standard EM algorithm [69]. Then, all of the node pairsy’)eTxT are partitioned into
two mutually exclusive subsets 1 and 2 corresponding to W domponents of the Gaus-
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sian mixture density¥, and %. Thus, a given node paifv, ') is included in subset 1 if
Mm% (| Vo= ||) > m%(||tvs—1||). The subset of region§GCTxT, corresponding to the
Gaussian-mixture component with the smaller mean is tateegresent similar regions.

Next, we optimize¢ so that the sum of values ovelG is maximum. From (1) and (2), we
havemin(r,, 7y ) — |7, — ry| = 2Tl ) = €T, + by — 3|3, — ). Let
Moo = (¥, + Py — 3|th, — 3y|). Then, from (4), maximizing similarity measures ov@ris
computed as

m§aX Z Suu’ (€)ngx Z(u,ul)e({} €Tnuu’+ Z(U7UI)Ecuu/ Eva’] 3 (5)

(u,u’)eG

=(|G|+1) mgax ¢' Z(u,u’)e@ Nuw — Z(u,u’)e(} msin g' E(v,v’)EG\Cuu/ Mo, (6)
>(IG[+1) mgax ¢’ Z(u,u’)e((} T — Z(u,u’)EG ¢’ Z(v,v’)eG\CUu, Moo’ s (7)

where the optima€ is computed by maximizing the lower bound in (7) as

<Z(u,u’)€(} 77uu’> n
<Z(u,u’)€(} 77uu’> n

where (z), £ max(0, ). The detailed derivation of the last step in (8) is given inpApdix .

, (8)

mﬁaxéTz(u,u’)EG'UUUU s.t.[[£]=1, €20 = é

Eq. (8) simply enforces that the differences in the propsrtf a matching region pair should
not, on an average, exceed their sum. The optigntiius obtained is used for computing the
node saliencies, for our matching algorithm (Sec. IlI-A).

This concludes the description of our algorithms. The eminocedure of discovering category
instances and learning the category model is summarizethirRAln the next section, we present

the experimental evaluation of our approach.
Algorithm 2. Discovering Category Occurrences and Learning the Categjadel
Input . Set of training imaged containing frequent occurrences of an object categorynbtinecessarily in every image.

1 Represent the training images by segmentation tfee$t1, ..., ¢as}, using the algorithm of [46], [47], [49] (Sec. II);

2 V(t,t')eTxT, andV(v,v’')etxt’, estimate the relative significance to recognition of regiwoperties¢ (Sec. V);

3 V(¢ t')eTXT, andV(v,v’')etxt’, computeS,,, given by (4). Compute the histografd(S) (Sec. IlI-A) ;

4 Detect the modes df{(S), using the algorithm of [63], and identify as category insesD{¢1,...tx} all subtree pairs rooted at
nodes(v, v')€Tx T whoseS,,,s values fall in[Smin, Sma = arg maxmodes Y semodesS - H(S) (Sec 1lI-B);

5 Construct tree-uniong () of different permutationg of D. Select the smallest entrof@(») as the category model (Sec. V) ;

VI. RESULTS

This section presents a two-pronged empirical validatibrowr approach: (i) qualitative

evaluation of tree-union models learned on arbitrary imsefs, and (ii) quantitative evaluation
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of simultaneous detection, recognition and segmentatfcall anstances of a learned category
present in a test image. To this end, we use the following lreack datasets: (1) Caltech-101
faces (435 images), motorbikes (800 images), and airpl@t#simages) [42]; (2) Caltech rear-
view cars (526 images) [12]; (3) UIUC multi-scale side-viears (108 images); (4) Weizmann
side-view horses (328 images) [70]; and TUD side-view cdtd (images) [37]. In the sequel, we
will refer to faces, motorbikes, airplanes, cars, horsed,a@ws as target categories, since their in-
stances will most frequently occur in our training sets asgared to some other categories (e.g.,
grass, trees, bookshelves, etc.). The Caltech-101 imagesaptured under varying illumination
conditions, and contain a single, prominently featureceabfrom the category amidst clutter.
The Caltech cars and the UIUC cars increase complexityesime images contain multiple cars,
which appear at different resolutions, have low contrash whe textured background, and may
be partially occluded. The other two datasets contain stges/of walking/galloping horses and
cows in their natural (cluttered) habitat. They help eviduzur algorithm’s capability to handle
articulated, non-rigid objects. We also use a total of 10€kgeound images from Caltech-101
which do not contain the target categories. These backgrammages will be referred to as
negative examples, while images showing objects from trgetaategory will be referred to as
positive examples.

We use three different strategies to form training and tet, svhich leads to three types of
experiments. In Experiment 1, one half of the training setstsis of positive images, while
the other half consists of negative examples. The trainmgges are not labeled positive or
negative to ensure unsupervised training, i.e., it is notriaripknown whether any specific
training image contains objects from the category. The gestis formed from the remaining
positive and negative examples. In Experiment 2, the mgirand test sets are selected as in
Experiment 1, but the test images are randomly rotated,atuate rotation-in-plane recognition
invariance. The image size is preserved by “filling out” tleekground, vacated by rotation, with
a randomly selected negative example. Finally, Experinderst aimed at testing the effect of
varying the numbers of positivé/, and negativel/,, examples in the training set. Two cases are
considered: (1), is fixed, while M,, increases, and (2)7, is fixed, while 1/, increases. The
test set differs from that used in Experiments 1 and 2, in ithaintains the remaining positive
examples of all target categories, but not negative exanfidach experiment is repeated 10

times, and the average performance is reported.
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Object detection, recognition and segmentation are cdadyointly by matching the learned
tree-union model with the test-image trees. Those commbtres whose similarity measure is
larger than a specified threshold are adjudged as detecfect@brhe threshold is varied to plot
a recall-precision curve, as a preferred measure of pedioce with respect to object detection
and segmentation, compared to those used by classifidadieed techniques (e.g., ROC curve,
and equal error rate) [38]. The results presented in thisseare obtained for the similarity-
measure threshold that yields the highEsteasureF'=2-PrecisiorRecall/ (Precision-Recal).

To obtain the ground truth, we manually delineated the ooateitours of cars in Caltech and
UIUC images. Manually annotated target objects (i.e., gdotruth) for the Caltech-101 faces,
motorbikes, airplanes, Weizmann horses and TUD cows arkicpuavailable. LetA, denote the

area of a detected object in the test image, andijetlenote the ground-truth area of an object

AdﬂAg
AdUAg

U denotes union, and denotes intersection. The remaining cases are declaredptrisitives

in the test image. Then, a detected object is said to be falsiiye (FP) if <0.5, where

(TP). Segmentation error is defined only for TP’s i‘i%ﬁdT’jg). Average segmentation error
is defined as the mean of segmentation errors on all TP’s. VEereb that these detection
and segmentation performance criteria appear to agreeowitlown subjective judgement. We
also define measures of recognition performance, evaluatBsperiment 3. Let:, denote the
number of TP detections whose ground-truth category (eerifly visual inspection) is the same
as that identified by our algorithm. Then, precision of regbgn is defined as the ratio of,
and the total number of TP detections. Also, recall of redqommis defined as the ratio of,
and the total number of target objects in the test set. Na&dalitference between the notions of
precision and recall of detection, and precision and rexfattcognition that we use in this paper.
To distinguish between the two sets of measures, in the sageevill use terms precision and
recall to denote measures of detection performance, aruyméon precision and recognition
recall to denote measures of recognition performance.

In Experiments 1-3, we test the following variants of ourraggh. OursO corresponds to our
preliminary work, presented in [48], where region prop=tare equally weighted to compute the
node saliency (i.e£=1), and where the similarity measure characterizing subs@morphism
f between two trees andt' is computed asS9? = > (wayes 2min(ry, ry). In Oursl, instead
of S%9, we use the new similarity measure defined by (3), whitel. In addition to the new

similarity measure, Ours2 also uses the optimal weighte@ibn properties given by (8). Finally,
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we also evaluate Ours2 when the saliency of nadesthe tree-union are not weighted by their
frequenciesp, (end of Sec. V), referred to as Ours2

Regarding the comparison with prior work, there is very tedi past work on segmenting
(i.e., delineating the boundaries of) category instanndgst images. Though the datasets used
in our experiments are very popular benchmarks, at the timmitial submission of this work
no quantitative segmentation results have been reporte@dtiech-101, UIUC, and TUD cow
images. For Weizmann horses, the best segmentation raselfpgesented in [41], [70]. While the
approach of [41] is semi-supervised requiring traininggesto contain only horses, the approach
of [70] requires additional human supervision in terms ohoally segmenting horses in training
images. Thus, except for the segmentation results on Weizrharses, our comparison with
prior work is mostly in terms of detection accuracy. To thislewe consider the semi-supervised
methods of [12], [37], [38], [40], [41], [43], which requirgaining images to be labeled with
respect to the category they contain. Note that our evalnaif detection error is also more
rigorous than that of the referred methods. We consideriggasxtent (segmentation) of objects
in the images, whereas in [12], [37], [43] bounding boxesiatbdetections and true objects are
used, in [38] correct detection is required to lie within dlipse of a certain size centered at the
true object’s centroid, and in [40] correct detection is kearwhen a detected object’s centroid
lies within 25 pixels of the true centroid. We use the methb[B@] without the post-processing
step of pruning the false positives. Therefore, for fair panson, we report two sets of our
results, one obtained using the aforementioned more dengaedaluation criteria, and the other
using the same experimental procedures as those of thesporéing baseline methods.
Experiment 1 — Qualitative Evaluation of Category Models:Fig. 6 illustrates two tree-unions
7 learned in Experiment 1 by Ours2 on two training sBtehich contain four and six positive
examples of Caltech-101 faces and Weizmann horses, rasggcihe figure also shows the
extracted similar subtree® from the Caltech-101 training set. Nodes Df are depicted as
rectangles that contain those regiondhirthat got matched with the corresponding nodeZin
during learning. As can be seen, the structurd aforrectly captures the recursive containment
and spatial layout of regions that comprise the categotamtes appearing in the training set. For

example, in the face tree-union, nodes “left-eye,” “nos@f “right-eye” are found to be children
of the node representing a larger “eyes-and-nose” regibirchnin turn is correctly identified as

a child of the “face” node. Also, since context vector asasted with “left-eye” points toward
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Fig. 6. An example of two tree-unioris (bottom) constructed from two training sétgtop) consisting of four and six positive
images of Caltech-101 faces and Weizmann horses, resggctNegative images are not shown. A subset of correspgndin
regions fromD (middle row for Caltech-101 faces) that define a nod€irare enclosed in the corresponding rectangle. The

structure of7 correctly captures the recursive containment and spatyalut of these regions.

the locations of “nose” and “right eye,” the tree-union ethes that “left-eye” is positioned to
the left from “nose” and “right eye.” Similarly, “nostrilsare found to be above “mouth.” Note
that none of the extracted similar subtree®inf Caltech-101 faces has a node that corresponds
to “face-and-hair,” which is the root of the tree-union. oot is obtained during augmenting
similar subtrees with merger nodes for the purposes of ni@amgany matching. The tree-union
of horses contains two roots one of which represents “hededf@nce.” This root is assigned a
relatively low frequency of occurrence i (¢, = 2/137), as compared to the other tree-union
nodes, which indicates that it may represent an outlier.

Experiments 1 and 2 — Qualitative Evaluation of Detection ad Segmentation:Figs. 7-10
illustrate simultaneous object detection and segmema#is can be seen, all occurrences of
the target categories in the images are detected withouithgpizing the number of category
instances appearing in a specific image, as done in prior (gogk, in [37]). Also, object detection
and segmentation are accurate for relatively small trgirsiets, despite background clutter and
occlusions. Performance is good even in cases when: (1)jleeteedges are jagged and blurred
(e.g., motorbikes in Fig. 8a); (2) the object parts are tl@gions with low intensity contrast
(e.g., airplanes in Fig. 8b); (3) the target objects appeatifierent scales in the test images
(e.g., Caltech cars in Fig. 9a); (4) the category instanoegartially occluded (e.g., UIUC cars
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Fig. 7. Experiment 2 on the Caltech-101 faces: (top row) Sanrpining set consisting of six positive and negative eplas
People appearing in the training set do not have beard. (enidev) Sample test images randomly rotated in the imageeplan

showing people not seen during training. (bottom row) Didacand segmentation using Ours2.

in Fig. 9b); and (5) the target objects are randomly rotatethe image plane (e.g., UIUC cars
in Fig. 9c and Caltech-101 faces in Fig. 7). Category insgarntat are not detected, for the
most part, have low intensity contrasts with the surroumd, thus their corresponding subtrees
in test-image trees do not appear similar to the learned hstdesture. Some partially occluded
Caltech and UIUC cars are not detected, since their matclieshe model have lower similarity
measures than the threshold, determined by the highaeseasure. Also, huge variations in the
appearance of car windows, due to the reflections of surrdaad to the appearance of spurious
regions in varying locations, not consistently presentraining images, which do not become
part of the learned model, and, therefore, are not matchdd thve model (Fig. 9a). Typically,
the aforementioned effects are large enough to penalizedhesponding matched subimage
from being interpreted as a true positive, but localizedugihofor the subimage to be evaluated
as a false positive.

Experiments 1-3 — Quantitative Evaluation: Table | presents the average recall, precision,
and segmentation errors obtained using Ours2 in Experirheior the highestF-measure.
The training set containd/=100 images out of which only\/,=50 are positive. The last two
rows show the recall reported in [40] and [43]. As mentionedobke, these state-of-the-art
methods require training images to be labeled with respettid category they contain, and for

training use 50 images drawn from only positive examplesoAtheir evaluation criteria are less
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TABLE |
AVERAGE RESULTS USINGOURS2 IN EXPERIMENT 1 FOR50 POSITIVE TRAINING EXAMPLES(IN %)
Faces Motorbikes | Airplanes Cars rear | Cars side Horses Cows
Recall 89.3F1.1 91.2+4.3 | 84.5F2.1 84.7£6.7 | 89.2E£1.5 | 78.6E£7.6 | 86.3£2.2
Precision 86.1F£1.5 | 81.2%£4.3 | 89.9£2.5 | 80.3£10.1 | 89.8£2.3 | 8I.5£7.3 | 84.5£1.2
Seg. error 72148 10.2£6.9 12.4£6.3 13.1£2.5 8.313.2 14.1£6.4 | 12.5£3.2
Recall using setup of [43] 98.2£0.6 94.3F1.1 94.1£0.8 99.2+0.6 99.2F0.7 T 96.6E1.2 100£0
Recall in [40] 94 92.4 NA NA 92.8 92.1 NA
Recall in [43] 96.4 95.6 92.6 97.7 NA NA 100

rigorous than ours, since they use bounding boxes or objeetitroid estimates instead of object
segmentation, and report results obtained for equal-eater The top three rows of Table | show
the price we pay for: reducing the degree of supervisiomgisandom negative examples in
the training set, whose total number is the same as posit@mpgles, and conducting a more
demanding evaluation. Since prior work uses a differenegrpental setup, for fair comparison,
we have also run our algorithms using their experimentatgulares — specifically, discarding
negative examples in training, and using the same numbdrsiofng and test images, and the
evaluation criteria for object detection as those used 3). [#he resulting equal-error-rate recall
of Ours2 is reported in the fourth row of Table I. In this ca®ers2 outperforms the approaches
of [40], [43] for almost all categories, except for the catggmotorbikes, with the loss of only
1.3% with respect to [43]. Also, for the purposes of compmarisvith the approach of [41] on
the category Weizmann horses, we have used their setup:s2ivpdraining examples, 200 test
images, and flipping all horses in test and train images te &consistent direction, for which
we have obtained the segmentation error of 4.3%, comparéueis of 7%.

In Experiment 2, we obtained similar results to those in Eixpent 1 (Table I). The corre-

(a) Caltech-101 motorbikes (b) Caltech-101airplanes

Fig. 8. Experiment 1: Detection and segmentation on thee€lall01 images showing motorbikes and airplanes using20urs
The training set of each target category consistd (bfpositive and10 negative examples that are not labeled as positive or

negative.
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(a) Caltech cars rear-view (b) UIUC cars (c) Rotated UIUC cars

Fig. 9. Experiments 1 and 2 : Detection and segmentation erCtitech and UIUC car images using Ours2. The training set
consists ofl0 positive and10 negative examples. Ours2 successfully handles variatiossale (a), partial occlusions (b), and

is invariant to rotation-in-plane (c).

Fig. 10. Experiment 1: Detection and segmentation on the TddWs and Weizmann horses using Ours2. The training set
consists of10 positive and10 negative examples. The small images represent zoomeddilsdéenclosed by the rectangles)
of the larger image. Object segmentation fails on thosecbhgarts (e.g., zoomed-in details) that have low intensigtasts
with the surround, and thus do not form category-charattersubtrees in the segmentation tree which can be matcited w

the category model.

sponding recall, precision and segmentation errors of Ex@ats 1 and 2 differ in less than
one half of standard deviation on all the seven datasets Jiall difference (in part due to
the quantization error accompanying rotation with arbytidigital rotation angles) demonstrates
that our approach is invariant to rotations in the image @lan

Fig. 11 presents recall-precision curves (RPCs) obtairsdaguOurs0, Oursl, and Ours2 on
the Caltech-101 faces and UIUC cars in Experiment 1. As drpgedncrease in the number
of positive training examples improves performance. Therégalso compares the RPC of
Ours2 against those of [12], [37], [38], [40]. For this compan, we have adopted the same
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experimental procedure as described in these methods Hisalc we have used 50 training

images randomly selected only from positive examples, atdation is measured with respect
to an ellipse around the true object. As can be seen, Ouré®syéeslightly better performance

than the competing methods under the same experimentaitioosd For example, increase in
the area under the RPCs of Ours2 vs. that of [40] is 2.3%.

Table Il shows increase in the area under the RPCs of Ourgfeasutnber of training images
becomes larger for the Caltech-101 faces, UIUC cars, anariiéein horses. This increase is
expressed as a percentage of the RPC area obtained for therdnaining set. Interestingly, for
larger training sets we get only modest improvements. Tinggiests that our learning algorithm
saturates after reaching a certain size of the training esgt, (~40 positive examples for the
Caltech-101 faces). Thus, for example, Table Il detailg tharease from 10 to 20 positive
examples enlarges the area under RPC of Ours2 by 2.1% andfar7¥te Caltech-101 faces
and UIUC cars, respectively. The corresponding perforrmaneasures for the same datasets are
only 1% and 0.8% when the number of positive training imageseiases from 20 to 30. When
more than 50 positive examples are used for training (see Fl$. 12), performance of any
of Ours0, Oursl, and Ours2 does not downgrade, which suggest our learning algorithm
does not suffer from overfitting. Similar results are obsdrfor the other datasets. Figs. 11 and
Table Il also demonstrate accuracy gains of Oursl and Ows2@ursO, measured as increase
in the area under RPCs. This increase is expressed as a tageaf the area for Ours0. Thus,
for example, the new similarity measure used in Oursl yiél@8%6 area increase over OursO for
the UIUC cars. Also, we get 3.6% area increase of Ours2 ovesXOfor the Caltech-101 faces.
This result demonstrates the value of using perceptuallyvated weights of region properties
obtained by the algorithm discussed in Sec. V. In additi@abld 1l shows the gain in detection
performance of Ours2 versus Ours@here outlier nodes are not accounted for in the tree-union.
For example, for UIUC cars this gain is reflected4in% increase in the area under RPC.

Fig. 12 and Table Il show recognition performance of Ourm2aluated in Experiment 3.
Recognition recall and recognition precision are averapezt the seven target categories. As
can be seen, small increase in negative examplesdoes not downgrade performance. As
M,, becomes larger, it so happens that in our training set abjselionging to other categories
start appearing more frequently. Therefore, by our basfnitien, these objects become the

target category. As a result, the algorithm now correctbrrie the new category instances, as
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Caltech-101: Faces L Caltech-101: Faces UIUC Cars: Number of Positive Examples UIUC Sideview Cars
1 1 1
Sos 0.95 0.95
0.9 g 0.9
- 0.9
3 so08 3 3 0.85
0.8 0.85] 0.8] -
& . -v-0urs0, 10 % 07 g & & i —Leibe et al.
—-QOursl, 10| = - 0.8 0.75 Fergus et al.
0.7 ',’ Oursl, 20 2 0.7 —Agarwal et al.
‘ —oOurs2, 10|| « 0.6 --Recall 0.75] 0.65 —Shotton et al.
06 -=Qurs2, 20 —Precision 07 4 0 =—Ours2
6.1 02 0.3 0.4 05 955610 20 30 40 50 /00,05 0.1 015 02 0.25 0.3 0.35 ® 01 02 03 04 05
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(a) b (c) (d)
Fig. 11. Recall-precision curves: (a) Regu)lts on Calte@h-faces obtained using Ours0, Oursl and Ours2 for 10 and 20

positive training images in Experiment 1. (b) Performant®ars2 on Caltech-101 faces for the highésmeasure improves
as the number of positive training examples increases. RERof Ours2 on UIUC cars as the number of positive training
examples increases. (d) Comparison of Ours2 with [12],,[38], [40] on UIUC cars (multiscale), using the setup of tikd

work: 50 positive training images, and detection is meabuwvith respect to an ellipse around the true object.

Recognition Performance of Ours2 over 7 Datasets TABLE Il
0.95
0.9
INCREASE IN THE AREA UNDERRPCIN EXPERIMENT1
085
S
§ 0.8 Algorithm Ourslvs. [ Ours2vs. | Ours2vs. ours2 ours2
a 0.75 Ours0 Ours0 OursZ~
8 o7 AN # positive imgs 10 10 10 20vs.10 | 30vs.10
[ = .
& ool Mp=20 My, Rec. Recal "y UIUC cars 7.3% 9.2% 1.4% 2.1% 3.1%
B gl ni0 My Rec Recal “b Faces 4.9% 8.5% 3.4% 17% | 2.5%
| |-e-M,=10. M1, Rec. Precision Horses 6.1% 9.5% 4.1% 2.8% | 2.9%
0.55 .p M =10, M 1, Rec. Precision
n P
10 80 TABLE 11l

20 30 40 50 60 70
Total Number of Training Images Nr|1+Mp

_ _ N o RECOG. RECALL AND PRECISION OFOURS2 IN EXPERIMENT 3
Fig. 12. Experiment 3: Recognition recall and precision of

. . Mp=20 Mp,=30

Ours2 for the highesf’-measure of detection, averaged over My =10 M, =10
) Recall Precision | Recall Precision
the seven target categoried/, and M, are the numbers Faces 873% | B812% | 882% | 845%

Motorbikes | 87.4% 78.9% 88.6% 77.8%
Airplanes 79.4% 79.9% 81.5% 88.5 %

of positive and negative training examples, respectivéig

consider two cases: (1)/,=10 is fixed, while M,, increases, Carsrear | 827% | 738% | 832% | 79.8%
Cars side 86.3% 79.2% 87.5% 88.1%

and (2) M,,=10 is fixed, while M, increases. Horses | 77.2% | 759% | 79.0% | 802%
Cows 83.5% 78.2% 84.1% 82.2%

expected. Thus, with increase 6f,,, the training set becomes inappropriate. Increasing the

number of positive training examples yields higher rectignirecall and precision.

VIlI. CONCLUSION

In this paper, we have formulated a new problem, that of cetept unsupervised extraction
and learning of a visual category frequently occurring ini@eg arbitrary image set, and
presented its solution. The visual category is defined ast afssubimages characterized by
similar geometric, photometric, and topological propstiUnsupervised means that the target

category is not defined by the user, and whether and wherenatgnices of the category appear
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in a specific image is not known. To discover category occowes in the unlabeled image set, we
have proposed to use a many-to-many matching algorithnfitidg matching subimages within
every pair of images. We have defined a new similarity meabateeen matching subimages
which is recursively computed in terms of differences inmgetric, photometric, and topological
properties of subregions embedded within the subimages. dimilarity measure fuses the
information of similarities of the embedded subimages, nehthe similarities are weighted
with respect to their relative significance to recognitidve have presented an algorithm for
estimating these weights, without using any supervisior. Mdve also proposed to compute
a union of all matching subimages in the image set, integprets category instances, and
thus obtain the category model. The category model regisr(partial) views of category
occurrences in the image set, yielding a representatioh@fcomplete (unoccluded) object.
Empirical validation on seven benchmark datasets, whidsent challenges such as object
articulation, occlusion, and significant background eyttdemonstrates high recall and precision
of category detection and recognition, as well as high amyuiof segmentation of category
occurrences, in completely unsupervised settings. In lyealpervised settings, using the same
experimental procedures as those presented in prior wankapproach outperforms existing
baseline methods in object detection and segmentationmeosalall categories tested, with one
exception where our performance is slightly inferior witlstandard deviation. Our qualitative
empirical evaluation demonstrates that the learned categodel correctly captures the recursive

containment and spatial layout of regions comprising thegmy instances in the image set.

APPENDIX

DERIVATION OF THE OPTIMAL WEIGHTS OFREGION PROPERTIES

In this section we derive the optimal weights of region prtips £ as a solution of the
optimization problem stated in (8). Recall that,. is a function of region properties of those
node pairqu, v’) that belong to the set of similar regiofis as explained in Sec. V. Specifically,
we haven,, = 3(tu + ¥u — 3|thy — u|). Letn £ 3 e Muw- Then,€ can be found by
solving the following problem:

mgaxgn, st.|élP=1,€>0. 9)
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The Lagrangian of (9) reads: = —¢™n + A(||€]1*—1) + >, ¢;(—=&), whereX and (>0 are the

Lagrangian multipliers. Taking the derivative bfwith respect tcg€, and setting it to zero gives

8L/8£:—77+2)\£—C:0:>§:772—t\c. (10)

To derive a closed-form solution of (9), we make the weak @mgdion that there exists one
region propertyi for which the corresponding element of n is positive. This assumption is
very weak, since from the definition ef, the converse (i.enp<0) would mean that there are on
average more node pairs th whose differences of region properties are larger tham thens.
This in turn is very unlikely, because nodes considered $tingtingé belong toG, which is

a large set of similar regions with vergmall differences in their properties.

By making use of the above assumption, we prove M&l. Suppose the converse, i.8<0.
Since there existg; >0, thenn;+{;>0. It follows from (10) that{;<0, which contradicts the
constraint¢>0. From the Karush-Kuhn-Tucker condition [71], namély, ¢;£;=0, it follows:

1) If =0 = (=0 = &=0;

2) If ;<0 = (>0 = &=0;

3) f >0 = 7n,4+¢>0 = >0 = (=0 = gi:;—;\.
It immediately follows that the optimaj = % where(z), = max(0, z).
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