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Abstract

Suppose a set of arbitrary (unlabeled) images contains frequent occurrences of 2D objects from an

unknown category. This paper is aimed at simultaneously solving the following related problems: (1)

unsupervised identification of photometric, geometric, and topological properties of multiscale regions

comprising instances of the 2D category; (2) learning a region-based structural model of the category in

terms of these properties; and (3) detection, recognition and segmentation of objects from the category

in new images. To this end, each image is represented by a treethat captures a multiscale image

segmentation. The trees are matched to extract the maximally matching subtrees across the set, which

are taken as instances of the target category. The extractedsubtrees are then fused into a tree-union

that represents the canonical category model. Detection, recognition, and segmentation of objects from

the learned category are achieved simultaneously by findingmatches of the category model with the

segmentation tree of a new image. Experimental validation on benchmark datasets demonstrates the

robustness and high accuracy of the learned category models, when only a few training examples are

used for learning without any human supervision.

I. INTRODUCTION

Suppose we are given a set of arbitrary images which contain frequent occurrences of 2D

objects belonging to an unknown visual category, defined here as a collection of subimages that

share similar geometric and photometric properties, and occur in similar spatial configurations.

Whether, and where, any objects from the category occur in a specific image is not known.

We are interested in extracting instances of the category from the image set, and in obtaining

a compact model of the extracted 2D objects. A model derived from such training can then be

used to determine whether a new test image contains objects from the learned category, and

when it does, to segment all instances of the category.

We define a category model in terms of the structure of image regions (or segments) comprising

the 2D category instances. Specifically, the category modelwe use captures the canonical
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properties of regions: (i) geometric properties, such as area and shape; (ii) photometric properties,

such as gray-level contrast with the surround; and (iii) topological properties, such as the layout

and recursive embedding of segments. Thus, two critical ideas lie at the foundation of our

approach. First, we use regions as features for deriving thecategory model, since they are rich

descriptors, usually stable to small illumination and viewpoint changes, robust to common (e.g.,

additive) noise, facilitate simultaneous object detection and segmentation, and they naturally

capture the recursive definitions of object parts. Second, we exploit the ubiquitous structural

properties of objects – specifically, the spatial layout andrecursive containment of their parts.

This leads to a representation of category instances consisting of a finitely deep recursion of

regions. The depth is finite because the region size is upper bounded by the object size that

can occur in a given size image, and lower bounded by the pixelsize. The resulting finite-size

hierarchy model facilitates learning of objects as a whole by learning category-specific parts that

exhibit smaller intra-category variations compared to whole objects.

Our approach consists of the following major steps. (1) Segment the images to identify all

homogeneous-intensity regions at all degrees of homogeneity present. (2) Match the training

images to identify frequently occurring subimages that have similar geometric, photometric and

topological properties. Interpret the maximally matching, recurring subimages as evidence and

instances of some category. (3) From these category instances, obtain a hierarchical model of

region properties defining the category. (4) Use the category model to detect, recognize, and

segment all instances of the category in a new unseen image, by delineating all defining regions

of each instance.

As our literature review in the next section indicates, mostprior work requires human super-

vision, to provide a label of the object category that the training images contain. To the best

of our knowledge, this paper presents the first attempt at completely unsupervised learning of

an unknown visual category that frequently occurs in an arbitrary (unlabeled) image set. The

need for human input to specify a category is eliminated by defining a category as a set of

subimages sharing similar geometric, photometric and topological properties of their constituent

regions. As we demonstrate in the sequel, this definition is adequate for addressing a wide range

of real-world, rigid and articulated, object categories, including faces, cars, horses, cows, etc.
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A. Relationship to Prior Work

In general, object recognition approaches consist of four major stages: (i) feature extraction,

(ii) object representation, (iii) training, and (iv) recognition. This section reviews prior work and

points out the differences with our approach with regard to each of these stages. Other related

work will be discussed in the subsequent sections.

The first stage – feature extraction – uses image regions, interest points, curve fragments,

image-filter responses, or a combination of these as image features. Since our focus is on

region features obtained via low-level segmentation, we will omit here a review of the work

that uses other types of features, for brevity. Region-based feature extraction has been used

for object representation for a long time [1]–[9]. Regions are higher-dimensional features, and

thus, in general, richer descriptors, more discriminative, and more noise-tolerant than interest

points and curve fragments. Regions offer many advantages over point and edge features for

the same problems. For example, region boundaries coincidewith the boundaries of objects and

their subparts, allowing for simultaneous object detection and segmentation. Also, regions make

various constraints, frequently used in object recognition, such as those dealing with contiguity,

smoothness, containment and adjacency, implicit and easier to incorporate than other types of

lower-dimensional features (e.g., keypoints).

For the second stage – object representation – most approaches partition extracted features into

clusters, called “parts.” They represent the objects as either planar or hierarchical graphs, whose

nodes usually encode intrinsic appearance properties of these “parts,” and whose edges capture

the spatial relationships among the “parts.” For example, the pictorial structures [10], [11] and

constellation models [12] are planar graphs with a user-specified number of “parts,” configured in

a pre-specified model structure. Hierarchical models are typically derived by hierarchical cluster-

ing of features [13]–[28]. This hierarchical clustering can be performed with respect to a statistical

dependence that exists among subsets of features, or simplythe spatial containment relationships

between a large feature cluster (e.g., large region) and itsconstituent subclusters (e.g., embedded

subregions). These two bases of clustering lead to ascendant-descendant connections between

nodes in a hierarchical model. In some models, nodes may be shared by multiple parent nodes

(e.g., [14], [21]–[23]). The model structure is typically controlled by a pre-specified hierarchy

depth or branching factor, or by minimizing model complexity via the minimum description
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length principle. In contrast, our hierarchical model allows a priori unknown hierarchy depth,

and an arbitrary number of nodes forming arbitrary spatial configurations, all of which are learned

from training images.

Our goal to derive the canonical model of a visual category from a given set of 2D examples

has been pursued by many researchers. Early work is characterized by restricted problem domains

and heuristic algorithms that make use of the domain knowledge (e.g., example images show only

one object from a given class on a uniform background withoutreal-world problems, such as

occlusion, and illumination and viewpoint changes). For example, the seminal work of Winston

[29] considers addition and subtraction of features from anevolving model as successive positive

and negative exemplars are presented, each designed to add precisely one relevant feature to the

model. In [30], a hierarchical object shape representationis learned from exemplars, where a

supervised decomposition of the curvature primal sketch ofan example into subparts is followed

by augmenting the hierarchical model with these subparts sothat the matching subparts are

consolidated into a single instance in the model. Another approach to automatic construction of

object shape models recursively merges pairs of primitive curve elements that satisfy a set of

user-specified generalization criteria [31]. In [32], a hierarchical category model is incrementally

refined through matching the segmentation trees of a given set of images with the model, where

matching is done top-down, in a greedy manner, only between regions at the same tree level, such

that a bad match between two regions penalizes attempts to match their respective descendants.

In [33], a tree model of an object shown in a given input image is learned by matching the input

image to a sequence of templates provided by the user. There have also been efforts to generate

a prototypical graph from a set of examples represented as graphs. For example, a heuristic,

genetic search algorithm is proposed in [34] to learn a median graph from a given set of graphs.

The related problem of graph clustering using a spectral embedding of graphs is explored in [35].

It is important to note that these graph-theoretic approaches do not accommodate many-to-many

node correspondences, as required when dealing with real-world exemplars characterized by large

structural variations. These problems have been recently addressed by a number of approaches.

For example, in [8], an object shape model, which representsa planar region-adjacency graph,

is learned by searching for plausible region groupings. Also, in [36], a hierarchical shape model

is learned by many-to-many matching of graphs representingimage blobs and their proximity

relations. Our approach differs from prior work in that we perform many-to-many matching
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among example segmentation trees and fuse the matches to learn their tree-union as the canonical

model of a visual category. As we will demonstrate in this paper, these attributes advance the

state of the art, e.g., in terms of handling more challengingreal-world images containing partial

occlusion, clutter, and common variations in imaging conditions.

With respect to training, in the third stage, different approaches involve different degrees of

supervision in learning the aforementioned object representations. Most early work requires that

training images be diligently selected to ensure that they contain a single occurrence of the object

class of interest preselected by the user, where each occurrence is manually segmented from the

rest of the image. Recently, a number of semi-supervised approaches have been proposed [12],

[37]–[43], where learning broader object classes, called categories, in more challenging images

with clutter and occlusion is addressed, and where manual segmentation of object examples is

not required. However, these approaches still involve a significant amount of human labor to label

training images with respect to a pre-specified category they contain. Also, a careful preparation

of images containing a “background” category is required. This is because “background” is

treated as an additional object category, although it is notdefined in any intrinsic way, but as the

absence of all prespecified object categories. Thus, selection of “background” training images

becomes a difficult problem, which is solved by the user choosing a training dataset that is

sufficiently distinctive from the images of target object categories. This degree of supervision

is sometimes reduced, so that each training image may remainunlabeled, by using alternate

constraints, e.g., specifying the total number of user-defined categories present in the training

set and the number of their occurrences in each training image as input parameters [44], [45]. In

contrast, we attempt learning an unknown visual category ina completely unsupervised manner.

The absence of supervision here means that it is not known whether and where any objects

from the category appear in a specific image from the set. Thus, some training images may

not contain any example of the frequently occurring (target) category, while others may contain

multiple instances of multiple categories. Also, unlike some approaches, aimed at learning a

discriminant object classification function (e.g., [38]),we do not require the training set to be

large. In addition, we do not need to model the background as acategory by itself, and, hence,

do not require a careful preparation of the background training dataset.

Finally, object recognition, in stage four, is typically evaluated only through image classifica-

tion in terms of whether the learned object class/category is present or absent [12], [27], [38],

December 25, 2007 DRAFT



6

[42]–[44]. There are also approaches that attempt object localization by placing a bounding box

around a detected object, or by thresholding a probabilistic map that a pixel belongs to the object

given the detected features [37], [40], [41]. These estimates are imprecise (bounding box) or

non-deterministic (probability map), to begin with, and are further worsened by the fact that

both locations of detected features and thresholds for object localization are image dependent.

To overcome these issues, some methods hypothesize the total number of target objects present

in the image [37]. Few approaches [45], like ours, delineatethe boundaries of all instances

of the learned categories appearing in the image, i.e., simultaneously conduct object detection,

recognition and segmentation.

B. Overview of Our Approach

In this section, we present an overview of the main steps of our approach and point out

their motivation and contributions. (1) We begin with the detection of image regions which are

the basic features of our models. An image is represented by asegmentation tree [46]–[48]

which captures the low-level, spatial and photometric, image structure in a hierarchical manner.

Nodes at upper levels correspond to larger, more salient segments, while their children nodes

capture embedded, less salient details (e.g., segments with smaller gray-level contrasts with

the surround). Each node is associated with the geometric and photometric properties of the

corresponding segment, while the tree structure captures the mutual containment (topological)

properties of segments. Therefore, the segmentation tree serves as a rich description of the image.

(2) Given an image set that contains frequent occurrences ofan unknown category, we expect

that subimages with category specific values of the above properties will be abundant in the

set. Each such subimage will correspond to one or more subtrees in the segmentation tree, thus

leading to frequent occurrences of subtrees with similar properties. The category subtrees can be

detected by a tree matching algorithm that searches for the common subtrees of the given image

trees having a large similarity measure. This similarity measure is defined in terms of the tree

structure, as well as the geometric and photometric properties associated with tree nodes. The

result is a set of subtrees from each image that have cross-image similarity measures above a

chosen level. The tree matching algorithm identifies exactly which region properties are shared

by the matching subtrees. These subtrees are interpreted asinstances of the target category

whose intercategory variability depends on the chosen level of the similarity measure. (3) The
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extracted subtrees may represent complete object occurrences or their parts. Extraction of only

object parts occurs when they remain unaltered, while the region properties of other parts, and

hence of entire objects, are changed due to, e.g., partial occlusions, or illumination, viewpoint,

or scale variations across the images. Therefore, the extracted similar subtrees provide for many

observations of entire objects or their parts in the category, thus allowing robust estimation of

the entire, characteristic region structure of the category. All of these subtrees can be fused (i.e.,

partially matched and registered) within a canonical graph, which we call the tree-union. Hence,

the tree-union subsumes all extracted category instances,and thus represents the learned category

model. The tree-union specifies: how segmented regions are recursively laid out to comprise an

object from the category, and what their geometric and photometric properties are. (4) When a

new image is encountered, any matches between its segmentation tree and the category model

will denote the presence of the category, and simultaneously specify the exact boundaries of the

recognized objects and their constituent image regions. The block-diagram of our approach is

given in Fig. 1.

As a result of these basic steps, the performance of our approach has desirable invariance

characteristics with respect to: (i) Translation, in-plane Rotation and Object-Articulation (changes

in relative orientations of object parts): because the segmentation tree itself is invariant to these

changes; (ii) Scale: because subtree matching is based on relative properties of nodes, not absolute

values; (iii) Occlusion in the training set: because subtrees are registered and stitched together

within the tree-union encoding the entire (unoccluded) category structure; (iv) Occlusion in the

test set: because subtrees corresponding to visible objectparts can still be matched with the

model; (v) Small Appearance Changes (e.g. due to noise): because changed regions may still

be the best matches; (vi) Region Shape Deformations (e.g., due to minor depth rotations of

objects): because changes in geometric/topological properties of regions (e.g., splits/mergers)

are accounted for during matching; and (vii) Clutter: because clutter regions, being non-category

subimages, are not repetitive and therefore frequent.

The preliminary version of our approach is presented in [48]. This paper contributes the

following major extensions to [48]: (i) additional region properties are used; (ii) similarity

between two trees is estimated using a new measure; (iii) while in [48] all region properties are

equally weighted for recognition, we here present an algorithm for finding the optimal weights

of region properties; and (iv) a more extensive experimental evaluation of the proposed approach
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Fig. 1. Block-diagram of our approach: (a) A set of input images contains frequent occurrences of a car category. A specific

image in the set may not contain cars, or may show more than onecar. Also, cars may appear at different scales, and may be

partially occluded. (b) Pairwise image matching; black regions indicate maximally matching subimages. (c) Extractedsubtrees

representing maximally matching subimages shown in (b). (d) Tree-union represents a model of the car category learned from

the extracted similar subtrees shown in (c). The relative significance to recognition of model nodes is marked with different

shades of gray. (e) Simultaneous object detection, recognition, and segmentation in a new image.

addressing both rigid and non-rigid object categories is presented.

This paper is organized as follows. The segmentation tree, and region properties selected

for modeling a category are defined in Sec. II. Sec. III discusses the tree matching algorithm.

Learning the category model is presented in Sec. IV. Optimalweighting of region properties

used to learn the model is discussed in Sec. V. Experimental validation is presented in Sec. VI.

II. SEGMENTATION TREES AND REGION PROPERTIES FORCATEGORY MODELING

An input image is represented by a segmentation tree, obtained using a multiscale segmentation

algorithm, presented in [46], [47], [49]. The segmentationalgorithm partitions an image into

homogeneous regions of a priori unknown shape, size, gray-level contrast, and topological

context. Here, a region is considered to be homogeneous if variations in intensity within the

region are smaller than intensity change across its boundary, regardless of its absolute degree of

variability. Consequently, image segmentation is performed at a range of homogeneity values, i.e.,

intensity contrasts. As the intensity-contrast sensitivity parameter increases, regions with smaller

contrasts than the current parameter value strictly merge.A sweep of the parameter values thus

results in the extraction of all the segments present in the image. The segmentation tree is

derived by organizing the segmented regions into a tree structure, where the root represents

the whole image, nodes closer to the root represent large regions, while their children nodes

capture smaller embedded details, as depicted in Fig. 2. Thenumber of nodes (typically 50–
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Fig. 2. Segmentation trees of sample Caltech-101 images [42]: (left) segmentations obtained for two sample intensity contrast

values from the exhaustive range [1,255]; (right) sample nodes of the corresponding segmentation tree, where the root represents

the whole image, nodes closer to the root represent large regions, while their children nodes capture smaller embedded details.

The number of nodes (typically 50–100), branching factor (typically 0–10), and the number of levels (typically 7–10) indifferent

parts of the segmentation tree are image dependent, and automatically determined.

100), branching factor (typically 0–10), and the number of levels (typically 7–10) in different

parts of the tree are image dependent.

Each nodev is characterized by a vector of properties of the corresponding region, denoted as

ψv. We use intrinsic photometric and geometric properties of the region, as well as relative

inter-region properties describing the spatial layout of the region and its neighbors. In this

way, ψv encodes the spatial layout of regions, while the tree structure itself captures their

recursive containment. The properties are defined to allow scale and rotation-in-plane recognition

invariance. In particular, elements ofψv are defined relative to the corresponding properties of

v’s parent-nodeu, and thus ultimately relative to the entire image.

Let w, v, and u denote regions forming a child-parent-grandparent triple. Then, the prop-

erties of each regionv we use are as follows: (1) normalized gray-level contrastgv, defined

as a function of the mean region intensityG, gv,
|Gu−Gv|
|Gv−Gw| ; (2) normalized areaav,Av/Au,

where Av and Au are the areas ofv and u; (3) area dispersionADv of v over its children

w∈C(v), ADv,
1

|C(v)|
∑

w∈C(v)(aw−aC(v))
2, whereaC(v) is the mean of the normalized areas of

v’s children; (4) the first central momentµ11
v ; (5) squared perimeter over area PAv,

perimeter(v)2

Av
;

(6) angleγv between the principal axes ofv andu; the principal axis of a region is estimated

as the eigenvector of matrix 1
µ00

[

µ20 µ11

µ11 µ02

]

associated with the larger eigenvalue, where theµ’s

are the standard central moments; (7) normalized displacement
−→
∆v,

1√
Au

−→
d v, where|−→d v| is the
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Fig. 3. Properties of a region associated with the corresponding node in the segmentation

tree: Regionu (marked red) contains a number of embedded regionsv, v1, v2, . . . (marked

blue). The principal axes ofu andv subtend angleγv, the displacement vectordv connects

the centroids ofu and v, while the context vectorΦv records the general direction in

which the siblingsv1, v2, . . . of v are spatially distributed.

Fig. 3.

distance between the centroids ofu andv, and∡
−→
d v is measured relative to the principle axis

of parent nodeu, as illustrated in Fig. 3;
√

Au represents an estimate of the diameter of parent

region u; and (8) context vector
−→
Φ v,

∑

s∈S(v)
As

|−→d vs|3
−→
d vs, whereS(v) is the set ofv’s sibling

regionss, and |−→d vw| is the distance between the centroids ofv and s, and∡
−→
d vs is measured

relative to the principle axis of their parent nodeu; as illustrated in Fig. 3, the context vector

records the general directionv sees its sibling regions and disallows matching of scrambled

layouts of regions at a specific tree level. In summary, the vector of region properties associated

with nodev is ψv=[gv, av, ADv, µ
11
v , PAv, γv,

−→
∆v,

−→
Φ v]

T. Each element ofψv is normalized over

all multiscale regions of all training images to take a valuein the interval[0, 1]. This list of

useful region properties, can be easily modified to reflect the needs of different applications.

III. EXTRACTING CATEGORY INSTANCES

To extract recurring similar subimages from the given imageset T={t1, t2, . . .tM}, all pairs

of segmentation trees(t, t′)∈T×T are matched to identify those pairs that have a similarity

measure above a chosen threshold (see Fig. 1). Prior work mostly uses only the intrinsic geometry

and appearance of regions for their matching. We extend the matching criteria to include the

information about the mutual containment of regions, whichis expected to improve the robustness

of cross-image region matching. Thus, given two segmentation trees, our matching algorithm

pairs those nodes whose associated region properties match, and recursively the same holds

for their descendant nodes. As another means of making extraction of category instances more

robust, our matching algorithm explicitly accounts for thefact that certain image regions are

less likely to be preserved across the images than others. For example, low contrast regions may

split or merge with bordering regions due to slight changes in the directions of lighting, viewing

and object orientation. This in turn changes the segmentation tree structure, and thus requires
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matching to explicitly account for these uncertainties. Toaccomplish these objectives, we resort

to the well-known framework of edit-distance graph matching [50]–[55].

While there are many diverse techniques for matching image graph representations used

in computer vision, we briefly review only the two most commonapproaches to focus our

presentation. The structural properties of graphs can be captured by the eigenvectors of the

associated adjacency matrix [26], [35], [56], [57]. However, the spectral approaches to graph

matching encounter the major difficulty that structurally different graphs may have the same

spectrum. Another group of approaches involves transforming the two graphs by applying basic

edit operations on nodes and edges – such as insertion, deletion, merging, splitting and relabeling

– until the transformed graphs become isomorphic. The goal of these methods is to minimize

the cost of modifications needed in the two graphs to match them, referred to as edit-distance.

One great advantage of edit-distance matching over the spectral approaches is that edits can

be naturally interpreted in the image domain, allowing one to appropriately define edit costs,

while in general this is not the case for algebraic manipulations of spectral graph representations.

However, traditionally, the edit-distance methods are based on the assumption that there exist

only one-to-one node correspondences in matching [50]–[54], which is usually too restrictive

for our case, as stated above. This problem can be addressed by considering many-to-many

matching. For example, in [58], a subset of graph nodes are merged into a single node (merger)

when the difference between their attributes is smaller than a chosen threshold, after which

this combined node is matched to a node or merger in the other graph, thereby conducting

many-to-many matching. However, since the magnitude of node attribute disparities is a priori

unknown, this method is very sensitive to threshold selection. In [55], many-to-many matching is

considered within the edit-distance framework. This approach, however, has a large bias toward

favoring one-to-one node correspondences over one-to-many, since the heuristically defined cost

of matching a single node with many is higher than the cost of matching two single nodes.

Spectral-based approaches also present promising solutions to many-to-many matching [59],

[60]; however, it is not clear how to use these methods to explicitly account for splits and

mergers betweenbordering regions in our segmentation trees.

In this paper, we use our edit-distance matching algorithm presented in [48], [61]. For com-

pleteness, below, we briefly review its main characteristics, and point out the major improvements

made here. Our algorithm extends Torsello and Hancock’s approach [54] by searching for
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correspondences between individual regions, as well as between groups of contiguous regions

in two given segmentation trees. This amounts to considering one-to-one, one-to-many, and

many-to-many region correspondences, all at the same time,unlike in [54] where only one-

to-one matching is allowed. Specifically, the segmentationtrees are first modified by inserting

and appropriately connecting new nodes (i.e., regions), representing mergers, as illustrated in

Fig. 4. Each merger is the union of a few neighboring sibling nodes under a parent node. It

instantiates the hypothesis that the children are formed due to an incorrect split, caused by, e.g.,

lighting changes etc., and therefore they should be restored together as a single node. To cover all

possibilities under a given node, mergers are made corresponding to all members of the power set

of the node’s children sharing the same boundary. Mergers donot eliminate their source nodes in

the tree. Instead, each merger is inserted as a parent of the merged nodes, which converts the trees

into directed acyclic graphs (DAGs), as depicted in Fig. 4. Second, for each DAG thus obtained,

we construct its transitive closure by adding new edges between all ancestor-descendant node

pairs in the DAG (Fig. 4). The reason for constructing transitive closures is that their matching is

more flexible than matching DAGs and trees, allowing matchesof all descendants, instead of only

children, under a visited node. Thus, we will formulate segmentation-tree matching as a search

for the maximum subtree isomorphism between the transitiveclosures of segmentation DAGs.

This search will be constrained, because the resulting maximum similarity common subtree must

respect ascendant-descendant relationships of the initial trees. These consistency constraints will

disallow many node-pairs from being candidates for matching, and thus improve the overall

matching efficiency. Below, we present our matching algorithm.

A. Formulation of the Matching Algorithm

Given two transitive closures of the segmentation DAGs, obtained from the segmentation

trees as explained above, our edit-distance matching algorithm identifies two legal, minimum-

cost sequences of basic edit-operations applied to the two DAGs,1 respectively, which produce

their common subtrees, and preserve the original node adjacency and ascendant-descendant

relationships. The edit-operations considered here consist of only node removals and matches.

A candidate nodev when paired with another nodev′, is either considered matchable, with an

1Note that the transitive closure of a DAG is also a DAG.
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Fig. 4. Matching segmentation trees: Input tree is first converted into a DAG by inserting mergers (only a few sample mergers are

marked red for clarity), which represent the union of a few neighboring sibling nodes under a parent node. Mergers correspond

to all members of the power set of children sharing the same boundary under each node. Then, the transitive closure of the

DAG is constructed by adding new edges between all ancestor-descendant node pairs in the DAG (only a few sample edges are

marked red for clarity). Matching segmentation trees amounts to a search for the maximum subtree isomorphism between the

two transitive closures of the DAGs.

edit-costmvv′ , or considered unmatchable and “removed,” with a cost proportional to its salience

rv. The total cost associated with the sequence of edit operations represents the edit-distance,

i.e., a measure of similarity between the two DAGs. It can be shown that finding the maximum

similarity edit-sequence between two DAGs, consisting of only node removals and matches, is

equivalent to finding the maximum similarity subtree isomorphism [53], [54]. Therefore, the goal

of our matching algorithm can also be interpreted as finding maximum subtree isomorphism. To

specify the matching algorithm, we use the following definitions.

Definition 1. (Topological consistency) Lett andt′ be two transitive closures of the segmentation

DAGs. Node pair(v, v′), wherev∈t andv′∈t′, is said to be topologically consistent with(u, u′),

where u∈t and u′∈t′, if the topological relation betweenv and u (i.e., presence/absence of

ascendant-descendant relationship) is the same as the topological relation betweenv′ and u′.

Topologically consistent node pairs are denoted as(v, v′)∼(u, u′),

Definition 2. (Consistent bijection) Letf : U→U ′ be a bijection between two subsets of nodes

U andU ′ in two DAGs. f is consistent if∀(v, u)∈U , (v, u)∼(f(v), f(u)).

Definition 3. (Matching algorithm) Given two transitive closures of thesegmentation DAGs
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t=(V, E, Ψ) and t′=(V ′, E ′, Ψ′), whereV and E are the sets of nodes and edges, andΨ is a

function that assigns a vector of region propertiesψv to each nodev ∈ V , the matching algorithm

finds a consistent bijection (i.e., subtree isomorphism)f :U→U ′, whereU⊆V andU ′⊆V ′, which

maximizes their similarity measureStt′ defined as

Stt′ , max
f⊂Vt×Vt′

∑

(v,v′)∈f

[min(rv, rv′) − mvv′ ] . (1)

From (1), the algorithm seeks consistent matches(v, u)∼(f(v), f(u)) among nodesv ∈ V and

v′ ∈ V ′ whose salienciesrv andrv′ are high, but costmvv′ is low. Therefore, by selecting highly

salient nodes in the matching result, the algorithm minimizes the total penalty for removing the

other nodes from the two graphs while finding their common subgraph. The literature reports

different strategies for defining the edit-costsrv andmvv′ , ranging from heuristic to information-

theoretic definitions [51], [52], [54]. In this paper, the node saliencyrv and the cost of node

matchingmvv′ are defined in terms of region propertiesψ as

rv , ξTψv, and mvv′ , |rv − rv′ | = max(rv, rv′) − min(rv, rv′) , (2)

where ξ is a vector of coefficients weighting the relative significance to recognition of the

corresponding region properties inψv, and whoseL2-norm is ‖ξ‖=1, andξ≥0. In [48], [61],

region properties are equally weighted, i.e.,ξ = 1/|ψv|, where |ψv| is the number of region

properties used. In this paper, we examine their relative contributions to recognition, thus obtain-

ing an optimal weighting of region properties, as discussedin Sec. V. Note thatrv, mvv′ ∈ [0, 1].

From (1) and (2) we have

Stt′ = max
f⊂Vt×Vt′

∑

(v,v′)∈f [2 min(rv, rv′) − max(rv, rv′) + 1] , (3)

where 1 is added to make the expression in the brackets non-negative, which does not change the

solutionf . Thus, we formulate matching as an optimization problem given by (3). The result of

matchingt andt′ is the set of nodes paired by a consistentf and comprising the two maximum

similarity common subtrees oft and t′, respectively.

In our preliminary work [48], we used a different definition of similarity measureSold
tt′ =

maxf⊂Vt×Vt′

∑

(v,v′)∈f [rv + rv′ − |rv − rv′ |] = maxf⊂Vt×Vt′

∑

(v,v′)∈f 2 min(rv, rv′). Hence, to max-

imize Sold
tt′ , the matching algorithm pairs only those nodes whose saliencies are large, but does

not explicitly verify the discrepancy between their associated region properties. As demonstrated

in Sec. VI, the new definition of similarity measure given by (3) improves performance.
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The optimization problem of (3) can be solved recursively, bottom-up, starting from leaf nodes.

Suppose that at any stage during matching, for all descendants v of u in t, and for all descendants

v′ of u′ in t′ we have previously computedSvv′ . Then, our goal is to find the optimal set of

consistent descendant pairs(v, v′)∈Cuu′ , while maximizingSuu′. From (3), we have

Suu′ = 2 min(ru, ru′) − max(ru, ru′) + 1 +
∑

(v,v′)∈Cuu′
Svv′ . (4)

As shown in [52], [54], the optimalCuu′ can be found as the maximum weight clique of the

association graphAuu′=(VA , EA ,S) characterizing the directed acyclic subgraphs rooted atu

andu′. In particular,VA is the set of all possible matches{(v, v′)}, where thev andv′ are all

descendants underneathu in t and u′ in t′, respectively.S is a function that assigns a weight

equal to the similarity measureSvv′ to every node(v, v′). EA is the set of undirected edges that

connect only consistent nodes(v, v′)∈VA . Thus, imposing the structural constraints in finding

a consistent subtree isomorphism is done in a simple manner during the construction of the

association graphAuu′. To solve the maximum weight clique problem, we use the well-known

game (replicator) dynamics approach thoroughly discussedin [62]. This algorithm uses the

Motzkin-Straus theorem to transform the maximum clique problem, known to be NP-hard, into

a continuous quadratic programming problem with complexity O(|VA |2) in the number of nodes

in Auu′ .

From (4),Suu′ is directly proportional to both the quality of match between the region prop-

erties associated with the node pair(u, u′) and the size of matched subtree structure underneath

them. Once computed,Suu′ is used to recursively find the similarity measure of subgraphs rooted

at the ancestors ofu andu′. In this vein,Svv′ values of all node pairs(v, v′)∈t×t′ are obtained.

B. Unsupervised Selection of Maximally Matching Subtrees

The matching algorithm presented in the previous section isused to extract similar subtrees

from the given set of segmentation treesT={t1, t2, . . .tM}. Thanks to relatively small training

sets considered in this paper, a total ofM(M−1) tree pairs are matched to identify their common

subtrees, whose similarity measuresS are above a chosen threshold. The appropriate selection

of this threshold in unsupervised settings is a challengingresearch topic beyond the scope of this

paper. A straight forward strategy that we use here is based on the frequency histogram of all

Svv′ values observed over all node pairs(v, v′) across allM(M−1) image-tree pairs, denoted as
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H(S). Note thatS accounts for all the properties we have chosen to define a category – namely,

photometric, geometric and topological properties of regions. Small variations inSvv′ values

across subtrees representing category instances are to be expected, as they reflect intra-category

inter-instance variations. It therefore follows that the frequency histogramH(S) will be in general

characterized by a number of modes, each corresponding to frequent occurrences of instances

from a different category present in training images. Sinceour objective is to identify the most

frequently occurring similar subimages that correspond toa single most frequent category in the

training set, we extract all those similar subtrees whoseSvv′ values are high (i.e., belong to a

category) and fall in the largest mode in the histogram (i.e., most frequently occur).

For detection of the histogram modes, we use the well-known relaxation labeling algorithm

of [63], which uses the contextual information of neighboring histogram bins to reduce local

ambiguities in the histogram values, and yields reliable results after only a few iterations. After

detecting histogram modes, we identify the interval of similarity measure values that contains

the mode with the aforementioned category properties. Formally, we compute[Smin,Smax] =

arg maxmodes
∑

S∈modesS · H(S). All subtrees inT with Svv′ values in the interval[Smin,Smax]

are identified as category instances.

C. Computational Complexity

Two major steps contribute to the computational complexityof discovering category instances:

augmentation of given trees with merger nodes, and actual matching of the resulting DAGs. Let

s denote the average number of sibling regions that share a portion of their boundary under a

node. Note thats is considerably smaller than the average number of a node’s children (typically

0 ≤ s ≤ 3), and thus the size of the power set of contiguous siblings istypically not very large.

Then, given a segmentation tree with|V | nodes, the complexity of transforming the tree into a

DAG by inserting merger nodes isO(2s|V |).
In the next step, we solve2s|V | × 2s|V | maximum weight clique problems, as explained in

Sec. III-A. The replicator dynamics algorithm used for thispurpose converges for such problems

after only a few iterations. Each iteration involvesO(|A |2) multiplications, where|A | is the total

number of nodes in the association graph whose maximum weight clique is computed. Thus, the

complexity of tree matching isO([2s|V |]4), which typically amounts toO(1010) computations,

performed in approximately 20-30 seconds on a 2.8GHz, 2GB RAM PC, for images used in
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experimental evaluation discussed in Sec. VI. In comparison with the standard edit-distance tree

matching approaches (e.g., [54]), typically used for matching binary images with silhouettes of

objects, ours increases computational complexityO(16s)≈O(103) times. This increase is justified

by significant improvements in matching performance as a result of simultaneously accounting

for many-to-many, one-to-many and one-to-one node correspondences, which in turn allows us

to address more complex, real images with clutter and occlusion.

To extract category instances, we conduct pairwise matching of M image trees, after which the

relaxation labeling algorithm is used for finding the optimal mode of the frequency histogram of

similarity measures, as explained in Sec III-B. The complexity of relaxation labeling isO(nℓ2),

wheren=4 is the number of histogram bins within the sliding window used in the algorithm,

and ℓ=2 is the number of classes (mode, valley) we consider.

Overall, if each segmentation tree inT has no more than|V | nodes, then the complexity of

extracting similar subtrees fromT is O(M216s|V |4).

IV. L EARNING THE CATEGORY MODEL

The set of extracted similar subtrees,D = {t1, t2, ..., tN}, in the sequel simply referred to as

trees, may represent fully or partially visible objects of the discovered category, as well as some

outlier objects that do not belong to the category. We are interested in obtaining a compact,

canonical model of the target category fromD. In this section, we explain how to integrate the

information from all visible category parts by fusing the trees ofD into a tree-union, and thus

derive the category model.

Tree-unions are well studied graph structures, the detailed treatment of which can be found,

for example, in [53], [64]–[68]. The tree-unionT is the smallest directed acyclic graph (DAG),

which contains every tree inD. Ideally, T should be constructed by first finding the maximum

common subtree ofD, and then by adding to the common subtree, and appropriatelyconnecting,

the remaining nodes fromD. However, finding this maximum common subtree would entail

factorial complexityO(N !) in the number of treesN in D which can be arbitrarily large.2 Since

such an algorithm is computationally infeasible for real training setsD which are usually very

2Typically, in our experiments, the number of training images M is much smaller than the number of extracted similar subtrees

N , since multiple instances of the same category may co-occurin a single image.
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large, we resort to a suboptimal sequential approach. In each iterationT is extended by adding

a new treet from D until every tree fromD has been added to the tree-union, as illustrated

in Fig. 5. As can be seen, the selectedt is first matched against the current estimateT (n),

which results in their common subtreeτ , and then the unmatched nodes fromt are added and

appropriately connected toτ in order to formT (n+1).

For matchingt and T (n), we use the same algorithm presented in Sec. III-A. After adding

the unmatched nodes, the result is a DAG with multiple directed paths between nodes, which

preserve the node ascendant-descendant relationships from D. As detailed in [66], [68], the

matching algorithm of Sec. III-A can be used for matching trees and DAGs under the condition

that a given path in the tree can match only one path in the DAG.Imposing the same three

consistency constraints as used in matching, namely: (1) preserve node connectivity, (2) preserve

ancestor-descendant relationships, and (3) disallow multiple paths between nodes, is done in a

simple manner during the construction of the association graph, Auu′, for each visited node

pair (u, u′)∈t×T , as explained in Sec. III-A. To define the saliencyrv and the cost of node

matchingmvv′ of nodesv ∈ T (n), which are used for computing the similarity measure in (3),

we record the region propertiesψv′ associated with all nodesv′∈D that got matched withv in

the previousτ iterations. Then, a region-property vectorψv associated withv ∈ T (n) can be

defined in terms of the statistics of these recorded vectors{ψv′}. In this paper,ψv is computed

as the median vector of the matched regions’ properties,ψv = median{ψv′}. Other statistics,

e.g., the mean vector, may also be used. In our experiments, using the median yields slightly

better performance over the mean. Finally, similar to the definitions in (2), we have∀v ∈ T (n),

rv , ξTψv, andmvv′ , |rv − rv′ |, whereξ specifies the relative significance to recognition of

the region properties inψv.

Due to sequential matching of trees inD, their different orderings may result in different

tree-unions. This problem is addressed in [66] by merging first those trees with the maximum

similarity measure. This strategy, however, does not account for possible outliers inD. Outliers

may be present inD because of unsupervised extraction of similar subtrees. Therefore, for our

purposes, it is necessary to use an algorithm that finds the best approximation of the tree-union,

while at the same time accounting for outliers inD. Our basic assumptions is thatD contains trees

with similar structure and node properties, so that each node in T should have approximately

the same frequency of matching with nodes inD. Nodes inT that come from outliers are likely
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Fig. 5. Construction of tree-unionT from the extracted set of

similar treesD={t1, t2, . . . , tN}: In each iteration, a selected

treet from D is first matched against the current estimateT (n),

which yields their maximum common subtreeτ (marked black).

Then the unmatched nodes fromt are added and appropriately

connected (marked gray), to formT (n+1). The result is a

directed acyclic graph (DAG).

Algorithm 1 : Learning Tree-UnionT
Input : D = {t1, t2, . . ., tN}
for i = 1 : N−1 do1

Find random permutation of the input setPi(D);2

Find maximum similarity, consistent, common subtreeτ3

of t1 and t2 in Pi(D) (Section III-A) ;

Add and appropriately connect the unmatched nodes from4

t1 and t2 to τ , to form T (2);

for n = 3, N do5

Find τ of T (n−1) and tn ;6

Add and appropriately connect the unmatched nodes7

from tn andT (n−1) to τ , to form T (n);
end8

T (Pi) = T (n);9

Compute node frequencies∀v∈T (Pi), ϕv= # of matches
# of nodes inD

;10

Find entropyH(Pi) = −
P

v∈T (Pi)
ϕv log ϕv ;11

end12

Output: T = T (P̂ ), whereP̂ = arg minPi H(Pi)13

to have a relatively lower frequency of matching with nodes in D. These frequencies can be

conveniently described by their entropy. Since majority oftrees inD are likely to represent

category instances, node frequencies ofT will be characterized by a small entropy. Therefore,

to learn the category model, we obtain a set of tree-unions{T (P1), . . . , T (PR)} for various

permutationsP i of D. Then, we compute for each nodev ∈ T (P i) the frequency of its matches

with nodes inD, ϕv=
# of matches

# of nodes inD
. The best approximation of the tree-union is selected based

on entropyH(P i) = −∑

v∈T (Pi)
ϕv log ϕv, which achieves a minimum for the sets containing

all isomorphic trees. Thus, the permutationP̂ for which H is minimum over allP1, . . . , PR is

selected to computeT (P i) as the best approximation of the tree-union. In the case of multiple

solutions,T (P i) with the smallest number of nodes is selected.

Algorithm 1 summarizes our learning of the tree-union. The choice of the number of permu-

tationsR is subject to the trade off between accuracy and computational complexity. Suppose

no tree inD has more than|V | (typically about 20) nodes. Note that|V | is much smaller than

the typical number of nodes in segmentation trees. Then, similar to the complexity of matching

explained in Sec. III-C, the complexity of learning the tree-union is O(RN16s|V |4). In our

experiments, we setR = N − 1.

The segmentation tree of a previously unseen image is matched with the learned category
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model for identifying similar subtrees, representing category instances. For this matching, one

may use the aforementioned definition of node saliencyrv of nodesv ∈ T . Alternatively, rv

may also be defined so as to account forϕv. Thus, in our experiments, we use two definitions

of rv: (i) rv , ξTψv, and (ii) rv , ϕvξ
Tψv. As demonstrated in Sec. VI, the latter definition

improves recognition performance, since it forces the matching algorithm to remove from the

subtree isomorphismf all those nodes inT with low frequency of occurrence inD, which are

likely to come from outliers inD.

V. LEARNING THE OPTIMAL WEIGHTS OFREGION PROPERTIES

We have assumed that the relative significance to recognition of the various region properties

included inψ can be expressed by the perceptual weight vectorξ in (2). Estimation of the

weightsξ is ideally done in a supervised psychophysical setting. In general, there is very limited

past work on determining the perceptually valid weights of region properties without human

supervision. In this paper, we approximate these ideal weights by a vector̂ξ which maximizes

the similarity measures of those image regions that are likely to belong to a category. To this end,

we first select a subset of image regions from the given set of images having small differences

in their properties (i.e., which are similar and thus candidates to represent a frequently occurring

category), and then optimizêξ over the selected subset, as detailed below.

For each node pair(v, v′)∈t×t′, ∀t, t′∈T, we compute the empirical distribution of node-

property differences‖ψv−ψv′‖, where‖·‖ denotes the vector 2-norm. If a category occurs in

the given image set, the distribution of these differences may be expected to form two main

modes. One mode would correspond to pairs of regions comprising the category subimages,

having small‖ψv−ψv′‖ values. The other mode would consist of arbitrary region pairs with

larger ‖ψv−ψv′‖ values. Since there are more dissimilar than similar regions, the latter mode

would have considerably larger distribution values. Of course, each mode would also contain

contributions from chance similarities and differences.

The frequency histogram thus obtained is modeled as the two-component Gaussian mix-

ture density,P (‖ψv−ψv′‖)=π1G1(‖ψv−ψv′‖)+π2G2(‖ψv−ψv′‖). The means, variances of the

Gaussian distributionsG1 and G2, and the mixing coefficientsπ1 and π2 are computed via

the standard EM algorithm [69]. Then, all of the node pairs(v, v′)∈T×T are partitioned into

two mutually exclusive subsets 1 and 2 corresponding to the two components of the Gaus-
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sian mixture densityG1 and G2. Thus, a given node pair(v, v′) is included in subset 1 if

π1G1(‖ψv−ψv′‖) > π2G2(‖ψv−ψv′‖). The subset of regions,G⊂T×T, corresponding to the

Gaussian-mixture component with the smaller mean is taken to represent similar regions.

Next, we optimizeξ so that the sum ofS values overG is maximum. From (1) and (2), we

havemin(rv, rv′) − |rv − rv′ | =
rv+rv′−|rv−rv′ |

2
− |rv − rv′ | = ξT 1

2
(ψv +ψv′ − 3|ψv −ψv′ |). Let

ηvv′ , 1
2
(ψv + ψv′ − 3|ψv − ψv′|). Then, from (4), maximizing similarity measures overG is

computed as

max
ξ

∑

(u,u′)∈G

Suu′(ξ)=max
ξ

∑

(u,u′)∈G

[

ξTηuu′+
∑

(v,v′)∈Cuu′
ξTηvv′

]

, (5)

=(|G|+1) max
ξ
ξT ∑

(u,u′)∈G
ηuu′−∑

(u,u′)∈G
min

ξ
ξT ∑

(v,v′)∈G\Cuu′
ηvv′ , (6)

≥(|G|+1) max
ξ
ξT ∑

(u,u′)∈G
ηuu′−

∑

(u,u′)∈G
ξ̂T

∑

(v,v′)∈G\Cuu′
ηvv′ , (7)

where the optimal̂ξ is computed by maximizing the lower bound in (7) as

max
ξ
ξT ∑

(u,u′)∈G
ηuu′, s.t. ‖ξ‖=1, ξ≥0 ⇒ ξ̂=

(

∑

(u,u′)∈G
ηuu′

)

+
∥

∥

∥

∥

(

∑

(u,u′)∈G
ηuu′

)

+

∥

∥

∥

∥

, (8)

where(x)+ , max(0, x). The detailed derivation of the last step in (8) is given in Appendix .

Eq. (8) simply enforces that the differences in the properties of a matching region pair should

not, on an average, exceed their sum. The optimalξ̂ thus obtained is used for computing the

node salienciesrv for our matching algorithm (Sec. III-A).

This concludes the description of our algorithms. The entire procedure of discovering category

instances and learning the category model is summarized in Alg. 2. In the next section, we present

the experimental evaluation of our approach.
Algorithm 2 : Discovering Category Occurrences and Learning the Category Model

Input : Set of training imagesT containing frequent occurrences of an object category, butnot necessarily in every image.

Represent the training images by segmentation treesT={t1, . . ., tM}, using the algorithm of [46], [47], [49] (Sec. II);1

∀(t, t′)∈T×T, and∀(v, v′)∈t×t′, estimate the relative significance to recognition of region propertiesξ (Sec. V);2

∀(t, t′)∈T×T, and∀(v, v′)∈t×t′, computeSvv′ , given by (4). Compute the histogramH(S) (Sec. III-A) ;3

Detect the modes ofH(S), using the algorithm of [63], and identify as category instancesD{t1, . . .tN} all subtree pairs rooted at4

nodes(v, v′)∈T×T whoseSvv′ values fall in[Smin,Smax] = arg maxmodes
P

S∈modesS · H(S) (Sec III-B);

Construct tree-unionsT (P ) of different permutationsP of D. Select the smallest entropyT (P ) as the category model (Sec. IV) ;5

VI. RESULTS

This section presents a two-pronged empirical validation of our approach: (i) qualitative

evaluation of tree-union models learned on arbitrary imagesets, and (ii) quantitative evaluation
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of simultaneous detection, recognition and segmentation of all instances of a learned category

present in a test image. To this end, we use the following benchmark datasets: (1) Caltech-101

faces (435 images), motorbikes (800 images), and airplanes(800 images) [42]; (2) Caltech rear-

view cars (526 images) [12]; (3) UIUC multi-scale side-viewcars (108 images); (4) Weizmann

side-view horses (328 images) [70]; and TUD side-view cows (111 images) [37]. In the sequel, we

will refer to faces, motorbikes, airplanes, cars, horses, and cows as target categories, since their in-

stances will most frequently occur in our training sets as compared to some other categories (e.g.,

grass, trees, bookshelves, etc.). The Caltech-101 images are captured under varying illumination

conditions, and contain a single, prominently featured object from the category amidst clutter.

The Caltech cars and the UIUC cars increase complexity, since the images contain multiple cars,

which appear at different resolutions, have low contrast with the textured background, and may

be partially occluded. The other two datasets contain sideviews of walking/galloping horses and

cows in their natural (cluttered) habitat. They help evaluate our algorithm’s capability to handle

articulated, non-rigid objects. We also use a total of 100 background images from Caltech-101

which do not contain the target categories. These background images will be referred to as

negative examples, while images showing objects from the target category will be referred to as

positive examples.

We use three different strategies to form training and test sets, which leads to three types of

experiments. In Experiment 1, one half of the training set consists of positive images, while

the other half consists of negative examples. The training images are not labeled positive or

negative to ensure unsupervised training, i.e., it is not a priori known whether any specific

training image contains objects from the category. The testset is formed from the remaining

positive and negative examples. In Experiment 2, the training and test sets are selected as in

Experiment 1, but the test images are randomly rotated, to evaluate rotation-in-plane recognition

invariance. The image size is preserved by “filling out” the background, vacated by rotation, with

a randomly selected negative example. Finally, Experiment3 is aimed at testing the effect of

varying the numbers of positiveMp and negativeMn examples in the training set. Two cases are

considered: (1)Mp is fixed, whileMn increases, and (2)Mn is fixed, whileMp increases. The

test set differs from that used in Experiments 1 and 2, in thatit contains the remaining positive

examples of all target categories, but not negative examples. Each experiment is repeated 10

times, and the average performance is reported.
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Object detection, recognition and segmentation are conducted jointly by matching the learned

tree-union model with the test-image trees. Those common subtrees whose similarity measure is

larger than a specified threshold are adjudged as detected objects. The threshold is varied to plot

a recall-precision curve, as a preferred measure of performance with respect to object detection

and segmentation, compared to those used by classification-based techniques (e.g., ROC curve,

and equal error rate) [38]. The results presented in this section are obtained for the similarity-

measure threshold that yields the highestF -measure,F,2·Precision·Recall/(Precision+Recall).

To obtain the ground truth, we manually delineated the outercontours of cars in Caltech and

UIUC images. Manually annotated target objects (i.e., ground truth) for the Caltech-101 faces,

motorbikes, airplanes, Weizmann horses and TUD cows are publicly available. LetAd denote the

area of a detected object in the test image, and letAg denote the ground-truth area of an object

in the test image. Then, a detected object is said to be false positive (FP) if Ad∩Ag

Ad∪Ag
<0.5, where

∪ denotes union, and∩ denotes intersection. The remaining cases are declared true positives

(TP). Segmentation error is defined only for TP’s asXOR(Ad,Ag)
Ad∪Ag

. Average segmentation error

is defined as the mean of segmentation errors on all TP’s. We observe that these detection

and segmentation performance criteria appear to agree withour own subjective judgement. We

also define measures of recognition performance, evaluatedin Experiment 3. Letnp denote the

number of TP detections whose ground-truth category (verified by visual inspection) is the same

as that identified by our algorithm. Then, precision of recognition is defined as the ratio ofnp

and the total number of TP detections. Also, recall of recognition is defined as the ratio ofnp

and the total number of target objects in the test set. Note the difference between the notions of

precision and recall of detection, and precision and recallof recognition that we use in this paper.

To distinguish between the two sets of measures, in the sequel, we will use terms precision and

recall to denote measures of detection performance, and recognition precision and recognition

recall to denote measures of recognition performance.

In Experiments 1–3, we test the following variants of our approach. Ours0 corresponds to our

preliminary work, presented in [48], where region properties are equally weighted to compute the

node saliency (i.e.,ξ=1), and where the similarity measure characterizing subtreeisomorphism

f between two treest and t′ is computed asSold
tt′ =

∑

(v,v′)∈f 2 min(rv, rv′). In Ours1, instead

of Sold
tt′ , we use the new similarity measure defined by (3), whileξ=1. In addition to the new

similarity measure, Ours2 also uses the optimal weights of region properties given by (8). Finally,
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we also evaluate Ours2 when the saliency of nodesv in the tree-union are not weighted by their

frequenciesϕv (end of Sec. IV), referred to as Ours2−.

Regarding the comparison with prior work, there is very limited past work on segmenting

(i.e., delineating the boundaries of) category instances in test images. Though the datasets used

in our experiments are very popular benchmarks, at the time of initial submission of this work

no quantitative segmentation results have been reported for Caltech-101, UIUC, and TUD cow

images. For Weizmann horses, the best segmentation resultsare presented in [41], [70]. While the

approach of [41] is semi-supervised requiring training images to contain only horses, the approach

of [70] requires additional human supervision in terms of manually segmenting horses in training

images. Thus, except for the segmentation results on Weizmann horses, our comparison with

prior work is mostly in terms of detection accuracy. To this end, we consider the semi-supervised

methods of [12], [37], [38], [40], [41], [43], which requiretraining images to be labeled with

respect to the category they contain. Note that our evaluation of detection error is also more

rigorous than that of the referred methods. We consider precise extent (segmentation) of objects

in the images, whereas in [12], [37], [43] bounding boxes around detections and true objects are

used, in [38] correct detection is required to lie within an ellipse of a certain size centered at the

true object’s centroid, and in [40] correct detection is marked when a detected object’s centroid

lies within 25 pixels of the true centroid. We use the method of [37] without the post-processing

step of pruning the false positives. Therefore, for fair comparison, we report two sets of our

results, one obtained using the aforementioned more demanding evaluation criteria, and the other

using the same experimental procedures as those of the corresponding baseline methods.

Experiment 1 – Qualitative Evaluation of Category Models:Fig. 6 illustrates two tree-unions

T learned in Experiment 1 by Ours2 on two training setsT which contain four and six positive

examples of Caltech-101 faces and Weizmann horses, respectively. The figure also shows the

extracted similar subtreesD from the Caltech-101 training set. Nodes ofT are depicted as

rectangles that contain those regions inD that got matched with the corresponding node inT
during learning. As can be seen, the structure ofT correctly captures the recursive containment

and spatial layout of regions that comprise the category instances appearing in the training set. For

example, in the face tree-union, nodes “left-eye,” “nose,”and “right-eye” are found to be children

of the node representing a larger “eyes-and-nose” region, which in turn is correctly identified as

a child of the “face” node. Also, since context vector associated with “left-eye” points toward
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Fig. 6. An example of two tree-unionsT (bottom) constructed from two training setsT (top) consisting of four and six positive

images of Caltech-101 faces and Weizmann horses, respectively. Negative images are not shown. A subset of corresponding

regions fromD (middle row for Caltech-101 faces) that define a node inT are enclosed in the corresponding rectangle. The

structure ofT correctly captures the recursive containment and spatial layout of these regions.

the locations of “nose” and “right eye,” the tree-union encodes that “left-eye” is positioned to

the left from “nose” and “right eye.” Similarly, “nostrils”are found to be above “mouth.” Note

that none of the extracted similar subtrees inD of Caltech-101 faces has a node that corresponds

to “face-and-hair,” which is the root of the tree-union. This root is obtained during augmenting

similar subtrees with merger nodes for the purposes of many-to-many matching. The tree-union

of horses contains two roots one of which represents “head-and-fence.” This root is assigned a

relatively low frequency of occurrence inD (ϕv = 2/137), as compared to the other tree-union

nodes, which indicates that it may represent an outlier.

Experiments 1 and 2 – Qualitative Evaluation of Detection and Segmentation:Figs. 7–10

illustrate simultaneous object detection and segmentation. As can be seen, all occurrences of

the target categories in the images are detected without hypothesizing the number of category

instances appearing in a specific image, as done in prior work(e.g., in [37]). Also, object detection

and segmentation are accurate for relatively small training sets, despite background clutter and

occlusions. Performance is good even in cases when: (1) the object edges are jagged and blurred

(e.g., motorbikes in Fig. 8a); (2) the object parts are thin regions with low intensity contrast

(e.g., airplanes in Fig. 8b); (3) the target objects appear at different scales in the test images

(e.g., Caltech cars in Fig. 9a); (4) the category instances are partially occluded (e.g., UIUC cars
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Fig. 7. Experiment 2 on the Caltech-101 faces: (top row) Sample training set consisting of six positive and negative examples.

People appearing in the training set do not have beard. (middle row) Sample test images randomly rotated in the image plane

showing people not seen during training. (bottom row) Detection and segmentation using Ours2.

in Fig. 9b); and (5) the target objects are randomly rotated in the image plane (e.g., UIUC cars

in Fig. 9c and Caltech-101 faces in Fig. 7). Category instances that are not detected, for the

most part, have low intensity contrasts with the surround, and thus their corresponding subtrees

in test-image trees do not appear similar to the learned model structure. Some partially occluded

Caltech and UIUC cars are not detected, since their matches with the model have lower similarity

measures than the threshold, determined by the highestF -measure. Also, huge variations in the

appearance of car windows, due to the reflections of surround, lead to the appearance of spurious

regions in varying locations, not consistently present in training images, which do not become

part of the learned model, and, therefore, are not matched with the model (Fig. 9a). Typically,

the aforementioned effects are large enough to penalize thecorresponding matched subimage

from being interpreted as a true positive, but localized enough for the subimage to be evaluated

as a false positive.

Experiments 1–3 – Quantitative Evaluation: Table I presents the average recall, precision,

and segmentation errors obtained using Ours2 in Experiment1, for the highestF -measure.

The training set containsM=100 images out of which onlyMp=50 are positive. The last two

rows show the recall reported in [40] and [43]. As mentioned before, these state-of-the-art

methods require training images to be labeled with respect to the category they contain, and for

training use 50 images drawn from only positive examples. Also, their evaluation criteria are less
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TABLE I

AVERAGE RESULTS USINGOURS2 IN EXPERIMENT 1 FOR 50 POSITIVE TRAINING EXAMPLES(IN %)
Faces Motorbikes Airplanes Cars rear Cars side Horses Cows

Recall 89.3±1.1 91.2±4.3 84.5±2.1 84.7±6.7 89.2±1.5 78.6±7.6 86.3±2.2
Precision 86.1±1.5 81.2±4.3 89.9±2.5 80.3±10.1 89.8±2.3 81.5±7.3 84.5±1.2
Seg. error 7.2±4.8 10.2±6.9 12.4±6.3 13.1±2.5 8.3±3.2 14.1±6.4 12.5±3.2

Recall using setup of [43] 98.2±0.6 94.3±1.1 94.1±0.8 99.2±0.6 99.2±0.7 96.6±1.2 100±0
Recall in [40] 94 92.4 NA NA 92.8 92.1 NA
Recall in [43] 96.4 95.6 92.6 97.7 NA NA 100

rigorous than ours, since they use bounding boxes or object’s centroid estimates instead of object

segmentation, and report results obtained for equal-errorrate. The top three rows of Table I show

the price we pay for: reducing the degree of supervision, using random negative examples in

the training set, whose total number is the same as positive examples, and conducting a more

demanding evaluation. Since prior work uses a different experimental setup, for fair comparison,

we have also run our algorithms using their experimental procedures – specifically, discarding

negative examples in training, and using the same numbers oftraining and test images, and the

evaluation criteria for object detection as those used in [43]. The resulting equal-error-rate recall

of Ours2 is reported in the fourth row of Table I. In this case,Ours2 outperforms the approaches

of [40], [43] for almost all categories, except for the category motorbikes, with the loss of only

1.3% with respect to [43]. Also, for the purposes of comparison with the approach of [41] on

the category Weizmann horses, we have used their setup: 20 positive training examples, 200 test

images, and flipping all horses in test and train images to face a consistent direction, for which

we have obtained the segmentation error of 4.3%, compared totheirs of 7%.

In Experiment 2, we obtained similar results to those in Experiment 1 (Table I). The corre-

(a) Caltech-101 motorbikes (b) Caltech-101airplanes

Fig. 8. Experiment 1: Detection and segmentation on the Caltech-101 images showing motorbikes and airplanes using Ours2.

The training set of each target category consists of10 positive and10 negative examples that are not labeled as positive or

negative.
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(a) Caltech cars rear-view (b) UIUC cars (c) Rotated UIUC cars

Fig. 9. Experiments 1 and 2 : Detection and segmentation on the Caltech and UIUC car images using Ours2. The training set

consists of10 positive and10 negative examples. Ours2 successfully handles variationsin scale (a), partial occlusions (b), and

is invariant to rotation-in-plane (c).

Fig. 10. Experiment 1: Detection and segmentation on the TUDcows and Weizmann horses using Ours2. The training set

consists of10 positive and10 negative examples. The small images represent zoomed-in details (enclosed by the rectangles)

of the larger image. Object segmentation fails on those object parts (e.g., zoomed-in details) that have low intensity contrasts

with the surround, and thus do not form category-characteristic subtrees in the segmentation tree which can be matched with

the category model.

sponding recall, precision and segmentation errors of Experiments 1 and 2 differ in less than

one half of standard deviation on all the seven datasets. This small difference (in part due to

the quantization error accompanying rotation with arbitrary digital rotation angles) demonstrates

that our approach is invariant to rotations in the image plane.

Fig. 11 presents recall-precision curves (RPCs) obtained using Ours0, Ours1, and Ours2 on

the Caltech-101 faces and UIUC cars in Experiment 1. As expected, increase in the number

of positive training examples improves performance. The figure also compares the RPC of

Ours2 against those of [12], [37], [38], [40]. For this comparison, we have adopted the same
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experimental procedure as described in these methods – specifically, we have used 50 training

images randomly selected only from positive examples, and detection is measured with respect

to an ellipse around the true object. As can be seen, Ours2 yields a slightly better performance

than the competing methods under the same experimental conditions. For example, increase in

the area under the RPCs of Ours2 vs. that of [40] is 2.3%.

Table II shows increase in the area under the RPCs of Ours2 as the number of training images

becomes larger for the Caltech-101 faces, UIUC cars, and Weizmann horses. This increase is

expressed as a percentage of the RPC area obtained for the smaller training set. Interestingly, for

larger training sets we get only modest improvements. This suggests that our learning algorithm

saturates after reaching a certain size of the training set (e.g., >40 positive examples for the

Caltech-101 faces). Thus, for example, Table II details that increase from 10 to 20 positive

examples enlarges the area under RPC of Ours2 by 2.1% and 1.7%for the Caltech-101 faces

and UIUC cars, respectively. The corresponding performance measures for the same datasets are

only 1% and 0.8% when the number of positive training images increases from 20 to 30. When

more than 50 positive examples are used for training (see also Fig. 12), performance of any

of Ours0, Ours1, and Ours2 does not downgrade, which suggests that our learning algorithm

does not suffer from overfitting. Similar results are observed for the other datasets. Figs. 11 and

Table II also demonstrate accuracy gains of Ours1 and Ours2 over Ours0, measured as increase

in the area under RPCs. This increase is expressed as a percentage of the area for Ours0. Thus,

for example, the new similarity measure used in Ours1 yields7.3% area increase over Ours0 for

the UIUC cars. Also, we get 3.6% area increase of Ours2 over Ours1 for the Caltech-101 faces.

This result demonstrates the value of using perceptually motivated weights of region properties

obtained by the algorithm discussed in Sec. V. In addition, Table II shows the gain in detection

performance of Ours2 versus Ours2− where outlier nodes are not accounted for in the tree-union.

For example, for UIUC cars this gain is reflected in4.4% increase in the area under RPC.

Fig. 12 and Table III show recognition performance of Ours2,evaluated in Experiment 3.

Recognition recall and recognition precision are averagedover the seven target categories. As

can be seen, small increase in negative examplesMn does not downgrade performance. As

Mn becomes larger, it so happens that in our training set objects belonging to other categories

start appearing more frequently. Therefore, by our basic definition, these objects become the

target category. As a result, the algorithm now correctly learns the new category instances, as
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Fig. 11. Recall-precision curves: (a) Results on Caltech-101 faces obtained using Ours0, Ours1 and Ours2 for 10 and 20

positive training images in Experiment 1. (b) Performance of Ours2 on Caltech-101 faces for the highestF -measure improves

as the number of positive training examples increases. (c) RPCs of Ours2 on UIUC cars as the number of positive training

examples increases. (d) Comparison of Ours2 with [12], [37], [38], [40] on UIUC cars (multiscale), using the setup of thecited

work: 50 positive training images, and detection is measured with respect to an ellipse around the true object.
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Fig. 12. Experiment 3: Recognition recall and precision of

Ours2 for the highestF -measure of detection, averaged over

the seven target categories.Mp and Mn are the numbers

of positive and negative training examples, respectively.We

consider two cases: (1)Mp=10 is fixed, whileMn increases,

and (2)Mn=10 is fixed, whileMp increases.

TABLE II

INCREASE IN THE AREA UNDERRPCIN EXPERIMENT 1

Algorithm Ours1 vs. Ours2 vs. Ours2 vs. Ours2 Ours2
Ours0 Ours0 Ours2−

# positive imgs 10 10 10 20vs.10 30vs.10

UIUC cars 7.3% 9.2% 4.4% 2.1% 3.1%

Faces 4.9% 8.5% 3.4% 1.7% 2.5%

Horses 6.1% 9.5% 4.1% 2.8% 2.9%

TABLE III

RECOG. RECALL AND PRECISION OFOURS2 IN EXPERIMENT 3

Mp=20 Mp=30

Mn=10 Mn=10

Recall Precision Recall Precision

Faces 87.3% 81.2% 88.2% 84.5 %

Motorbikes 87.4% 78.9% 88.6% 77.8%

Airplanes 79.4% 79.9% 81.5% 88.5 %

Cars rear 82.7% 73.8% 83.2% 79.8%

Cars side 86.3% 79.2% 87.5% 88.1%

Horses 77.2% 75.9% 79.0% 80.2%

Cows 83.5% 78.2% 84.1% 82.2%

expected. Thus, with increase ofMn, the training set becomes inappropriate. Increasing the

number of positive training examples yields higher recognition recall and precision.

VII. CONCLUSION

In this paper, we have formulated a new problem, that of completely unsupervised extraction

and learning of a visual category frequently occurring in a given arbitrary image set, and

presented its solution. The visual category is defined as a set of subimages characterized by

similar geometric, photometric, and topological properties. Unsupervised means that the target

category is not defined by the user, and whether and where any instances of the category appear

December 25, 2007 DRAFT



31

in a specific image is not known. To discover category occurrences in the unlabeled image set, we

have proposed to use a many-to-many matching algorithm thatfinds matching subimages within

every pair of images. We have defined a new similarity measurebetween matching subimages

which is recursively computed in terms of differences in geometric, photometric, and topological

properties of subregions embedded within the subimages. This similarity measure fuses the

information of similarities of the embedded subimages, where the similarities are weighted

with respect to their relative significance to recognition.We have presented an algorithm for

estimating these weights, without using any supervision. We have also proposed to compute

a union of all matching subimages in the image set, interpreted as category instances, and

thus obtain the category model. The category model registers all (partial) views of category

occurrences in the image set, yielding a representation of the complete (unoccluded) object.

Empirical validation on seven benchmark datasets, which present challenges such as object

articulation, occlusion, and significant background clutter, demonstrates high recall and precision

of category detection and recognition, as well as high accuracy of segmentation of category

occurrences, in completely unsupervised settings. In weakly supervised settings, using the same

experimental procedures as those presented in prior work, our approach outperforms existing

baseline methods in object detection and segmentation on almost all categories tested, with one

exception where our performance is slightly inferior within standard deviation. Our qualitative

empirical evaluation demonstrates that the learned category model correctly captures the recursive

containment and spatial layout of regions comprising the category instances in the image set.

APPENDIX

DERIVATION OF THE OPTIMAL WEIGHTS OFREGION PROPERTIES

In this section we derive the optimal weights of region properties ξ̂ as a solution of the

optimization problem stated in (8). Recall thatηuu′ is a function of region properties of those

node pairs(u, u′) that belong to the set of similar regionsG, as explained in Sec. V. Specifically,

we haveηuu′ = 1
2
(ψu + ψu′ − 3|ψu − ψu′|). Let η ,

∑

(u,u′)∈G
ηuu′. Then,ξ̂ can be found by

solving the following problem:

max
ξ
ξTη, s.t. ‖ξ‖2 = 1, ξ ≥ 0 . (9)
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The Lagrangian of (9) reads:L = −ξTη + λ(‖ξ‖2−1) +
∑

i ζi(−ξi), whereλ andζ≥0 are the

Lagrangian multipliers. Taking the derivative ofL with respect toξ, and setting it to zero gives

∂L/∂ξ = −η + 2λξ − ζ = 0 ⇒ ξ =
η + ζ

2λ
. (10)

To derive a closed-form solution of (9), we make the weak assumption that there exists one

region propertyi for which the corresponding elementηi of η is positive. This assumption is

very weak, since from the definition ofη, the converse (i.e.,η<0) would mean that there are on

average more node pairs inG whose differences of region properties are larger than their sums.

This in turn is very unlikely, because nodes considered for estimatingξ̂ belong toG, which is

a large set of similar regions with verysmall differences in their properties.

By making use of the above assumption, we prove thatλ>0. Suppose the converse, i.e.,λ<0.

Since there existsηi>0, then ηi+ζi>0. It follows from (10) thatξi<0, which contradicts the

constraintξ≥0. From the Karush-Kuhn-Tucker condition [71], namely
∑

v ζiξi=0, it follows:

1) If ηi=0 ⇒ ζi=0 ⇒ ξi=0;

2) If ηi<0 ⇒ ζi>0 ⇒ ξi=0;

3) If ηi>0 ⇒ ηi+ζi>0 ⇒ ξi>0 ⇒ ζi=0 ⇒ ξi=
ηi

2λ
.

It immediately follows that the optimal̂ξ = (η)+
‖(η)+‖ , where(x)+ , max(0, x).
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