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A BST R A C T 
 
To ensure the safe and efficient operation of the approximately 1.6 million freight cars (wagons) 
in the North American railroad network, the United States Department of Transportation 
(USDOT) Federal Railroad Administration (FRA) requires periodic inspection of railcars to 
detect structural damage and defects.  Railcar structural underframe components, including the 
center sill, sidesills and crossbearers, are subject to fatigue cracking due to periodic and/or cyclic 
loading during service and other forms of damage.  The current railcar inspection process is time 
consuming and relies heavily on the acuity, knowledge, skill and endurance of qualified 
inspection personnel to detect these defects.  Consequently, technologies are under development 
to automate critical inspection tasks to improve their efficiency and effectiveness.  Research was 
conducted to determine the feasibility of inspecting railcar underframe components using 
machine vision technology.  A digital video system was developed to record images of railcar 
underframes and computer software was developed to identify components and assess their 
condition.  Tests of the image recording system were conducted at several railroad maintenance 
facilities.  The images collected there were used to develop several types of machine vision 
algorithms to analyze images of railcar underframes and assess the condition of certain structural 
components.  The results suggest that machine vision technology, in conjunction with other 
automated systems and preventive maintenance strategies, has the potential to provide 
comprehensive and objective information pertaining to railcar underframe component condition, 
thereby improving utilization of inspection and repair resources and increasing safety and 
network efficiency. 
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1     IN T R O DU C T I O N 
 
There are approximately 1.6 million freight cars (wagons) operating in the North American 

railroad network and they are subject to wide ranging forms of wear and damage while in service 

[1].  The United States Department of Transportation (USDOT) Federal Railroad Administration 

(FRA) regulations require a car inspector or train crew member to inspect every car placed in a 

train before that train may depart from a yard or terminal [2].  The current railcar inspection 

process is tedious, labor intensive, and relies on personnel with varying degrees of experience 

and training who must perform their tasks under a wide range of environmental conditions.   

Additionally, there is currently no practical means of recording and retaining inspection 

information unless a billable repair is required.  This makes it difficult to track the condition of 

an individual railcar s components over time, thereby preventing trend analyses and predictive 

maintenance.  As a result, US railways have progressively moved away from reactive 

maintenance to planned and scheduled component replacement in order to improve efficiency 

and reduce costs [3].  Consequently, the Association of American Railroads (AAR) and the 

Transportation Technology Center, Inc. (TTCI) initiated the Advanced Technology Safety 

Initiative (ATSI) and a program called Technology Driven Train Inspection (TDTI) to develop 

and implement automated inspection technologies [4-6].  

 

The objective of ATSI and TDTI is to provide safer, more efficient, and traceable means of 

rolling stock inspection by automating the mechanical inspection process through a variety of 

technologies.  Examples of these technologies include wheel impact load detectors (WILDs), 

truck (bogie) performance detectors (TPDs), acoustic bearing detectors (ABDs), and machine 

vision inspection of truck components, safety appliances, and brake shoes [3, 5-14].  The plan for 
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TDTI is to implement an integrated network of automatic wayside (lineside) systems capable of 

inspecting and monitoring the North American freight car fleet with two principal objectives.  

The first goal is to cost-effectively maintain compliance with FRA regulations and railroad-

specific maintenance and operational standards and the second is to improve the overall 

effectiveness and efficiency of the railcar inspection and maintenance process. 

 

In order for TDTI to provide substantial improvement to the inspection process, each component 

and system on the railcar must be addressed.  If not, railcars and trains will still need to stop in 

order to manually inspect the components excluded from automated inspection.  An automated 

system that only addresses a limited selection of inspection tasks, or only inspects certain cars, 

would offer incremental and qualitative benefits, but it may not provide sufficient savings to cost 

justify the investment in these expensive technologies [13].  Consequently, the final wayside 

inspection systems should be comprehensive in scope, inspecting as many aspects of the car as 

possible [8].  In addition to the wide variety of components requiring inspection, there are also 

many variations in the nature of component defects, symptoms of interest, and the required 

means of ascertaining component condition.  As a result, the requisite technologies capable of 

addressing these inspection demands must vary in design and application.  The AAR has 

initiated research and development on a variety of different automated inspection technologies 

that will address many aspects of the federally mandated freight car inspections including brake 

application and release verification, brake shoe thickness measurement, safety appliance 

condition inspection, wheel defect inspection, and wheel profile measurement [3, 6, 8]. 
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2     B A C K G R O UND 

2.1     Structural Underframe Components  

One component of the TDTI initiative is the development of a system known as Automated 

Inspection of Structural Components (AISC) that will use cameras and computer-aided image-

search methods to inspect freight car underframes.  Steel structural underframe components 

contribute to the structural integrity of the railcar by supporting the car body and lading and 

transmitting longitudinal buff and draft forces (slack action) within the train.  On many types of 

freight cars the principal structural member of the underframe is the center sill, extending 

longitudinally along the center from one end of the car to the other.  The center sill is the largest 

element in the underframe structure, supporting vertical loads and also transmitting the majority 

of buff and draft forces through the car [15].  In addition to the center sill, several other 

components are needed to support vertical, longitudinal, static, and dynamic loads while the car 

is in transit.  These components include sidesills, body bolsters, and crossbearers.  Some cars 

also have smaller cross members (sometimes called crossties) and smaller longitudinal members 

known as stringers or floor supports.  Unlike other underframe structural members, neither 

crossties nor stringers bear substantial loads.  The sidesills are longitudinal members running 

along each side of the car.  They are connected to the center sill by various cross members that 

run transversely from the sidesills to the center sill.  The two body bolsters are the largest of 

these transverse members and are located near each end of the car.  Besides their role as major 

transverse members of the underframe structure, they support the carbody atop its trucks 

(bogies).  Crossbearers (and crossties) are additional transverse members connecting the sidesills 

to the center sill and further help to distribute and support vertical loads.  All of these 
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components combine to form a structural system that maintains  structural 

integrity. 

 

2.1.1     Structural Underframe Defects 

Freight car structural underframe components are subject to cyclic loading, shock, and vibration 

while in service.  Cyclic longitudinal loading, also called slack action, occurs in the form of buff 

loading in buff (compression) or draft (tension) must be absorbed by the center sill and 

accompanying structural components.  Lateral cyclic loading occurs in curves as centripetal 

forces generate higher loads on one side of the railcar.  A portion of these loads are carried by the 

sidesill and transferred to the center sill through the crossbearers.  Damage and repeated loading 

and unloading can lead to fatigue-crack growth and ultimately result in fracture of structural 

members.  When cars are overloaded or loaded unevenly, cyclic forces en route are higher, 

exacerbating fatigue stresses.  In addition to cyclic loading, railcars are also subject to periodic 

to structural component defects.  Examples may include: dropping lading into a gondola car 

rather than slowly lowering it or excessive coupling impact speeds during switching or 

classification yard operation.  Due to these potential sources of structural component damage, the 

FRA and railroad mechanical department practices require railcar underframes to be regularly 

inspected to ensure the safe and efficient operation of rolling stock. 
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2.1.2     Structural Underframe Inspection 

Due to the robust nature of railcar designs, frequent inspections, and AAR mechanical standards, 

serious problems with the structural elements are unusual and failures are rare.  However, when 

failures do occur, they pose a high risk of causing a derailment.  As a result, FRA Mechanical 

Regulations require the inspection of center sills for breaks, cracks, and buckling, and the 

inspection of sidesills, crossbearers, and body bolsters for breaks, as well as other selected 

inspection items [2].  To detect defects in all of these structural elements with certainty, a car 

inspector must walk around the entire car, carefully looking beneath it (often with the aid of a 

flashlight) to adequately view each structural component.  North American freight trains average 

approximately 70 cars in length [1] and are often over 100 cars long.  Each car typically receives 

about 1-2 minutes for either in-bound or outbound mechanical inspections.  Under these 

conditions, defects that are not easily seen may go undetected.  Cars are typically inspected with 

the level of scrutiny necessary to detect structural component problems only when entering a 

railcar repair shop for major repairs.  Machine vision technology for inspection of underframe 

components offers the possibility for inspections to be performed more efficiently and 

of the AISC system. 

 

2.2     M achine V ision Technology  

A machine vision system acquires data using digital cameras, organizes and analyzes the images 

using computer algorithms, and produces useful information, such as the type and location of 

defects.  Machine vision algorithms use visual cues to locate areas of interest on the freight car 

and then analyze each component to determine its variance from the baseline case [3, 7, 8].  

AISC will work collectively with other automated systems, leading to railcar inspections that are 
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more efficient, effective and objective than current human-vision inspections.  By storing digital 

inspection data, it will be possible to maintain historical health records for each car that 

undergoes inspection.  Maintaining these records will enable condition monitoring of structural 

elements over time, allowing the repair of defects or damaged components to be appropriately 

scheduled prior to an in-service failure.  As a result, applying machine vision technology to the 

railcar inspection process has the potential to enhance rolling stock maintenance efficiency and 

safety. 

 

A primary benefit of machine vision and other automated inspection systems is the facilitation of 

predictive, or condition-based, maintenance.  Condition-based maintenance (CBM) involves 

monitoring certain parameters related to component health or degradation and taking corrective 

action prior to component failure [16].  Despite the advantages of CBM, current railcar structural 

component repair and billing practices encourage reactive maintenance to correct extant defects, 

rather than prevention of incipient failures.  One of the reasons for this is the lack of cost-

effective technology and infrastructure to conduct thorough inspections of many railcar elements, 

especially underframes.  Due to the reactive nature of corrective maintenance, repairs cannot be 

effectively planned, resulting in higher maintenance expenses and less efficient repairs.  For 

example, it is more economical to patch a cracked crossbearer before it breaks than to replace a 

fully broken crossbearer.  Having recognized the need for CBM, railroads have begun 

implementing other technologies similar to AISC that monitor various indicators of railcar 

Inspection System - FactISTM) [4, 7, 13]. 
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2.3     Previous M achine V ision Research 

Among the earliest research and development in North America on the use of machine vision for 

railroad inspection tasks was work conducted by Conrail who developed a system to detect low-

hanging air hoses in the 1990s [17].  Since then, research on use of machine vision for a variety 

of other railroad inspection tasks has been conducted, including work sponsored by the AAR, 

FRA, BNSF Railway, NEXTRANS Center, and the Transportation Research Board (TRB) High-

Speed Rail IDEA Program [3, 8-12, 18-20]. 

 

The University of Illinois at Urbana-Champaign (UIUC) has conducted several railroad machine 

vision research projects that have been an interdisciplinary collaboration between the Railroad 

Engineering Program in the Department of Civil and Environmental Engineering and the 

Computer Vision and Robotics Laboratory at the Beckman Institute for Advanced Science and 

Technology.  The first of these was a project investigating wayside inspection of railcar truck 

components [8].  The experimental setup used a perpendicular view of the truck with respect to 

the track, and algorithms were developed to both detect the locations of brake components and 

spring sets and identify missing bearing end cap bolts.  This research provided a basis for 

subsequent research on the Automated Safety Appliance Inspection System (ASAIS) [12].  

ASAIS detects deformed ladders, handholds, and brake wheels and uses visual learning 

techniques to determine the difference between FRA defects needing immediate attention and 

deformations that are less critical.  The results and methods developed in these projects has been 

companies and adopted by railroads for field testing. 
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Subsequent UIUC research demonstrated the feasibility of using machine vision to detect defects 

and other anomalies on the underbodies of passenger cars and locomotives [9-11].  Image 

acquisition and machine vision techniques were developed to record images and inspect rolling 

stock and locomotive undercarriages.  Algorithms using images captured in both the visible and 

infrared spectra demonstrated that missing, damaged, or overheated components could be 

detected as well as incipient failures and foreign objects beneath the cars.  Videos of trains were 

recorded as they moved over a stationary camera mounted between the rails in a repair pit 

beneath the tracks.  The combination of information from both the thermal and visible spectra 

identified certain defects that might have otherwise gone unnoticed by human inspectors in the 

course of routine visual inspections.  This research addressed some of the problems associated 

with acquiring images from beneath a railcar: an inherently challenging location due to lighting 

requirements, space constraints, and difficulties involved with keeping the equipment clean and 

protected.  Hardware, algorithms, and technical methodologies for image acquisition developed 

in these earlier projects was adapted and expanded to develop a system for machine vision 

inspection of freight car underframes in the AISC project described in this paper. 

 

2.4     Regulatory Compliance 

The FRA regulations for freight car inspection formed the basis for determining which 

components would be inspected by AISC.  Section 215.121 of Title 49 in the U.S. Code of 

Federal Regulations (CFR) governs the inspection of freight car bodies and two of the six parts 

in this section pertain to the inspection of structural components [2].  According to FRA 

regulations, the center sill may not be broken, cracked more than 15.24 cm (6 inches), or 

bent/buckled more than 6.35 cm (2.5 inches) in any 1.83 meter (6 foot) length.  Specific 
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parameters are established for the allowable magnitude of cracks and buckling because these 

defects may undermine the integrity of the center sill, resulting in a failure [21].  Therefore, these 

regulations are intended to identify potentially hazardous cars so that they will be repaired before 

an in-service failure.  During FRA motive power and equipment (MP&E) inspections, inspectors 

have multiple enforcement options.  The inspector may take exception to the condition of a 

structural component and issue a warning to the operating railroad of possible monetary penalties 

if the defect is not repaired immediately.  When deemed necessary, inspectors can also issue 

violations having monetary penalties ranging from $2,500 to $6,000 depending on the type, 

severity, and location of the defect [2].  

 

2.5     Research Focus 

In order to determine which structural elements should have the highest priority among AISC 

inspection tasks, railcar inspection data from the FRA Office of Safety were analyzed for the 

time period of 2000 to 2007.  Inspection data pertaining only to railcar underframe components 

were considered in this analysis.  59% of all structural component defects identified by FRA 

MP&E inspectors, were broken, cracked, bent, or buckled center sills, while the remaining 41% 

were defective sidesills, body bolsters, or crossbearers (Fig. 1).  

 

These data suggest that defects in the center sill are the most frequent type among freight car 

structural underframe components.  This is consistent with FRA train accident data from 1999-

2008.  Over this ten-year period, bent or broken center sills were responsible for 75 train 

accidents on US Class I railroads in comparison to only 31 accidents due to broken side sills and 

only 1 accident due to a defective body bolster [22].  Given the importance of center sills in 
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providing load bearing capacity and their role transmitting buff and draft forces, the consequence 

of center sill failures are higher than other structural components.  Fines assessed by FRA 

inspectors due to a broken center sill are among the highest of those listed in CFR 215.121, 

matched only by violations due to loose or broken axles.  Risk is typically defined as the product 

of frequency (or probability) and consequence [23].  Center sill defects are more frequent and 

have higher consequences than other structural components, thus the risk associated with center 

sill failure is the highest among railcar structural components.  Therefore, the inspection of 

center sills is a primary focus of AISC and of this research. 

 

3     M E T H O D O L O G Y 

 

3.1     Preliminary Image Acquisition 

The initial stage of this research focused on collecting images of representative railcar structural 

components.  Preliminary tests were conducted at the Monticello Railway Museum in 

Monticello, IL on a 1950-era AAR-standard-design hopper car.  The basic data recording system 

was adapted from UIUC's previous passenger car inspection research [9-11].  Camera and 

lighting equipment were mounted, facing upward, on the floor of a three-foot-deep inspection 

pit, and connected to a laptop computer adjacent to the pit.  Eight halogen lights were arranged in 

a circle with the camera in the center and were manually adjusted in order to provide proper 

Experiments were conducted in which the car was rolled 

over the pit track at various speeds, and images were recorded under various levels of light 

intensity.  A panoramic image was developed using image data from the best (i.e. most clearly 

visible) trial.  Using previously developed panoramic image creation algorithms, the central 
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portions of each consecutive video frame were extracted and appended together to form a 

complete image of the entire railcar underbody [9] (Fig. 2).   

 

The resulting panorama provided initial confidence in the feasibility of this method of automated 

structural component inspection.  Several critical structural underframe components, including 

the center sill and crossbearers, are clearly visible in the panoramic image as well as other 

mechanical components such as the couplers, draft gear, truck bolsters, brake rigging, brake 

beam, interior springs in each spring nest, and axles.  Results from these tests identified specific 

areas for improvement, including better illumination of the recessed portions of the underframe 

most distant from the camera (e.g. the tops of the hoppers). 

 

3.2     Data Collection 

After analyzing preliminary image acquisition results, a more precise experimental setup was 

developed using an additional camera (Fig. 3A), and data collection procedures were defined.  

This equipment arrangement was used during testing at the Norfolk Southern (NS) locomotive 

repair facility in Decatur, IL (Fig. 3B).  

 

The test set-up included two cameras placed below the rails.  In an arrangement similar to the 

setup used at Monticello, Camera 1 was located 1.65 meters (65 inches) below the top of rail, 

centered between the two rails and aimed straight upward, 90 degrees from horizontal (Fig. 3A).  

The video-image collection system for this camera view was a Dragonfly 2 camera recording at 

15 frames per second, with a 4.8mm lens and an f/1.8 aperture.  Illumination was provided by 

eight 575-watt (115 volt) halogen lights, each with parabolic reflectors and medium flood lenses.  

The lights were oriented on the floor of the pit in a circle around the camera, and the intensity of 
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each light could be individually adjusted.  Using a handheld light meter, the maximum luminous 

intensity of each light was determined to be 40,900 lux (3,880 foot candles at a distance of 3 ft.).  

The lights were aimed upward but adjusted inwardly at various angles to provide even 

illumination 

the center sill, while the other four lights were positioned at higher angles (closer to 90 degrees 

vertically) in order to illuminate the more distant portions of the underbody (i.e. the top sections 

of the hoppers).  

 

Camera 2 was positioned 1.22 meters (48 inches) from the field side of the rail, 0.76 meters (30 

inches) below the top of rail, oriented perpendicular to the track and aimed upward 45 degrees 

above horizontal (Fig. 3A).  Equipment for this camera view included a Marlin camera recording 

at 15 frames per second and a 6mm lens with an f/1.4 aperture.  Four individually adjustable 

halogen lights (with the same specifications as those used for Camera 1) provided illumination 

for Camera 2, each oriented at approximately 45 degrees above horizontal.  Tests were run using 

two NS gondola cars and one NS covered hopper car by rolling them past the cameras at 5-8 

km/h (3-5 mph).  Fourteen different videos were recorded during testing, and the image data 

were converted into panoramic images (Fig. 4).  Since the two gondola cars were almost 

identical to each other, images of only one of the cars are shown. 

 

Results from the testing at Decatur show much more even illumination for the covered hopper 

car image (Fig. 4A) compared to the previously recorded hopper car panorama (Fig. 2).  The 

panorama of the gondola underbody (Fig. 4B) provides a clear view of the center sill, 

crossbearers and crossties (thinner lateral members between the crossbearers).  Other 
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components of the gondola that are clearly visible include the brake reservoir, brake cylinder and 

the entire foundation of the braking system.  In order to determine the resolution of the 

panoramic images, engineering drawings were acquired from NS for each of the cars that were 

tested.  By measuring certain components in the panoramic image in pixels and dividing by the 

actual lengths of those components, the pixel-to-cm ratio (i.e. the image resolution) was 

determined to be 3.03 pixels per centimeter (~7.8 pixels per inch).  Each panoramic image was 

developed by combining the center strips of over 400 video frames, with each strip having a 

mean strip size of approximately 12 pixels.  

The panoramas from Camera 2 are much longer due to the fact that this camera was located 

closer to the track than Camera 1.  As a result, the images in Fig. 4C and 4D only represent one 

half of each railcar.  The images from this camera view are valuable because cracks or breaks in 

the side of the center sill would be visible from this angle.  This view can also be used to inspect 

the camber of the car, to determine whether the center sill is sagging or deformed.  

 

4     D A T A A N A L YSIS 

 

4.1     M ultiscale Image Segmentation 

Given a panoramic image of the car underframe, algorithms must detect and localize the center 

sill in the image and inspect it for two types of defects: (i) deformation caused by bending and/or 

buckling and (ii) the presence of breaks or cracks.  The nature of the two types of defects being 

considered necessitates the development of a multiscale analysis approach, where defect search 

functions are performed at various scales, or levels, of image segmentation.  The area occupied 

by the center sill differs significantly in size compared to the area encompassing a crack.  As a 
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result, the detection of the center sill requires analysis of large pixel neighborhoods, while the 

detection of breaks and cracks requires analysis of higher-resolution image details.  A 

computationally efficient strategy capable of addressing these two image-analysis extremes is 

known as multiscale image segmentation [24-26].  Multiscale image segmentation provides 

access to pixel neighborhoods of varying size, which can be further used for detection and 

inspection of the center sill for defects.  

 

The machine vision algorithm requires the following steps:  

1. Using pixel values present in the image, parse the panorama into homogeneous-intensity 

regions at all degrees of inter-region versus intra-region homogeneity. 

2. Analyze regions obtained at the coarsest scale (showing limited detail) to detect the 

center sill by using a known model (e.g. a rectangular shaped object located at the center 

of the panoramic image). 

3. Inspect the contours of the image regions that identify the center sill to measure their 

deviation from the model, thus determining the degree of center sill bending and/or 

buckling. 

4. Recursively analyze sub-regions at different scales of the segmentation, from fine to 

coarse, to detect cracks or breaks in the center sill.  Use models developed from example 

images containing cracks or breaks (e.g. a crack typically appears in the image as an 

elongated, dark region that represents a discontinuity in brightness). 

 

This recursive analysis is feasible due to the multiscale image-segmentation algorithm previously 

developed at UIUC and noted in step one [24-26].  In this case, object detection immediately 
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produces object segmentation since region boundaries generally coincide with boundaries of an 

object present in the image.  That is, detection of the center sill in step two simultaneously 

delineates its boundaries, and thus localizes its position in the image.  Similar to center sill 

detection, the identification of cracks and breaks in the center sill is based on models of these 

defects.  Identification of a crack or break simultaneously localizes its position, orientation, and 

length, and this information can be used to evaluate the magnitude of the discovered defect. 

 

The segmentation algorithm partitions the image into homogeneous regions of previously 

unknown shape, size, gray-level contrast, and topological context.  A region is perceived to be 

homogeneous if variations in pixel intensity within the region are smaller than intensity 

variations of its surroundings, regardless of its absolute degree of variability.  Consequently, 

image segmentation may be performed at a range of homogeneity values (Fig. 5).   

 

At any scale, recursive segmentation may be performed to extract finer scale segments 

characterized by an increasing degree of homogeneity.  This process continues until one obtains 

strictly constant intensity regions, yielding a multiscale segmentation of the image.  The black 

pixels form the boundary lines of the segmented regions.  As the scale increases, smaller regions 

strictly merge to form a larger region, meaning that the segmentation algorithm is hierarchical.  

The same multiscale segmentation algorithm can also be used for simultaneous inspection of 

other structural components in addition to the center sill.  For example, analyzing the image 

segmentation at a finer scale than that used for center sill inspection, crossbearers can also be 

inspected for breaks, cracks, bending, and buckling. 
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4.2     Center Sill Inspection 

The center sill is the largest and single most critical structural component in the railcar 

underbody; therefore its correct identification and inspection is the highest priority of the AISC 

inspection tasks.  The consistency of the camera orientation and panorama development 

techniques allow us to hypothesize that the center sill:  (1) is centrally located in the 

corresponding panorama, (2) appears as a rectangle with possible embedded patterns within the 

rectangle, and (3) contains two long parallel edges that lie along two horizontal image rows.  

Therefore, the center sill can be modeled as a large, rectangular-shaped object, prominently 

featured at the center of the panoramic image.  A template is developed based on the model 

parameters above or made from averaging templates created from panoramic images from cars 

of the same type.  Then, starting with the coarsest levels of the segmentation hierarchy, the 

template is matched to the segmentation image to find the central location of the center sill 

between the wheelsets (Fig. 6A). 

 

Once identified, the matching edges are interpreted as contours of the center sill.  These 

identified edges also indicate the general direction in which the center sill extends across the 

image.  However, some parts of the center sill (e.g. the portion above the truck bolster) are 

partially occluded, and other parts appear in the cluttered areas around the railcar truck (bogie).  

These parts cannot be directly detected using the aforementioned strategy.  Therefore, the 

detected edges must be used to guide an additional search for the remaining portions of the 

center sill.  It is assumed that the amount of possible deformation of the partially occluded parts 

is relatively small, so these portions of the center sill should occur in the vicinity of the 

previously identified general direction of the sill.  The remaining visible parts can then be 
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detected by analyzing a finer-scale segmentation and identifying the edges that lie along the 

general direction of the center sill.  Nearby segmentation boundary pixels are identified to fill in 

missing parts of the center sill contour (Fig. 6B). 

 

Given that the camera view is along the surface perpendicular to and directly below the center of 

the car, the known physical width of the center sill in the scene can be immediately mapped to 

the number of pixels associated with this width in the image.  This mapping technique serves to 

calibrate the measurement of deformation of the center sill in the image.  The average error of 

identified contours of the center sill using multiscale segmentation is two pixels, which 

corresponds to about 0.66 cm (1 pixel corresponds to 0.33 cm, or 0.13 inches).  Improved camera 

resolution should further reduce this error.  Additional errors could be generated by lateral 

motion of the train when passing the AISC system.  These errors were not witnessed during 

testing, however, they could be remedied, should they prove to be a problem.  By maintaining a 

tight track gauge and using guardrails that force the wheel flange against the gauge side of the 

rail at the inspection site, lateral motion could be substantially reduced or eliminated.  

 

4.3   Pixel Summation 

An alternative, less computationally intensive method can also be used to find the location of the 

center sill.  This method, based on pixel summation, is carried out by summing the pixels 

longitudinally for each row of the segmented image (or edge image) of the car panorama.  The 

number of pixels along each horizontal row is computed from the edge image (Fig. 7A).  Long, 

straight sections in the panoramic image will appear as prominent peaks in the histogram of the 

pixel summation (Fig. 8A). 
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Since the center sill creates the longest edges in the panoramic image, the two largest peaks (a 

and f in Fig. 8A) correspond to the outer contours of the center sill, while the four interior peaks 

(b - e in Fig. 8A) in the histogram correspond to the inner contours of the center sill (see Fig. 

8B).  The outer contours along the length of the center sill are then denoted with white parallel 

lines (Fig. 7B and Fig. 8B).  These detected edges can then be used to guide the search for the 

remaining parts of the center sill as described in the previous method.  Once the contours of the 

center sill are identified, they are compared with the ideal template.  Any deviation from the 

parallel lines is interpreted as deformation.  This method can also be applied in the lateral 

direction to identify and inspect crossbearers and crossties. 

 

Additionally, using the panoramas from Camera 2 (Fig. 4C and 4D), the same methods described 

above can be utilized to identify the location of the center sill from the side of the car.  Using 

pixel summation, the bottom edge of the center sill can be identified and inspected for breaks or 

bends.  As a result, the AISC system will detect whether or not the center sill maintains 

appropriate camber and could determine if a car has been overloaded to the point of causing the 

center sill to deform.  Pixel summation provides detection and inspection flexibility with reduced 

computational requirements but does not provide the same level of accuracy or robustness as the 

multiscale segmentation approach.  

 

4.4   Inspection of C racks and B reaks 

The image region identified as the center sill will be analyzed to detect the presence of cracks 

and breaks.  This phase of work is still in preliminary stages, but a multiscale process has been 



 20 

proposed as a potential approach to this aspect of inspection.  Both cracks and breaks can be 

modeled as distinct objects that may occur in the image area occupied by the center sill.  A crack 

can be modeled as a homogeneous, elongated region that appears darker than the center sill.  

Similarly, a break can be modeled as a dark region that represents a discontinuity in the 

-

 

 

The algorithm will first identify the region that delineates the boundary of the center sill (Fig. 

6A).  To identify breaks and cracks, a multi-scale search strategy will be used that recursively 

searches smaller subregions embedded in the region occupied by the center sill.  At each 

segmentation scale, the regions found will be compared to the models developed for breaks and 

cracks, identifying suspect regions corresponding to a center sill crack (Fig. 9). 

 

If any of these subregions exhibit properties defined by the models, they will be considered as 

potential cracks or breaks.  In addition to detection, the AISC system will also be able to identify 

the position, orientation, length and other characteristics of cracks and breaks and thus assess the 

degree of damage.  Since cracks, in general, appear at finer resolutions of the image, their 

detection is expected to be more difficult than breaks; however, preliminary field data indicate 

that it will be feasible. 

 

5     D ISC USSI O N  

The ultimate goal for an automated machine vision railcar inspection system is one that can 

inspect railcars using a series of integrated wayside cameras, including the AISC cameras located 
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below the track.  Through automated inspections, freight cars will be inspected more thoroughly 

and potential risks associated with manual car inspection minimized.  A completely functional 

AISC will be capable of inspecting the underframes of an entire train of cars moving at mainline 

speeds, identifying areas of concern and reporting the suspected defects to railroad inspection 

personnel for further review or repair at terminals ahead.  After implementing algorithms for 

structural component inspection, AISC will provide a basis for future systems capable of 

addressing other mechanical component defects visible from the bottom of the car (e.g. missing 

knuckle pins, broken or missing coupler retaining pins and broken train line trolleys). 

 

In addition to the goals of TDTI, there are other advantages afforded by the use of this 

technology.  The collection of high-quality images of railcar components, even without the use 

of machine vision and computer-aided defect detection, can provide benefits to the railroad 

industry.  For example, a car inspector could be stationed in an office with the task of manually 

inspecting the digital images of railcar underbodies, as trains pass the inspection site.  If used in 

this manner, benefits could be immediately realized, as car inspectors would have a much clearer 

and more comprehensive view of railcar underbodies than is currently possible.  In addition, the 

collection of high-quality images of railcar underframes would also be helpful for security and 

-

including contraband or explosive devices [8].   These images would also provide historical 

documentation of railcar underbody condition that has not been previously available.  As 

machine vision systems develop further, software could be integrated to aid the human inspector 

by highlighting potential defects visible in the images.  Models of humans and machines have 

been used to develop similar hybrid automation systems for other industries, which typically 
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perform better than either humans or machines alone [27, 28].  In this way, railroads could 

benefit from the increased speed of an automated system while improving the quality of human 

decision making.   

 

Finally, the use of automated inspection systems will eliminate wasted effort by allowing carmen 

to spend less time inspecting cars and dedicate more time to the value-adding task of making 

repairs.  This will result in reduced inspection times and will potentially add capacity to 

receiving and departure tracks, thus improving the efficiency of an entire terminal [29].  As a 

result of the benefits in terminals, these technologies may also improve overall railroad network 

efficiency, since average train speed and service reliability are greatly dependant on terminal 

dwell [30-35].  In order to improve yard and terminal efficiency most effectively, all freight car 

inspection tasks will need to be 

underframes) vary substantially among car types, extensive testing will be required to ensure 

appropriate inspection accuracy and minimal false alarm rates.  Machine vision inspection 

capabilities will initially be most applicable to unit trains (i.e. those containing cars of nearly 

uniform design) due to the fact that component image templates (e.g. the shape of the center sill) 

will be consistent for the entire train.  Over time, however, templates can be developed for all car 

types to extend the use of machine vision to manifest, or mixed freight trains.  Although a 

partially automated inspection system (i.e. one that still required one or more cars or components 

to be manually inspected) would provide incremental benefits in effectiveness, terminal 

efficiency and/or labor utilization, the benefits would be disproportionately less.  Therefore, the 

larger TDTI vision, of which AISC is a part, is being pursued by the North American railway 

industry. 
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The technical knowledge exists for the TDTI objective to become a reality, however additional 

work is required to develop and integrate the appropriate systems.  Calibration and validation 

requirements will need to be determined for AISC and other machine vision systems similar to 

those developed for wheel impact load detectors (WILDs) and acoustic bearing detectors (ABDs) 

[36].  In addition, each location where AISC is installed will require site validation, which will 

likely be more extensive than what is required for either WILD or ABD sites, due to the large 

number of disparate components that AISC will inspect.  Although the validation period may be 

longer for AISC and other machine vision systems, these technologies will benefit from the 

framework that has been established for previous wayside detector implementation. 

 

6     C O N C L USI O NS 

The image acquisition system and machine vision inspection algorithms described in this paper 

have demonstrated the feasibility of AISC for the improvement of the effectiveness, efficiency 

and objectivity of railcar inspections.  The initial machine vision system parameters needed to 

inspect and evaluate the health of railcar structural underframes have been determined and 

railway technology supply firms have built a subsequent test installation at TTCI.  This 

installation currently collects images of railcar underbodies at speeds up to 40 miles per hour and 

provides the capability to further develop and refine the AISC system for use with multiple types 

of freight car underframes.  As a result of implementing this machine vision technology and 

other automated inspection systems, railroads will be poised to improve inspection effectiveness, 

take advantage of the operation and management benefits of predictive maintenance strategies 

and improve system-wide network reliability and efficiency. 
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A     L IST O F F I G UR ES 

 

F ig. 1   Average number of annual structural underframe defects recorded by FRA MP&E 

inspectors (2000-2007) 

 

F ig. 2   Panorama of hopper car underframe using preliminary image acquisition methods 
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F ig. 3   Diagram of equipment setup with measurements in meters (A) and locomotive repair pit 

used for data collection (B) 

 

F ig. 4   Panoramic images of hopper car (A & C) and gondola car (B & D) from Camera 1 (A & 

B) and Camera 2 (C & D) 

 

F ig. 5   Multiscale segmentation hierarchy of hopper car image showing car underframe with the 

segmentation scale increasing (i.e. becoming more coarse) from top to bottom 

 

F ig. 6   Center sill detection using the coarsest-scale segmentation (A) and center sill boundary 

identification using finer scale segmentation (B), colors have been modified for document 

reproduction purposes  

 

F ig. 7   Edge image of gondola car underbody panorama (A) and original panorama with center 

sill detected (B) 

 

F ig. 8   Histogram of the pixel summations belonging to center sill region boundaries, with the 

row index of the image on the horizontal axis and the proportion of strong edges on the vertical 

axis (A); (B) is a close-up of Fig. 7B, showing the edges (a - f) corresponding to (A) 

 

F ig. 9   Original digital image of a cracked center sill, provided courtesy of AAR (A) and fine to 

coarse segmentation images (B-F), showing the crack at various segmentation levels 
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