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Summary:  Monitoring the structural health of heavy-haul rolling stock is critical to ensuring safe and 
efficient railroad operation.  As a result, periodic manual inspections are required to detect structural 
damage and defects.  These inspections rely heavily on the acuity, knowledge and endurance of qualified 
inspection personnel.  There is the potential to enhance inspection effectiveness and efficiency through 
machine vision technology, which uses computer algorithms to convert digital image data into useful 
information. This paper describes research and development of an automated machine vision inspection 
system capable of detecting structural defects in freight car underframes.   
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1. INTRODUCTION 
 
United States Federal Railroad Administration 
(FRA) regulations require that every car placed 
in a train must be inspected by a car inspector or 
train crew member before departing a yard or 
terminal.  The current railcar inspection process 
is tedious, labor intensive, and relies on 
personnel with varied experience and training, 
performing their task under a wide range of 
environmental conditions.   Additionally, there 
exists no practical means of recording and 
retaining inspection information unless a billable 
repair is required.  This makes it difficult to track 
a car’s condition over time or perform trend 
analyses.  As a result, the majority of railcar 
maintenance is reactive, resulting in less efficient 
repair and maintenance processes. 

Consequently, the Association of American 
Railroads (AAR) and the Transportation 
Technology Center, Inc. (TTCI) initiated a 
program to develop and implement automated 
inspection technologies, called Technology 
Driven Train Inspection (TDTI).  
 
1.1 Technology Driven Train Inspection 
 
The goal of TDTI is to provide safer, more 
efficient, and traceable means of rolling stock 
inspection by automating the mechanical 
inspection process through a variety of 
technologies [3].  Examples of these 
technologies include the automated inspection of 
railcar truck components, safety appliances and 
passenger car undercarriages [4, 5, 6].  The 
ultimate vision of TDTI is a network of 



automatic wayside systems capable of inspecting 
and monitoring the North American freight car 
fleet in order to maintain compliance with FRA 
regulations and railroad-specific maintenance 
and operational standards.  To reach this goal, 
the final wayside inspection systems must be 
comprehensive in scope, inspecting all aspects of 
the car.  As a result, TDTI has initiated the 
development of separate automated inspection 
technologies that will address each aspect of the 
federally-mandated freight car inspection 
requirements.  One aspect of the TDTI initiative 
is the development of the system known as 
Automated Inspection of Structural Components 
(AISC), which will use cameras and computer 
algorithms to aid in the inspection of freight car 
underbodies.  
 
1.2 Structural Underframe Components 
 
Structural underframe components contribute to 
the structural integrity of the railcar by 
supporting the car body and lading and 
transmitting longitudinal buff and draft forces.  
The primary structural component, the center 
sill, runs longitudinally along the center of the 
car, forming the backbone of the underframe and 
transmitting the majority of buff and draft forces 
through the car [1].  Several other structural 
components are also critical to load transfer, 
including the sidesills, body bolsters, and 
crossbearers.  The sidesills are longitudinal 
members, similar to the center sill, running along 
the entire length of the car on either side.  Body 
bolsters are transverse members near each end of 
the car that transfer the car’s load from the car 
body to the trucks.  Crossbearers and crossties 
are transverse members that connect the sidesills 
to the center sill and help distribute the load 
between the longitudinal members of the car.  
These components work together as a system to 
help maintain the car’s camber and structural 
integrity.  Each of these components must be 
regularly inspected to ensure the safe and 
efficient operation of rolling stock.   

FRA Mechanical Regulations require the 
inspection of center sills for breaks, cracks, and 
buckling, and the inspection of sidesills, 
crossbearers, and body bolsters for breaks [2].  
To effectively detect structural defects, a car 
inspector must walk around the entire car, 
looking beneath it with the aid of a flashlight to 
view each structural component.  Due to time 
constraints associated with typical pre-departure 
mechanical inspections, cars are inspected with 
this level of scrutiny only before undergoing 
major repairs in a car shop.  To address these 
concerns, the AAR and TTCI proposed using 
machine vision technology, in the AISC system, 
to inspect underframe components.  
 
1.3 Machine Vision Technology  
 
A machine vision system acquires data using 
digital cameras, organizes and analyzes the 
images using computer algorithms, and produces 
useful information, such as the type and location 
of defects.  The machine vision algorithms use 
visual cues to locate areas of interest on the 
freight car and then analyze each component to 
determine its variance from the baseline case.  
AISC will work collectively with other 
automated inspection systems to inspect freight 
cars efficiently and objectively and will also 
maintain historical health records for each car 
that undergoes inspection.  Maintaining these 
records will allow potential structural defects to 
be monitored over time so that components are 
repaired prior to failure.  Applying these new 
technologies to the inspection process has the 
potential to enhance rolling stock maintenance 
efficiency and safety. 
 
1.4 Condition Based Maintenance 
 
A primary benefit of AISC and other automated 
inspection systems is the facilitation of 
predictive, or condition-based, maintenance.  
Condition-based maintenance involves the 
monitoring of certain parameters related to 



component health or degradation and the 
subsequent corrective actions taken prior to 
component failure [7].  Instead of taking 
advantage of condition-based maintenance, 
current structural component inspection and 
repair practices rely on corrective maintenance, 
which occurs only after a critical defect is 
detected.  This approach maximizes component 
service life but makes repair planning difficult.  
Furthermore, when repairs are needed, they can 
disrupt service, leading to higher expenses and 
reduced efficiency. Railroads have recognized 
the advantage of predictive maintenance and 
have begun implementing other technologies 
similar to AISC that monitor subtle indicators of 
railcar component health (e.g. Truck 
Performance Detectors and the AAR’s Fully 
Automated Car Train Inspection System - 
FactISTM) [8].  
 
2. REGULATORY COMPLIANCE 
 
According to Section 215.121 of Title 49 in the 
U.S. Code of Federal Regulations (CFR),  
structural underframe components must be 
inspected on each railcar placed in a train [2].  
The specific regulations pertaining to freight car 
bodies form the basis for determining which 
components will be inspected by AISC.  
According to the regulations, the center sill may 
not be broken, cracked more than 6 inches, or 
bent/buckled more than 2.5 inches in any 6 foot 
length.  Specific parameters are also established 
for the allowable magnitude of cracks and 
buckling because these defects may undermine 
the integrity of the sill, resulting in a center sill 
failure [9].  Fines assessed by FRA inspectors for 
a broken center sill are among the highest in 
CFR 215.121, matched only by violations due to 
loose or broken axles.    
 
Inspection data from the FRA Office of Safety 
from 2000 to 2007 shows that on average 59% of 
structural component defects are comprised of 
broken, cracked, bent, or buckled center sills 

(CS), while the remaining 41% represent 
defective sidesills (SS), body bolsters (BB), or 
crossbearers (CB) (Figure 1).  Based on these 
data and guidance from the AAR, the primary 
focus of AISC is inspecting the center sill and 
the secondary focus is the inspection of other 
structural components.  All these components, 
although infrequently defective, are critical to 
the structural integrity of the freight car. 

Figure 1:  Average number of structural defects recorded 
by FRA Motive Power and Equipment inspectors per year 

 
3.       BACKGROUND 
 
Previous research at UIUC has demonstrated the 
feasibility of using machine vision to detect 
defects and other anomalies on the underbodies 
of passenger cars and locomotives [6].  
Algorithms using both the visible and infrared 
spectra demonstrated that missing, damaged, or 
overheated components could be detected as 
well as incipient failures and foreign objects 
beneath the cars.  Videos of in-service trains 
were recorded as they moved over a stationary 
camera mounted in a pit beneath the tracks.  The 
combination of information from both the 
thermal and visible spectra identified certain 
defects that might otherwise go unnoticed by 
human inspectors.  This research addressed the 
difficulties of acquiring images from beneath a 
railcar: an inherently challenging location due to 
lighting requirements, space constraints, and the 
difficulties involved in protecting the equipment. 
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Another machine vision system was developed 
to inspect railcar truck components using 
wayside cameras and a perpendicular view of the 
truck [4].  Computer algorithms were developed 
to detect the locations of brake components, 
spring sets, and bearing end cap bolts.  This 
work laid the groundwork for developing 
additional automated freight car inspection 
systems using machine vision, such as the 
Automated Safety Appliance Inspection System 
(ASAIS) [5].  ASAIS detects deformed ladders, 
handholds, and brake wheels, using visual 
learning techniques to determine the difference 
between FRA defects needing immediate 
attention and deformations that are less critical.  
The results and methods developed in these 
projects have been incorporated into other 
aspects of the AAR’s TDTI program, and 
knowledge gained from these research initiatives 
was applied to inspecting the underbody of 
freight rolling stock in the current project.   
 
4. METHODOLOGY 
 
The goal of the work done at UIUC was to 
demonstrate the feasibility of AISC. The initial 
stages of this project focused largely on 
collecting images of representative railcar 
structural components.  Using computer 
algorithms, these images were converted from 
raw video data into full panoramas of the railcar 
underbody.    Subsequent algorithms and 
approaches were developed to analyze the 
panoramas, detect components of interest, and 
locate defects. 
 
4.1 Preliminary Image Acquisition 
 
Initial tests were conducted at the Monticello 
Railway Museum in Monticello, IL on an Illinois 
Central, 1950 era AAR-standard-design hopper 
car.  The car was rolled over a locomotive repair 
pit while recording videos using various lighting 
arrangements (Figure 2).    
 

     
(a) (b)    

 

Figure 2:  Experimental set-up at Monticello (a); lighting 
and camera arrangement in the pit (b) 

 

The camera and lighting arrangement was placed 
at the bottom of the three-foot pit, and data were 
acquired via a laptop computer adjacent to the 
tracks.  Videos were taken at varying train 
speeds and lighting conditions, and a panoramic 
image was developed from the video data 
(Figure 3).  
 

 
 

Figure 3: Panoramic image of hopper car underbody using 
preliminary image acquisition methods 

 

This image provided initial confidence in the 
feasibility of this method of automated structural 
component inspection, because the structural 
components including the center sill and 
crossbearers were clearly visible.  Many 
mechanical components are also visible in the 
panorama including the couplers, much of the 
draft gear, the truck bolsters, the brake rigging, 
brake beam, the interior springs in each spring 
nest, and the axles.  Initial data acquisition 
efforts verified the feasibility of capturing 
structural components of interest and provided a 
basis for properly illuminating the railcar 
underbody. 
 
4.2 Data Collection 
 
After analyzing the preliminary image 
acquisition results and subsequent data collected 
using  portable image acquisition carts, an 



experimental set-up was developed (Figure 4) 
and data collection procedures were defined.  

 
Figure 4: Equipment set-up showing 90° straight-up view 

 

This equipment arrangement was used during 
testing at a Norfolk Southern locomotive repair 
facility in Decatur, IL (Figure 5).    
                                 

      
(a) (b) 

 

Figure 5:  Locomotive repair pit used for data collection 
(a); camera and lighting set-up (b) 

 
 

Tests were run on several different railcars by 
rolling them above the camera at 3-5 mph.  As 
before, the videos were developed into 
panoramic images (Figure 6).  Results from the 
testing at Decatur show much more even 
illumination for the hopper car image (Figure 6a) 
as compared to the previous hopper panorama 
(Figure 3).  Only the center strip of each 
individual video frame is extracted to develop 
the panorama, so improvements were made by 
focusing illumination at the center of the image. 
The panorama of the gondola underbody (Figure 
6b) provides a clear view of the center sill, 
crossbearers, and crossties (the thinner lateral 
members between the crossbearers).  
 
Other components of the gondola are also clearly 
visible including the brake reservoir, brake 
cylinder, and the entire foundation of the braking 
system.  In order to determine the resolution of 
the panoramic images, engineering drawings 
were acquired from Norfolk Southern for each of 
the cars that were tested.  By measuring the 
length of components in the panoramic image in 
pixels and dividing by the actual lengths of the 
components, the pixel-to-foot ratio (i.e. the 
image resolution) was determined to be 92.3 
pixels per foot.  
 
 
 

        
 

 
 

Figure 6: Panoramic images of hopper car (a) and gondola car (b) taken from NS locomotive repair facility in Decatur 

(a) 

(b) 



5. DATA ANALYSIS 
 
Given a panoramic image of the car underbody, 
the algorithms must detect and localize the 
center sill and inspect it for two types of defects: 
(i) deformation, caused by bending and/or 
buckling and (ii) the presence of breaks or 
cracks.  The need to minimize processing speed, 
as well as the nature of the two types of defects 
being considered, necessitates a multiscale-
analysis approach.  The image area occupied by 
the center sill and the image region representing 
a crack differ significantly in size.  As a result, 
the detection of the center sill requires analyzing 
large pixel neighborhoods; while the detection of 
breaks and cracks requires analyzing fine-
resolution image details.  A computationally 
efficient strategy capable of addressing these two 
image-analysis extremes is known as multiscale 
image segmentation.  This strategy provides 
access to pixel neighborhoods of varying size, 
which can be further used for detection and 
inspection of the center sill. The machine vision 
algorithm will consist of the following steps: 
First, parse the panoramic image into 
homogeneous-intensity regions at all degrees of 
inter-region versus intra-region homogeneity of 
pixel values present in the image; Second, 
analyze regions obtained at the coarsest scale 
(showing limited detail) to detect the center sill 
by using a known model (e.g. a rectangular 
shaped object located at the center of the 
panoramic image); Third, inspect the contours of 
the image regions occupied by the center sill to 
measure their deviation from the model, and thus 
the degree of the sill’s bending and buckling; 
and Fourth, recursively analyze sub-regions 
embedded within the region representing the 
center sill to detect cracks or breaks in the center 
sill by using known models (e.g., a crack 
typically appears in the image as an elongated, 
dark region that represents a discontinuity in 
brightness of the center sill).  This recursive 
analysis is feasible due to the multiscale image 
segmentation algorithm previously developed at 

UIUC and noted in step one [10, 11, 12].  In this 
case, object detection immediately produces 
object segmentation since region boundaries 
generally coincide with boundaries of an object 
present in the image.  That is, detection of the 
center sill in step two simultaneously delineates 
its boundaries, and thus localizes its position in 
the image.  Similar to center sill detection, the 
identification of cracks and breaks in the center 
sill is based on known models of these defects.  
Identification of a crack or break simultaneously 
localizes its position, orientation, and length, and 
can be used to evaluate the magnitude of the 
discovered defect. 
 
5.1 Multiscale Image Segmentation 
 
The segmentation algorithm partitions the image 
into homogeneous regions of previously 
unknown shape, size, gray-level contrast, and 
topological context.  A region is perceived to be 
homogeneous if variations in pixel intensity 
within the region are smaller than intensity 
variations of its surroundings, regardless of its 
absolute degree of variability.  Consequently, 
image segmentation may be performed at a range 
of homogeneity values (Figure 7).   
 

 
 
 

 
 
 

 
 

 
 

Figure 7:  Multiscale segmentation hierarchy of the hopper 
car image showing the car underbody with the 

segmentation scale increasing from top to bottom 
 

At any scale, recursive segmentation may be 
performed to extract finer scale segments 
characterized by an increasing degree of 
homogeneity. This process continues until one 



obtains strictly constant intensity regions, 
yielding a multiscale segmentation of the image. 
As the scale increases, smaller regions strictly 
merge to form a larger region, which means that 
the segmentation algorithm is hierarchical.  The 
same multiscale segmentation algorithm can also 
be used for simultaneous inspection of other 
structural components in addition to the center 
sill.  For example, analyzing the image 
segmentation at a finer scale than that used for 
center sill inspection, crossbearers can also be 
inspected for breaks, cracks, bending and 
buckling (Figure 8). 
 

    
(a) (b) 

 

Figure 8:  Digital picture of a broken crossbearer (a) with a 
fine-scale segmentation of the image (b) 
 

5.2 Center Sill Inspection 
 
All videos are taken from the same camera 
distance and viewpoint, so the train moves 
nearly parallel to one of the camera axes.  This 
allows us to hypothesize that the center sill:  (1) 
is centrally located in the corresponding 
panorama, (2)  appears as a rectangle with 
possible embedded patterns within the rectangle, 
and (3) two longer edges of the rectangle lie 
along two image rows.  Therefore, the center sill 
can be modeled as a large, rectangular-shaped 
object, prominently featured at the center of the 
panoramic image against the darker background.  
A template is developed based on the model 
parameters above or made from averaging 
templates created from panoramic images from 
cars of the same type.  Then, starting with the 
coarsest levels of the segmentation hierarchy, the 
template is matched to the segmentation image 
to find the central location of the center sill 
between the wheel sets (Figure 9).   

 
  

Figure 9:  Center sill detection using the coarsest-scale 
segmentation 

 

Once identified, the matching edges are 
interpreted as contours of the center sill.  These 
identified edges are also taken as the general 
direction in which the center sill extends across 
the image.  Given that the camera view is along 
the surface perpendicular to and directly below 
the center of the car, the known physical width 
of the center sill in the scene can be immediately 
mapped to the number of pixels associated with 
this width in the image.  This mapping technique 
serves to calibrate the measurement of 
deformation of the center sill in the image. The 
average error of identified contours of the center 
sill using multiscale segmentation, is two pixels, 
which corresponds to only 0.26 inches. 
Improved camera resolution should reduce this 
error even further. 
 
5.3 Pixel Summation 
 
An alternative, less computationally intensive 
method could be used to find the central location 
of the center sill.  This method, based on pixel 
summation, is carried out by summing the pixels 
longitudinally for each row of the segmented 
image (or edge image) of the car panorama.  
Along each row in the edge image (Figure 10a) 
we compute the number of pixels present  (i.e., 
pixels belonging to longitudinal edge lines in the 
image).  Prominent peaks in the histogram of the 
pixel summation denote long, straight sections in 
the image (Figure 11). Since the center sill 
creates the longest edges in the panoramic 
image, the two largest peaks (rows 276 and 388) 
correspond to the outer contours of the center 
sill, while the four interior peaks correspond to 
the inner contours of the center sill.  The outer 
contours of the center sill are then denoted with 
parallel lines (Figure 10b).   
 



          

 
  

      
 

Figure 10: Edge image of gondola car underbody panorama (a) and original panorama with center sill detected (b) 

 

 
 

Figure 11: Histogram of the pixel summations belonging 
to region boundaries 

 
These detected edges can then be used to guide 
the search for the remaining parts of the center 
sill as described in the previous method.  Once 
the contours of the center sill are identified, they 
are compared with the ideal template.  Any 
deviation from the parallel lines is interpreted as 
deformation.  Note that this method can be 
applied in the lateral direction as well to identify 
and inspect crossbearers and crossties.  In this 
way, pixel summation provides flexibility with 
reduced computational requirements.  However, 
it does not provide the same level of accuracy or 
robustness as the multiscale segmentation 
approach when considering the constraints of the 
AISC system.  
 
5.4 Inspection of Cracks and Breaks 
 
The image region identified as the center sill will 
be analyzed to detect the presence of cracks and  

 
breaks.  This phase of work is still in preliminary 
stages, but a multiscale process has been 
proposed as a potential approach to this aspect of 
inspection.  Both cracks and breaks can be 
modeled as distinct objects that may occur in the 
image area occupied by the center sill.  A crack 
can be modeled as a homogeneous, elongated 
region that appears darker than the center sill.  
Similarly, a break can be modeled as a dark 
region that represents a discontinuity in the 
following properties of the center sill: brightness, 
contiguity of the sill’s contours, and co-linearity 
and parallelism with parts of the center sill’s 
contours.  To identify breaks and cracks, a 
multiscale strategy will be used that recursively 
searches smaller subregions embedded in the 
region occupied by the center sill, and contrasts 
them against models of breaks and cracks 
(Figure 12).   
 

        

 (a) (b) (c) 
 

  Figure 12: Original digital image of a crack (a), and fine 
to coarse segmentation images, from multiscale 

segmentation, showing good isolation of a crack to be 
identified (b) and (c) 

 
If any of these subregions exhibit properties 
defined by the models, they will be considered as 

(a) 

(b) 



potential cracks or breaks.  In addition to 
detection, we will also be able to identify the 
position, orientation, length and other 
characteristics of cracks and breaks and thus 
assess the degree of damage.  Since cracks, in 
general, appear at finer resolutions of the image 
segmentation, their detection is expected to be 
more difficult than breaks; however, preliminary 
field data indicate that it will be feasible. 
 
6.     DISCUSSION AND CONCLUSIONS 

 
Initial data collection and analysis has 
demonstrated the feasibility of AISC for the 
improvement of the effectiveness and efficiency 
of railcar underbody inspections.  This study 
provides the basic system parameters needed to 
inspect and evaluate the health of railcar 
structural underbody components and provides 
several machine vision approaches for inspection 
and defect detection.  As a result of this research, 
vendors have designed and implemented a field 
prototype and begun testing at mainline speeds.  
When complete, AISC will be capable of 
inspecting the undercarriage of an entire train, 
identifying areas of concern, reporting the 
suspected defects to qualified inspection 
personnel, and documenting the condition of 
structural components for the implementation of 
condition-based maintenance.  AISC will also 
provide the basis for future machine vision 
systems capable of addressing other mechanical 
component problems visible from the bottom of 
the car (e.g. missing coupler pins, broken or 
missing coupler retaining pin bolts, and broken 
train line trolleys). 
 
The ultimate goal for railcar inspection is a 
complete, automated inspection system that will 
inspect the entire car via a system of wayside 
cameras, including the AISC cameras located 
below the car.  In this way, freight cars will be 
inspected more thoroughly and efficiently and 
the safety risks associated with manual car 
inspection will be minimized through the 

reduced exposure to potential yard hazards.  
Additionally, reducing inspection time will 
increase yard efficiency and improve overall 
network capacity by reducing the time needed to 
process inbound and outbound trains. By 
implementing machine vision technology and 
other automated inspection systems, North 
America’s railroads will be poised to improve 
system-wide safety and efficiency through 
condition-based maintenance strategies and 
reduced network costs associated with the 
current inspection process. 
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