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Abstract

In recent years, there has been a great increase in the use
of web services for the storage, annotation, and sharing
of sports video by athletic teams. Most of these web
services, however, do not provide enhanced functional-
ities to their users that would enable, e.g., faster access
to certain video moments, or reduce manual labor in
video annotation. One such web service specializes in
American football videos, supporting over 13,000 high
school and college teams. Its users often need to fast-
forward the video to certain moments of snap when the
corresponding plays of the football game start. To our
knowledge, this paper describes the first effort toward
automating this enhanced functionality. Under a very
tight running-time budget, our approach reliably detects
the start of a play in an arbitrary football video with
minimal assumptions about the scene, viewpoint, video
resolution and shot quality. We face many challenges
that are rarely addressed by a typical computer vision
system, such as, e.g., a wide range of camera viewing
angles and distances, and poor resolution and lighting
conditions. Extensive empirical evaluation shows that
our approach is very close to being usable in a real-
world setting.

1 Introduction
American football teams put many resources into the collec-
tion, annotation, and analysis of game video of both their
own games and those of their opponents, for the purposes
of game planning. In recent years, companies have begun
offering web services to facilitate these video-related ac-
tivities. Such web services currently do not perform any
type of automated analysis of the game videos, but provide
only basic functionalities to their users. This makes human
computer interaction cumbersome, and requires a signifi-
cant amount of human labor when using the web service.
For example, cutting non-useful parts of the video (and thus
saving the purchased storage space) has to be done man-
ually. Also, accessing a certain video part involves time-
consuming watching of irrelevant parts, before observing the
desired moment. Therefore, there is a growing demand for
automated analysis of football videos, which would enable
enhanced functionalities.
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Designing such a video analysis system, however, is
highly non-trivial, and beyond the capabilities of off-the-
shelf computer vision tools. The key challenge is a huge
diversity of football videos, which the web services typically
host. The videos vary widely in terms of camera viewing an-
gles and distances, resolution and shot quality, and weather
and lighting conditions. The videos are often taken by am-
ateurs, and thus exhibit motion blur and jittery camera mo-
tions, which may not be correlated with the football play.
All this requires relaxing the restrictive assumptions about
viewpoints, scales, and video shot quality, commonly made
in the computer vision literature.

This paper presents, to the best of our knowledge, the
first computer vision system that is capable of addressing
a large diversity of football videos. Given a raw football
video, our approach is aimed at estimating the moment when
a football play begins, also known as themoment of snap.
Our approach has a number of applications, including auto-
matic video cutting, initializing the start frame for viewing,
and providing a seed frame for further automated analysis.
Since we cannot make assumptions about the players’ layout
in the scene and video quality, our primary goal is achiev-
ing robustness in the face of the wide variability, while also
maintaining a reasonable runtime. This is made feasible by
our new representation of motion in a video, called Variable
Threshold Image.

We conduct this study in close collaboration with one of
the largest companies dealing with football video1, having a
client base of over 13,000 high school, college, and profes-
sional teams.

In what follows, we first describe our application prob-
lem. Next, we describe our approach. Finally, we provide a
detailed evaluation and sensitivity analysis of our approach
on a select set of 500 very diverse real-world videos. This
empirical evaluation indicates that our current approach is
close to being ready for use in upcoming product releases.

2 Background and Problem Statement
In this section, we first give an overview of the web service
our work is targeted toward, and the characteristics of the

1This company has chosen to remain unnamed for competitive
reasons, at this time, but this information can be provided to the
program chairs, with proper disclosures.
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football video that we will be dealing with. We then discuss
some of the challenges involved with automated video anal-
ysis, and state the specific analysis problem addressed in this
paper. Finally, we review related work.

Web Services for Football Video.The web-service com-
pany that we work with provides services to over 13,000
high school, college, and professional football teams. It pro-
vides the functionalities for uploading game video, which
can then be manually annotated, and shared with other users.
Typically, the teams will upload video of each of their own
games, and also get access to opponent video via a secure
video-trade feature.

Game video is, for the most part, captured with one or
more panning, tilt, and zooming (PTZ) cameras. In most
cases, one camera captures a sideline view from an elevated
location along the sideline. The sideline view generally pro-
vides the best overall view of a game. Figures 1 and 5 show
typical examples of sideline views. These are the views that
our work will focus on.

American football video is shot and organized around the
concept of football plays. Each game involves a sequence
of plays, separated by short time intervals where no game
action occurs, and the teams regroup. Before each play be-
gins (with minor exceptions), the offensive and defensive
teams line up facing one another at the line of scrimmage
— the line where the ball is located at the time. The play
starts when the ball is “snapped” (or passed) from a player
called the center to a player called the quarterback, and both
teams begin moving and executing their chosen strategies.
Each play lasts from roughly 5 to 30 seconds, and ends un-
der various conditions (scoring, halting forward progress,
etc). The cameras are operated so that they begin record-
ing a play sometime before the moment of snap (MOS), and
end recording at the termination of each play. Thus, at the
end of a game, a camera has a sequence of files, one for each
play in the game. These files are then uploaded to the web-
service for storage and manipulation via a user interface.

The recording of each play, however, does not generally
begin at the exact MOS. Rather, in many cases, there is a
significant amount of time that elapses between the start of
a video and the MOS. This prefix of the video is not useful
to viewers, costing them waiting time. It also wastes server
space, costing the web-service company dollars. Thus, auto-
mated MOS estimation could save both of these costs. First,
the play viewer could be initialized to start at the estimated
MOS, or a small number of frames before the estimated
MOS. Second, the pre-MOS prefix of a video could be cut
in order to save server space. Thus, a solution to automated
MOS estimation has an immediate and high product value.

Challenges. Automated analysis of football videos,
hosted by the aforementioned web service, is challenging
due to their enormous variability. In particular, the videos
are shot by camera-persons of varying skill and style, on
fields with different textures and markings, under different
weather and lighting conditions, from different viewpoints,
and cameras of varying quality. Further, the scenes around
the field can vary significantly, ranging from crowds, to
players on the bench, to construction equipment. Figures 1
and 5 show some examples the video variability encountered

on the web service.
Moment of Snap Estimation. In light of the aforemen-

tioned video variability, we have worked with the company
to identify an analysis problem that would both have imme-
diate product value, while also appearing approachable in
the near term. The problem that has resulted is to estimate
the frame number where a play starts in a video. We refer
to this problem asmoment of snap (MOS) estimation, since
each play starts with the snap of the ball. More precisely, our
input for MOS estimation will be a video of a single football
play, and the output will be a frame number. The quality of
the output is based on how close the frame numbers are to
the actual moment of snap. In addition, the runtime of the
solution is very important, because any computational over-
head will cost money in terms of server time, and possibly
delays upon a first viewing.

Related Work. While the computer vision literature
presents a number of approaches to analyzing football (and
other team sports) videos, it is unlikely that they would be
successful on our videos. This is, for the most part, due
to the restrictive assumptions made by these approaches.
For example, inferring player formations in a football video,
presented in (Hess, Fern, and Mortensen 2007), could be
used to identify the line of scrimmage, and thus facilitate
MOS estimation. Similarly, tracking football players, pre-
sented in (Intille and Bobick 1995; Hess and Fern 2009),
and the 3D registration of a visible part of the football
field, presented in (Hess and Fern 2007), seem as useful
approaches that could be directly employed in MOS esti-
mation. However, all of these methods make the assump-
tions that the videos are taken under fairly uniform condi-
tions — namely, on the same football field, and from the
same camera viewpoint and zoom — and thus cannot be
applied in our setting. In addition, the approaches pre-
sented in (Liu, Ma, and Zhang 2005; Ding and Fan 2006;
L. and Sezan 2001) perform foreground-backgroundestima-
tion, yard-line detection, and camera motion estimation for
the purposes of activity recognition. These approaches re-
quire high-quality videos, a fixed scale at which the players
may appear in the video, and prior knowledge of the field
model. Consequently, these approaches cannot be used for
MOS estimation in our videos. Remarkably, the reported ac-
curacies of the above approaches are often not high, despite
their restrictive settings, indicating fundamental challenges.

3 Overview of Our MOS Estimation
Typically, there is relatively little movement on the football
field before the snap, followed by substantial movement by
the players after the snap. Therefore, searching for the video
frame that has the maximum difference of some measure of
movement in the video before and after the frame seems a
good approach. However, as our results will demonstrate
later, such an approach is not effective for a variety of rea-
sons. First, common measures of movement in the video
— such as, e.g., optical flow, Kanade-Lucas-Tomasi (KLT)
point-feature tracker, or tangent distance — typically esti-
mate pixel displacements from one frame to another. All
these motion measures are directly affected by a particu-
lar camera zoom and viewpoint, because object motions in
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close-up views correspond to larger pixel displacements than
those in zoomed-out views, and, similarly, objects moving
perpendicular to the camera viewing angle correspond to
larger pixel displacements than those in other views. Since
we cannot make strong assumptions about the camera zoom
and viewpoint, the aforementioned naive approach could
easily confuse small pixel displacements with a pre-snap pe-
riod when they actually correspond to very large player mo-
tions on the field. Second, the camera may pan and zoom ar-
bitrarily, at any time, which registers as pixel displacements,
even when no foreground objects (here, football players)
are moving. Since we cannot assume any type of calibra-
tion information between the camera and field, which other-
wise could be used to subtract camera motion, the above ap-
proach is likely to confuse large camera motions with MOS.
Third, one could try to separate video foreground (i.e., play-
ers) from background, and conduct MOS estimation based
on the displacements of foreground pixels. However, since
we cannot make strong assumptions about video resolution,
field markings, and background, it is very difficult to reliably
detect and track players.

Given the above challenges, we developed an approach
for MOS estimation that has two main stages. The first
stage,field boundary extraction, computes for each frame
in a video an approximate top and bottom boundary of the
field. This information can be used to spatially focus later
processing on parts of the video that most likely correspond
to the actual playing field. The second stage,active cell
analysis, computes a novel representation of the video based
on the concept of active cells, called Variable Threshold Im-
age (VTI). The VTI represents coarse changes in the motion
profile of a video. The VTI is then used to estimate MOS in
a way that is more resilient to the indicated challenges com-
pared to the aforementioned naive approach. The next two
sections describe each of these stages in further detail.

4 Stage 1: Field Boundary Extraction

We make the assumption that each video frame shows a side-
line view of a part of the football field. This assumption is
reasonable for the intended application. However, the exact
location of the football field relative to the coordinates of
each frame can vary substantially from one video to another.
To focus processing on the field rather than other frame parts
(e.g. crowd), we seek to efficiently and robustly extract ap-
proximate field boundaries in each frame.

More formally, given a frame, depicting a sideline view of
some part of a football field, the frame can be viewed as con-
sisting of three parts: 1) The top part above the playing field
in image coordinates, which often contains the crowd, or
football players on the sidelines; 2) The middle part, which
contains the field; and 3) The bottom part below the field in
image coordinates, which often contains the crowd, or play-
ers on the sidelines. Our goal is to identify two boundaries,
the top boundarybetween the top and middle part, and the
bottom boundarybetween the middle and bottom part, as
illustrated in Figure 1. The frame area between these two
boundaries will roughly correspond to the football field, and
is where further processing will be focused. It is important

to note that in some cases (e.g. close-up shots), the mid-
dle/field part will extend all the way to the top or bottom of
the frame, and hence the top and/or bottom parts may not be
present. Thus, our approach must handle such situations.

To compute the field boundaries, we draw upon a recent
dynamic programming approach for computing “tiered la-
belings” in images (Felzenszwalb and Veksler 2010). The
tiered labeling in our case is defined as follows. LetI be the
image frame withn rows andm columns. A tiered label-
ing of I is a sequence of pairssk = (ik, jk), one for every
column,k, such that0 ≤ ik ≤ jk ≤ n − 1. Given such a
labeling, the top boundary is defined by the sequence ofik
values across the columns, and the bottom boundary is de-
fined by the sequence ofjk values across the columns. Our
solution will favor continuous boundaries.

Our goal is to find a labeling,f , that minimizes an energy
function,E(f), which measures the goodness off for the
particular application. We specifyE(f) such that it becomes
smaller for labelings which are more likely to be good field
boundaries, as

E(f) =
∑m−1

k=0
U(sk) +

∑m−2

k=0
H(sk, sk+1), (1)

whereU encodes the local goodness of the pairsk for col-
umn k, and H encodes the horizontal contiguity of the
boundaries selected for consecutive columnsk andk + 1.
The definitions of these two functions are the same as those
used in (Felzenszwalb and Veksler 2010).U(sk) assigns a
lower energy (lower is preferred) to values ofsk where the
corresponding pixels are estimated to belong to the football
field part of the frame. The coarse football field localiza-
tion is conducted by a simple clustering of the pixel colors,
and selecting the most dominant cluster to represent the field
color. H(sk, sk+1) penalizes pairssk andsk+1 to a degree
that increases as their corresponding boundaries differ inlo-
cation and pixel values. This component helps smooth out
the extracted boundaries, which could be arbitrarily jagged
if only U(sk) were used to optimize labelings.

We use the standard dynamic programming to minimize
E(f). Note that this approach can return solutions where
one or both of the boundaries are not visible by assigning the
corresponding boundaries close to either row 0, or rown−1.
In practice, since we just need a coarse boundary estimation,
the tiered labeling is efficiently done every 10 columns, in-
stead of every column. As shown in the experimental sec-
tion, the algorithm runs very quickly on all frames, and is
not a time bottleneck of the current system. Two results of
the algorithm are shown in Figure 1.

5 Stage 2: Active Cell Analysis
This sections describes our novel representation of motion
changes in a video as Variable Threshold Image. It is based
on quantization of motion in a video, and robust accumula-
tion of spatial and temporal statistics of motion changes.

Given approximate field boundaries from stage 1, finding
the MOS amounts to identify a frame where there is little
prior motion followed by much motion on the field. As a
measure of motion, we use the popular Lucas-Kanade dense
optimal flow, which estimates for each pixel in a video frame
the magnitude and direction of its displacement in the next
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Figure 1: Results of our coarse field boundary detection.
The red lines mark the extracted boundaries of the field.

Figure 2: Sum of magnitudes of optical flow signal in time
for an example video (the horizontal axis shows frames).

frame. While optical flow may be noisy, it can be computed
efficiently compared to many other motion measures.

Our first attempt at MOS estimation based on optical flow,
first, computes the sum of magnitudes (SOM) of optical
flow vectors in the field portion of each frame. This pro-
vides a one-dimensional signal in time that roughly mea-
sures the motion across the video, as illustrated in Figure
2. Various statistics of this temporal signal can be used for
selecting a particular frame as the estimated MOS, includ-
ing: change points, local maximum, and various combina-
tions and smoothed versions of these. However, empirically,
these naive approaches frequently fail even in simple videos
which have no camera motion. In the case of camera mo-
tion, the performance becomes much worse. As can be seen
in Figure 2, the various statistics of the SOM of optical flow
that one may consider do not always play out in practice.

This suggests that a more sophisticated analysis of
changes of optical flow is needed for our problem. In
response, we further investigate a quantization approach,
which leads to the concept of anactive cell. We divide each
frame intoN × N regular cells, where each cell within the
field boundary is assigned a value equal to the SOM of the
optimal flow vectors in that cell. Given a threshold,t, a cell
is called active if its SOM value is abovet. This provides a
more robust estimate of whether there is motion in a particu-
lar area of the field versus more dispersed optimal flow. We
then use the number of active cells in a frame as a measure
of motion, rather than the overall SOM of a frames optical

flow. This results in a new temporal signal of changes of
active cell numbers per frame that we analyze. Specifically,
we scan a window of length2L across the video, and com-
pute for each frame the difference between the number of
active cells in theL following frames frames and theL pre-
vious frames. The frame that maximizes the difference is
interpreted as the MOS.

The aforementioned difference depends on two input pa-
rameters — namely, the thresholdt, and the window length
2L. We experimented with a variety of choices and nor-
malizations oft andL to identify their optimal values for
MOS estimation. However, we were unable to find combi-
nations that worked well across most videos. This suggests
that an adaptive estimation oft would be more appropri-
ate, for which we develop a new video representation called
Variable Threshold Image.

Variable Threshold Image. For robust estimation of
changes in the number of active cells across the video,
we use avariable threshold image (VTI)as a representa-
tion of the motion in a video. We first discretize the non-
trivial range of possible thresholdst into M evenly spaced
values{t1, . . . , tm, . . . , tM}. The VTI representation of a
video with n = 1, ..., N frames is then anM × N im-
age, whose every pixel at location(m, n) encodes the dif-
ference in the total number of active cells detected at thresh-
old t = tm in frames{n − L, n − L + 1, ..., n} and frames
{n + 1, n + 2, ..., n + L}. Figure 4 shows a contour plot
of the VTI for a typical play that includes some periods of
camera motion. The VTI provides a more complete view of
the overall motion of the video than the aforementioned 1-D
temporal signal (see Fig. 2). In particular, the local optima
in the VTI tend to correspond to actual large changes in mo-
tion on the football field, as illustrated by labels of the time
intervals of different events in the football play in Figure4.

To understand why such local optima occur, consider
an event that causes an increase in the amount of motion
starting at framen. For some thresholdtm, VTI(m, n)
will be large. As we increase the threshold,tm′ > tm,
the difference in active cell numbers will tend to decrease,
VTI(m, n) > VTI(m′, n), since for larger thresholds there
will be overall fewer active cells (even with motion). Fur-
ther, as we move away from framen to framen′, where
n′ < n or n′ > n, and keep the threshold fixed attm,
VTI(m, n′) < VTI(m, n), since for a framen′ we will have
similar numbers of active cells before and aftern. Thus,
motion events will tend to register as peaks in the VTI.

MOS Classification.The VTI optima may correspond to
several possible types of motion events on a football field,
including the MOS, player motion before the MOS, and
camera pans and zooms. As a result the problem of find-
ing the MOS using the VTI amounts to selecting the correct
local optima. To do this, we performed an exploratory anal-
ysis of various easily computable properties of local maxima
across a variety of videos with different characteristics.Such
properties included, absolute and normalized values of the
maxima, area of the maxima, the absolute and normalized
optical flow values before and after the maxima, etc. Given
these features, we pursued a machine learning approach to
classifying optima as the MOS using different classifiers, in-
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Figure 3: Contour plot of variable threshold image for a
football play. The x-axis shows frame numbers, and the y-
axis shows thresholdt values of active cells.

Figure 4: Contour plot of variable threshold image for a
football play. The x-axis shows frame numbers, and the y-
axis shows thresholdt values of active cells.

Figure 5: Sample Videos - Video1 (top), Video2 (bottom)

cluding linear SVM, RBF-SVM, and decision trees. How-
ever, none of these classifiers gave satisfactory results, due
to the mentioned huge variations in training and test video
sets. Therefore, we resorted to our domain knowledge, and
hand-coded the following classification rule for selectingan
optimum of the VTI as our MOS estimate.

We first collect the top local optima that have a value
within 50% of the best local optima. We find that this set
of optima almost always contains the optimum correspond-
ing to the true MOS. We then select the optimum from that
set that has the minimum amount of raw optical flow oc-
curring in theL frames before it. The intuition behind this
rule is that it is generally the case that the true MOS pro-
duces a local optimal with the best value or very close to the
best value. Further, the time before the MOS is generally
fairly free of significant motion, even camera motion. This
is because most players will be standing still and the camera
is generally focused waiting for the action to begin. There
are cases when the camera is moving or zooming during the
MOS (generally considered bad camera work). But our rule
often works in those cases as well.

6 Experiments
We evaluate our moment of snap detector on a set of 500
videos of high school football plays from the company’s
web-service database. Each video is hand-labeled by the
frame number of the MOS for evaluation purposes. The
videos are selected by the company to be representative of
the video diversity they obtain from their customers, and
is constrained only to include sideline view videos. The
videos vary widely in viewpoint, number of players in the
video, presence of a crowd, resolution, duration, scale, field
color, and camera work. This makes the dataset very uncon-
strained. Figures 1 and 5 shows snapshots of sample videos.

Parameter Sensitivity and Selection.Our input param-
eters are the scanning window sizeL described in Section
5, and the “frame gap” used when computing optical flow.
The frame gap ofv indicates that optical flow is computed
at frames that are multiples ofv. Larger values ofv lead to
faster computations of, but less accurate optical flows. We
begin by considering the impact ofL on MOS accuracy. Ta-
ble 1 shows quantitative results for different windows sizes
using a fixed frame gap of 2. For each window size we show
the percent of videos that have a predicted MOS within a
specific number of frames of the true MOS. We see that the
best results occur for values ofL ranging from 100 to 150
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Error(frames)
W-Size (frames)

50 100 150 200

[−5, +5] 38 39 35 24
[−15, +15] 30 30 30 28
[−30, +30] 5 15 17 10
≥ 1 second 27 16 18 38

Table 1: Percent of videos in different error ranges for dif-
ferent values of the window sizeL. [−δ, δ] corresponds to
videos where the predicted MOS is withinδ frames of the
true MOS. The final row is for videos whose predictions
are greater than 30 frames (1 sec) away from the true MOS.
[−δi, δi] does not include videos in[−δj , δj ] wherej < i.
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hh

Error(frames)
Gap(frames)

2 3 5

[−5, +5] 39 32 28
[−15, +15] 30 34 31
[−30, +30] 15 15 17
≥ 1 second 16 19 24

Table 2: Error when applying our algorithm with different
gaps and window size = 100. Accuracy in [%]

frames. When using small windows, we are more suscepti-
ble to noise, while larger windows smooth out the signal too
much for good localization. Based on these results we use a
value ofL = 50 for the remainder of our experiments.

Table 2 shows quantitative results for different values of
the frame gapv when usingL = 100. After discussions
with the company, it was decided that the maximum runtime
permissible by our approach was approximately 4x to 5x of
real-time. Given this constraint, the minimum frame gap that
we can consider isv = 2. From the table we see that indeed
a gap ofv = 2 provides the most accurate results, and thus
we use this value for the remainder of the paper.

Comparison to Baselines.As described in Section 5, we
considered a variety of baseline approaches early in our de-
velopment that computed simple statistics of the raw opti-
cal flow changes in time. Here we compare two of the best
baselines of this type: 1)Max Change, which measures the
difference in total optical flow between successive frames,
and returns the frame preceding the maximum difference;
and 2)First Big, which selects the frame preceding the first
“big” change in optical flow, where big is relative to the set
of changes observed in the video. Note that the baselines
only consider optical flow within the extracted field bound-
aries, which make them more comparable to our active-cell
approach. Table 3 shows the results of two baselines, and
our approach forL = 100 and v = 2. We see that the
baselines do not perform very well, and commit a large per-
centage of errors over 1 second. Rather, our approach has a
much smaller percentage (16%) of 1 second errors. A large
fraction of the active cell results are extremely accurate,with
69% having an error less than 15 frames or 0.5 seconds. As
we will show later, these levels of error appear to be at a
level that can be useful for video initialization and cutting.

`
`

`
`

`
`

`
`

`
`

`

Error(frames)
Method

Max Change First Big Ours

[−5, +5] 2 3 39
[−15, +15] 3 7 30
[−30, +30] 6 12 15
≥ 1 second 89 78 16

Table 3: Comparison with baselines. Accuracy in [%]

Running Time. The average runtime of our code, imple-
mented in C, per frame, used by each computational step is
as follows: 1) Field boundary extraction 1ms, 2) Optimal
flow calculation 105ms, and 3) Active cell analysis 49ms.
The optical flow consumes about 2/3 of the total runtime.

Error Analysis. We carefully examined videos where our
current approach makes errors of more than 1s. The errors
can be grouped into two categories: 1) The MOS occurs at
or very close to the first video frame, and 2) A local opti-
mum corresponding to a non-MOS event has a significantly
higher value than that of the MOS. The reason for the first
case is obvious. Our method ignores the first and lastL

2

frames of the video since the sliding window of lengthL
is centered at each analyzed frame. The second error case
is more complex, and is related to arguably poor camera
work. In some videos, there are one or more extremely jerky
camera movements. Those movement can lead to large lo-
cal optima due to apparent movement of background objects
on the field (e.g. numbers, lines, logos) and/or non-moving
players. One way to avoid the second type of error is to
explicitly estimate and subtract camera motion from the op-
tical flow. However, existing approaches to camera motion
estimation cannot deal will our video diversity.

Video Cutting Evaluation. An important application of
our MOS estimator will be to cut unnecessary pre-MOS
parts of the video. We say that the estimated cut point is
a bad cutif it occurs after the MOS. To avoid bad cuts, the
company plans to propose cut points not exactly at our esti-
mated MOS, but rather at some number of frames∆ before
our our MOS estimate. We considered three values of∆ and
measured the percentage of bad cuts across our data set for
each: 1)∆ = 0: 63% bad cuts, 2)∆ = 30: 11% bad cuts,
and 3)∆ = 60: 8% bad cuts. These results show that∆
need not be large to arrive at reasonably small bad cut rates.
The majority of these remaining bad cuts are due to videos
with very early moments of snap, which as we discussed
above, our method does not properly handle, yet.

7 Road to Deployment
Considering the size and diversity of our dataset, the above
results show that the current system can have utility in real
software. The current plan is to begin integrating the MOS
estimator into the highlight viewer and editor functionality
provided by the company in 2013. The MOS detector will
be used for smart initialization of video and safe cutting.

There is interest in improving our current approach, both
in terms of runtime and accuracy/reliability. Regarding com-
putation time, we will explore alternative optical flow calcu-
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lations and video sampling strategies. We will also evaluate
the speedups attainable via GPU implementations.

Regarding improving the accuracy and reliability, we are
currently pursuing two directions. First, in terms of relia-
bility, we are interested in providing the company not only
a MOS estimate, but also a confidence associated with our
estimate. When our system indicates high confidence the
accuracy should almost always be high. Such a confidence
estimate would be quite valuable to the company, since they
could choose to only act on highly confident predictions.

Our second effort toward accuracy improvement is to ad-
dress the two main failure modes observed in our experi-
ments. First, to address the issue of camera motion, we are
currently developing approaches for estimating the camera
motion that are tailored to our data. In particular, we are de-
veloping estimation techniques based on tracking the lines
on the football field. The other major error mode was for
videos where the MOS occurs very close to the start. We
plan to work on determining whether there was any signifi-
cant player motion at the start of the video.
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