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Abstract. This paper presents an overview of our recent work on shapeeb
object recognition inimages. The overview focuses on theviing related prob-
lems: i) discovery of all distinct 2D object categories fneqtly occurring in an
unlabeled set of images; ii) learning a model of the discederategories; and
iii) recognition and localization of objects from the diseoed categories in new
images. The paper argues that using image contours as basitds, and thus
directly grounding object discovery and recognition onpeheoffers a number
of advantages in solving (i)-(iii) over more commonly usexinp features. Since
shape is directly encoded by layouts of image contours la&iroontour layouts
across the images are expected to belong rather to objeatrences, than the
background. The contour layouts are captured by a graphatieaiirs of match-
ing contours from different images. The graph’s maximum aterori multi-
coloring assignment is taken to represent the shapes afwiised objects. Our
empirical evaluation suggests that shape is more expeessig discriminative
than photometric features for object discovery.

1 Introduction

This paper presents an overview of the shape-based appmabfect recognition and
related problems that we have developed over the last deugaes [1-3]. We briefly
describe the major components of our work, and explain itahges over the more
common methods based on point features (e.g., [4—11]).

The role of shape in representing and recognizing objecimages is a long-
standing question in computer vision. In psychophysici widely recognized that
shape is one of the most categorical object properties YE2] most recent work on ob-
jectrecognition exclusively resorts to appearance feat(e.g., color, textured patches),
arguing that they are more stable to variations in imagimglé®ns (e.g., illumination,
viewpoint). However, there are a number of unsatisfyingeatpassociated with point
features. They are usually defined only in terms of localatisiauities in brightness.
The inherent locality of points cannot represent the fudlted extent of objects in the
image. As a direct consequence, point-based object dateetguires the use of scan-
ning windows of pre-specified size and shape, resulting @rlapping candidate detec-
tions that need to be resolved in a postprocessing step fergzmaxima suppression).
This postprocessing is usually based on heuristic assangdibout the numbers, sizes,
and shapes of objects present. Since the final result ofstidentification of the points
associated with detected objects, it leads to only appratdérabject localization.

A number of approaches, including our previous work, usegenzontours as fea-
tures [11, 13-25]. These methods argue that contours areniergl richer descriptors,



more discriminative, and more noise-tolerant than intguemts. Contours make vari-
ous constraints, frequently used in object recognitionehsas those dealing with con-
tinuation, smoothness, containment, and adjacency—aihphd easier to incorporate
than points. Contours often coincide with the boundarieshjécts and their subparts.
This allows simultaneous object detection and segmemtafibape-based recognition
typically requires a manually specified shape templated2]l or manually segmented
training images to learn the object shape [26]. Such a higH e supervision in train-
ing can be relaxed by combining shape with point features22Jr

It is worth noting that the impact of any shortcomings of atoon detection algo-
rithm should not be confused with the weaknesses of shapedh@presentation. For
example, oversimplifying assumptions made by some edgetien algorithms about
shape, curvature, size, gray-level contrast, and topoddgbntext of objects to be ex-
pected in an image may lead to various errors [29-31]. Fromegperience, these
errors could be addressed by a higher-level recogniticoriifgns, as presented here.

In this paper, we study the role of object shape in the proldéuliscovering in-
stances of frequently occurring object categories (eagdabikes, giraffes, etc.) in an
unlabeled set of images. Object discovery is arguably a rdiffieult problem than
learning visual properties of objects from labeled imagese the former additionally
requires identifying a meaningful image content in the lgsolind clutter, whereas the
latter exploits human annotation for directly accessirgithage content of interest.
Object discovery brings together most recognition relgieablems of interest here,
and serves well to highlight the strengths and shortcomirigssing shape as object
features for recognition. In particular, for object diseoy we deliberately disregard
appearance features, and use only the geometric propeftiesmge contours. In this
way, we are in a position to empirically evaluate if shapexigressive and discrimi-
native enough to provide robust detection and segmentafioommon objects in the
midst of background clutter. Also, we can empirically shalvantages of using only
shape-based cues over photometric features for objechvaise

Most previous work on unsupervised object discovery explphotometric prop-
erties of objects. For example, color of image regions islusdg32, 33], and texture
properties of image patches are used in [34, 35]. In our éxgats, we outperform
these appearance-based approaches to object discoveoghirolject detection and
segmentation on benchmark datasets.

The remainder of this paper is organized as follows. Secietlypreviews our ap-
proach to object discovery and points out our contributi@ec. 3 specifies our shape
representation. Sec. 4 describes how to build a graph fropaab of image contours
to capture shape properties of objects. Sec. 5 presentsrapin gnhulticoloring algo-
rithm for object discovery. Sec. 5 presents our experim@veduation. Finally, Sec. 7
presents our concluding remarks.

2 A Brief Review of Our Approach

This section reviews our approach, originally presentd@]irit consists of three steps,
illustrated in Fig. 1Step 1: Given a set of unlabeled images, we extract their contours
by the minimum-cover algorithm of [36]. Each contour is dwerized as a sequence



Fig. 1. Overview: Given a set of unlabeled images (left), we exttiaeir contours (middle left),
and then build a graph of pairs of matching contours. Conpairs are viewed as collaborat-
ing (straight graph edges), if they similarly deform fromeomage to another, or conflicting
(zigzag graph edges), otherwise. Such coupling of contairs ffacilitates their clustering with
the Coordinate Ascent Swendsen-Wang cut (CASW). The iegudtusters represent shapes of
discovered objects (right). (best viewed in color)

of beam-angle histograms, computed at points sampled d@h@ngontour. Similarity
between two contours is estimated by the dynamic time wgrddTWw) of the cor-
responding sequences of beam-angle descripBbep. 2 builds a weighted graph of
matching contours, aimed at facilitating a separation eflthckground from object
shapes in Step 3. We expect that there will be many simildréyped curves, belong-
ing to the background. Since the backgrounds vary, by digfimisimilar background
curves will most likely have different spatial layouts a&sdhe image set. In contrast,
object contours (e.g., curves delineating a giraffe’s heck more likely to preserve
both shape and layout similarity in the set. Therefore, fgject discovery, it is criti-
cal that we capture similar configurations of contours. Widbai graph, where nodes
correspond to pairs of matching contours, and graph edgesareaspatial layouts of
quadruples of contour&tep 3 conducts a probabilistic, iterative multicoloring of the
graph using the Coordinate-Ascent Swendsen-Wang (CASW)lcieach iteration,
CASW cut probabilistically samples graph edges, and thsigas colors to the re-
sulting groups of connected nodes. The assignments arptadcky the Metropolis-
Hastings (MH) mechanism. After convergence, the resultingters represent shapes
of objects that are discovered in the image set.

3 Image Representation Using Shapes and Shape Description

This section presents Step 1 of our approach. In each imagextract relatively long,
open contours using the minimum-cover algorithm of [36lened to as gPb+ [36].
Similarity between two contours is estimated by aligningitlsequences of points
by the Dynamic Time Warping (DTW). Each contour point is cuwderized by the
weighted Beam Angle Histogram (BAH), illustrated in Fig. BAH is a weighted ver-
sion of the standard unweighted BAH, aimed at mitigatinguheertainty in contour
extraction. BAH down-weights the interaction of distanhtmur parts, as they are more
likely to belong to distinct objects in the scene, rathenttmthe same objects. BAH is
invariant to translation, in-plane rotation, and scalep@&imentally, we find that BAH



Contour detectorls BAH BAH-U| [37]] [38]] [27]
0.23+0.01| 0.21 | 0.18 0.15 0.21
0.59+0.02| 0.57 | 0.48| 0.48 0.52
0.32+0.03| 0.30 | 0.25/ 0.18 0.29
0.784+0.03| 0.75 | 0.62 0.61] 0.72
0.37+0.02| 0.34 | 0.26| 0.20 0.34]
0.814+0.03| 0.78 | 0.63 0.61] 0.74

Canny

[28]

gPb+ [36]

Table 1. Contour matching on the ETHZ image dataset [28]. Top
Fig.2. BAH is a weighted is Precision, bottom is Recall. The rightmost column shows
histogram of beam anglesmatching results of Oriented Chamfer Distance [27], anceoth
0;; at contour pointsP;, columns show DTW results. Descriptors (left to right): oukHB
i=1,2, ... unweighted BAH, Shape Context [37], and SIFT [38].

with 12 bins gives optimal and stable results, and seems mbusst to errors in contour
extraction than some alternative shape descriptors, asteghin Table 1.

4 Constructing the Graph of Pairs of Image Contours

This section presents Step 2 that constructs a weightedhg@ap= (V, E, p), from
contours extracted from all images in the set. Node§ o¢present candidate matches
of contours(u, v")eV, whereu andu’ belong to two differentimages. Similarity of two
contours is estimated by DTW. We keep only the best 5% of eontatches as nodes
of G. The graphis instrumental in capturing both intrinsic getnia properties of shape
parts, and relative layout relationships between shaps.petuis facilitates generating
hypotheses of frequently occurring objects in the imagassimilar contours repeating
in similar layouts in the images.

Edges ofG, e = ((u,v), (v,v")) € E, capture spatial relations of corresponding
image contours. If contoursandwv in image 1, and their matche$ andv’ in image 2
have similar spatial layout, then they are less likely tahglto the background clut-
ter. All such contour pairs will have a high probability todogne positively coupled
in G. Otherwise, matcheg:, «') and (v,v") will have a high probability to become
negatively coupled iz, so that they could be placed in distinct clusters. This prob
bilistic coupling of nodes i+ is encoded by edge weighys,, defined as the likelihood
pd o< exp(—wy d.), given the positive polarity of, andp,  exp(—wj (1-4.)), given
the negative polarity of. w{ andw; are the parameters of the exponential distribu-
tion, andd. € [0, 1] measures a difference in spatial layouts.@ndv in image 1, and
their matches’ andv’ in image 2.

We specifyd. so as to account for small object pose and camera viewpdfet-di
ences across the images. From our experiments, this isatifitir enabling robustness
in the face of noise in contour extraction and representatiide make a distinction
between the following two cases.

Case 1: (u,u’) and(v,v") come fromtwo images, where: andv are in image 1,
andu’ andv’ are in image 2, as illustrated in Fig. 3. We estimé&tén terms of affine
homographies between the matching contours, denotéfj, as andH,,, as follows.



image 2 homographic projection association graph

Fig. 3. Estimating layout differencé,, . ...y When contours: andv are in image 1, and their
matchesu’ andv’ are in image 2. We use the affine-homography projection’aind v’ to
image 1" = H,,v andv” = H,,v', and computd as the average distance betweeand
u”, andv andv”. The figure with projections shows that the contofrss’, v, v') have different
layouts in image 1 and image 2, whereas the contura’, v, v") have a similar layout.

From the DTW alignment of points alongandu’, we estimate their affine homography
H,.,. Similarly, for v andv’, we estimateH,,.. Then, we projec/’ to image 1, as
u”"=H,,u, and, similarly, project’ to image 1 a®”=H,, v" (Fig. 3 right). Next,

in image 1, we measure distances between correspondints mdin andv”, where
the point correspondence is obtained from DTWucdnd«'. Similarly, we measure
distances between corresponding points ahdv”. §. is defined as the average point
distance between andu”, andv andv”.

homographic projection

Fig. 4. Estimating layout differencé,, . ...y When contours: andv are in image 1, and their
matchesu’ andv’ are in image 2 and image 3, respectively. We use auxiliaryotmas in the
neighborhood of: to estimate multiple affine-homography projectionsubto image 1u. =
H,, ', wheres’ is the best matching contour sfin image 2. Also, we use auxiliary contours
¢ in the neighborhood of to estimate multiple projection af to image 1, = Y Hyvv',
wheret’ is the best matching contour ofn image 3. On the right, we show example projections
ul = H,ou' andv; = H,'. Finally, we computel as the average distance betweeand

{u?}, andv and{v;'}.

Case 2: (u,u’) and(v,v") come fromthree images, where, andv belong to im-
age 1,u/ is in image 2, and’ is in image 3, as illustrated in Fig. 4. In this case, we
can neither uséf,,. to projectu’ from image 2 to image 1, ndt,,,- to projectv’ from
image 3 to image 1. Instead, we resort to context providedikifiary contourss’ in a
vicinity of «/, and auxiliary contours$’ in a vicinity of v’. For every neighbos’ of u’
in image 2, we find its best DTW matehin image 1, and compute homographys .
Similarly, for every neighbot’ of v’ in image 3, we find its best DTW matehin im-



age 1, and compute homograpHy;.. Then, we use all these homographies to project
v’ to image 1, multiple times, ag/=H . v/, for each neighboring contour Similarly,

we projectv” to image 1, multiple times, ag’=H,;/v', for each neighboring contour

t. Next, as in Case 1, we measure distances between corrésgqaihts of allu and
{u”} pairs, and alb and{v}’} pairs.d. is defined as the average point distance.

5 Coordinate-Ascent Swendsen-Wang Cut

This section presents Step 3. Our goal is to perform mutiitad of the graph of con-
tour matchesz = (V, E, p), specified in the previous section. The multicoloring parti
tions G into two subgraphs. One subgraph will represent a compdsister of nodes,
consisting of a number of connected components (CCPs)ynegélistinct colors. This
composite cluster contains contours of the discoveredcbbgegories. Nodes outside
of the composite cluster are interpreted as the backgrodmekdge,e € E, can be
negative or positive. A negative edge indicates that theesa@de conflicting, and thus
should not be assigned the same color. A positive edge itedithat the nodes are col-
laborative, and thus should be favored to get the same d¢btardes are connected by
positive edges, they form a CCP, and receive the same colBCR cannot contain a
negative edge. CCPs connected by negative edges form a siiengaster. The amount
of conflict and collaboration between two nodes is definedheylikelihoodp, defined
in Sec. 4.

For multicoloring ofGG, we use the Coordinate Ascent Swendsen-Wang cut (CASW)
that iterates the following three steps: (1) Sample a coitgokuster fromG, by prob-
abilistically cutting and sampling positive and negatidges between nodes Gf This
results in splitting and merging nodes into a new configaratif CCPs. (2) Assign
new colors to the resulting CCPs within the selected con@aduster, and use the
Metropolis-Hastings (MH) algorithm [39] to estimate whetho accept this new multi-
coloring assignment af, or to keep the previous state. (3) If the new state is acdepte
go to step (1); otherwise, if the algorithm converged, riéveste parameters of the
pdf’s controlling the MH iterations, and go to step (1), Uitite pdf re-estimation does
not affect convergence. CASW is characterized by large Mhaapinvolving many
strongly-coupled graph nodes. This typically helps avoihl minima, and allows fast
convergence, unlike other related MCMC methods (e.g.,)[48]the following, we
present our Bayesian formulation of the CASW cut.

5.1 Bayesian Formulation

Multi-coloring of G amounts to associating labéJgo nodes iV, i=1, ..., |V|, where

I, € {0,1,...,K}. K denotes the total number of target objects, which is a priori
unknown, and K + 1)th label is the background. The multicoloring can be forzedi
asM=(K,{l;}i=1,...v|)- To find M, we maximize the posterign M|G), as

M* = arg mj\z}[xp(./\/ﬂG) = arg m/\z/m{xp(./\/l)p(GL/\/l). (1)
We define the prior gg(M) « exp(—wk K) exp(—wy N ), whereN is the number

of nodes that are labeled as background, andandw,y are the parameters of the
exponential distributionp(M) penalizes largdl andN.



We specify the likelihoodp(G|M), in terms of independent Bernoulli edges(of
We define binary functions;, ;, and1;,—;,, which indicate whether node labé)sand
l; are different, or the same. Then, we have

P(GIM) < [Locp+ P [een- P [leemo (1 — pE) Lty - (1 = p2) L=ty » - (2)

whereE™ andE~ are the sets of positive and negative edges present in thpasita
cluster, andt® is the set of edges that are probabilistically cut.

5.2 Inference Usingthe CASW Cut

The CASW cut iterates the following two steps in inferencestep (1), edges dff
are probabilistically sampled. If two nodes have the sarbelldheir positive edge is
sampled, with likelihoog . Otherwise, if the nodes have different labels, their nggat
edge is sampled, with likelihoog; . This re-connects all nodes into new connected
components (CCPs). The negative edges that are sampledonitliect CCPs into a
number of composite clusters, denotedWy. This configuration is referred to state
A. In step (2), we choose at random one composite clubtgrand probabilistically
reassign new colors to the CCPs within., resulting in a new statB.

The CASW accepts the new stafeas follows. Letq(A — B) be the proposal
probability for moving from statel to B, and let¢(B — A) denote the reverse. The
acceptance ratey(A— B), of the move fromA to B is defined as

 min (1, 4B = ApM = BG)
ot =) =min (1, ==

(3)

If «(A — B) is low, stateB cannot be accepted, and CASW remains in state

q(A — B) is defined as a product of two probabilities: (i) the probiabdf gen-
eratingV,. in stateA, ¢(V..|4); and (ii) the probability of recoloring the CCPs within
V.. in stateB, whereV... is obtained in state Aj(B(V..)|V.c, A). Thus, we have

q(BHA) _ Q(‘/wlB) o HeECutE(l_p:)Heecutg(l—pe_)
Q(AHB) N q(‘/CC|A) - HeECutX(l_pj)HeECul; (1—Pg) .

(4)

Note that complexity of each move is relatively low, sincenpating ggfjgg involves

only those edges that are probabilistically cut arolipdin statesA and B — not all

M=B|G) _ p(M=B)p(GIM=B) i i _
edges. Alsog(M:Alg) = g(M:A)’;(G‘M:A) can be efficiently computeg(M = B)

can be directly computed from the new coloring in sﬁwand%
only on those edges that have changed their polarity.

depends

6 Results

This section reviews the empirical validation of our apgiogresented in [2]. The ex-
periments demonstrate advantages of using shape-basedarf@tions and modeling
of objects for recognition versus alternative approaches.



Caltech categorig®©ur method| [35] | [34] | [41] ETHZ categories  [Our method] [35]
A,CFEM 98.62+0.51 [98.0398.5588.82 A,B,G,M,S (bbox) [96.16+0.41[95.85
ACFEM\W | 97.57+0.46 (96.9297.30 N/A A,B,G,M,S (expanded)| 87.35+0.37 | 76.47
A,C.FEMW,K |97.134+0.42 |96.1595.42 N/A A,B,G,M,S (entire imagg)85.49+0.33 | N/A

Table 2. Mean purity of category discovery for Caltech-101 (A:Aapks, C: Cars, F: Faces, M:
Motorbikes, W: Watches, K: Ketches), and ETHZ dataset (Ail&fwgos, B: Bottles, G: Giraffes,
M: Mugs, S: Swans).

Given a set of images, we perform object discovery in twoesags in [34, 35,
41]. We first coarsely cluster images based on their contosireg CASW cut, and
then again use CASW to cluster contours from only those imdagat belong to the
same coarse cluster. The first stage serves to discoveretitfebject categories in the
image set. The second, fine-resolution stage serves toatedject contours from the
background, and identify characteristic parts of eachodisred object category.

We use the following benchmark datasets: Caltech-101 EPHZ [28], LabelMe
[43], and Weizmann Horses [44]. In the experiments on ChitEl, we use all Cal-
tech images showing the same categories as those used irEf@jiation on ETHZ
and Weizmann Horses uses the entire datasets. For Labe@liecap the 15 first im-
ages retrieved by keywordsr side, car rear, face, airplane andmotorbike. ETHZ and
LabelMe increase complexity over Caltech-101, since fh@ges contain multiple ob-
jectinstances, which may: (a) appear at different resmsti(b) have low contrasts with
textured background, and (c) be partially occluded. Thezvitfann Horses are suitable
to evaluate performance on articulated, non-rigid objects

In the first stage of object discovery, CASW finds clusterqwdges. This is eval-
uated bypurity. Purity measures the extent to which a cluster contains ésnag a
single dominant object category. In the second stage, dm @atese image clusters,
we useBounding Box Hit Rate (BBHR) to verify whether contours detected by CASW
fall within the true foreground regions. The ground truthiéfined as all pixels of the
extracted image contours that fall in the bounding boxeggnents of target objects.
A contour detected by CASW is counted as “hit” whenever theaor covers 50% or
more of the ground-truth pixels. Since we discard contchasare less than 50 pixels,
this means that at least 25 ground-truth pixels need to eetbet within the bounding
box. Our accuracy in the second clustering stage dependgednitial set of pairs of
matching contours (i.e., nodes of gra@hinput to CASW. This is evaluated by plotting
the ROC curve, parameterized by a threshold on the minimultvBimilarity between
pairs of matching contours which are includedin

We evaluate the first and second stages of object discaviesy.Sage: We build
a weighted graph whose nodes represent entire images. Bdtyesen images in the
graph are characterized by weights, defined as an averagéwfdimilarities of con-
tour matches from the corresponding pair of images. A simaharacterization of graph
edgesis usedin [34,35]. For object discovery, we apply CA8We graph, resulting in
image clusters. Each cluster is taken to consist of imag®sisly a unique object cate-
gory. Unlike [34, 35], we do not have to specify the numberaiegories present in the
image set, as an input parameter, since it is automaticdéyried by CASW. Evaluation
is done on Caltech-101 and the ETHZ dataset. Table 2 showsthanean purity is



CASW [[341][35]
0.1120.01]0.21]0.17
0.12+0.01 |0.30[0.15
0.06+0.003|0.190.08
0.04+0.002|0.110.07
0.02+:0.003|0.08/0.03

SZIXT>

CASW [[34]][35]
0.15:0.02 [N/A[0.18
0.18:£0.01 |N/A [0.20

3 A
: B

G| 0.16-£0.01 |0.32/0.18

E E M| 0.2340.04 |N/A [0.27]

) . $[0.094:0.002| N/A [0.11]
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Fig.5. Bounding Box Hit Rates (BBHR) vs False Positive Rates (FPR). Top is Caltech-101,
bottom is ETHZ. Left column is our CASW on all classes, anddtecand right columns show
a comparison with [34, 35] on a specific class (lower curvestetter). The tables show FPR
at BBHR=0.5. Caltech-101: A: Airplanes, F: Faces, K: Kethd: Motorbikes, W: Watches.
ETHZ: A: Applelogs, B: Bottles, G: Giraffes, M: Mugs, S: Svgrfbest viewed in color)

superior to that of [34, 35, 41]. On Caltech-101, CASW susivedy findsK = 4,5,6
clusters of images, as we gradually increase the true nuofbeategories from 4 to
6. This demonstrates that we are able to automatically fiechtimber of categories
present, with no supervision. On ETHZ, CASW again correfitids K = 5 cate-
gories. As in [35], we evaluate purity when similarity beemehe images (i.e., weights
of edges in the graph) is estimated based on contours fallitign: (a) the bounding
boxes of target objects, (b) twice the size of the originalrmting boxes (called ex-
panded in Table 2), and (c) the entire images. On ETHZ, CAS®é dot suffer a major
performance degradation when moving from the bounding §oethe challenging
case of using all contours from the entire images. Overall,purity rates are high,
which enables accurate clustering of contours in the sestagk.Second Stage: We
use contours from all images grouped within one clustemdom the first stage, to
build our graph, and then conduct CASW. This is repeated for all image alasithe
clustering of contours by CASW amounts to foreground d&iacsince the identified
contour clusters are taken to represent parts of the disedwadbject category. We eval-
uate BBHR and FPR on Caltech-101, ETHZ, LabelMe, and Weimtdorses. Fig.5
shows that our BBHR and FPR values are higher than those p8534n the Caltech
and ETHZ. CASW findsk® = 1 for Airplanes, Cars Rear, Faces, Ketches, \Watches
in Caltech-101Apples, Bottles, Mugs in ETHZ, andCar rear, Face, Airplane in La-
belMe. These objects do not have articulated parts that maependently, hence,
only one contour cluster is found. On the other hand, it fikls= 2 for Giraffes,
Swansin ETHZ, Cars side, Motorbikesin Caltech and LabelMe, andl = 3 for Weiz-
mann Horses. In Fig.6, we highlight contours from differelntsters with distinct col-
ors. Fig.6 demonstrates that CASW is capable not only tadescforeground objects,
but also to detect their characteristic parts, e.g., wheadsroof forCars side, wheels
and seat foMotorbikes, head and legs foGiraffes, etc. The plot in Fig.6 evaluates



our object detection on LabelMe and Weizmann Horses. Deteeiccuracy is esti-
mated as the standard ratio of intersection over union ofigtetruth and detection
bounding boxes,BB,. N BBy)/(BB,. U BBy), whereBBy is the smallest bounding
box that encloses detected contours in the image. The aveletgction accuracy for
each category is: [Face(F): 0.52, Airplane(A): 0.45, Mbtke(M): 0.42, Car Rear(C):
0.34], whereas [35] achieves only [(F): 0.48, (A): 0.43, (P88, (C): 0.31]. For Weiz-
mann Horses, we obtaiRrecision and Recall of 84.9%+0.68% and 82.4%0.51%,
whereas [33] achieves ondi.5% and78.6%.

The C-implementation of our CASW runs in less than 2 minuteamy dataset of
less than 100 images, on a 2.40GHz PC with 3.48GB RAM.

7 Conclusion

We have argued in this paper that using contours as basi@ifeatures: (a) Facilitates
capturing shape properties of objects; (b) Allows a unifiechputational framework
that can jointly address object discovery, recognitiord aagmentation; and (c) En-
ables efficient and robust learning and inference. Our daire supported by the state-
of-the-art performance of our shape-based approach t@tothigcovery, recognition,
and segmentation, which we have reviewed in this paper. @pnoach clusters image
contours based on their intrinsic geometric propertied sgratial layouts. The resulting
clusters are interpreted as shapes of parts of discovejecteb

We have derived two key insights. First, shape alone is seiffity discriminative
and expressive to provide robust and efficient object disgoin unlabeled images,
which even outperforms related point-based methods. Agéntantours are dimen-
sionally matched with shape they are more suitable feaforesbject discovery than
point features. Second, due to background clutter, theu&ldme many similar image
features — both contours and point features — coinciding wite object occurrences
and the background. To separate the background from faragron object discov-
ery, one usually makes the assumption that the backgrouttéictannot generate oc-
currences of similar spatial configurations of featuresistiract images with a high
probability. This probability is arguably lower for similapatial configurations of con-
tours than that of points, since contours have a lager $padient than points. Thus,
identifying similar contour layouts in the images is exgekcto yield more accurate
foreground-background separation than finding similaoldy of points. In summary,
using contours facilitates discovering frequently ocityyiobjects in images.
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Fig. 6. Unsupervised detection and segmentation of objects in pbeaimages from LabelMe
(top left), ETHZ (top right), and Weizmann Horses (bottoght). For LabelMe and ETHZ, each
row shows images that are grouped within a unique imageezllist CASW in the first stage.
Contours that are clustered by CASW in the second stage ghéidtited with distinct colors
indicating cluster membership. CASW accurately discoVereground objects, and delineates
their characteristic parts. E.g., for Label@ars sideview CASW discovers two contour clusters
(yellow and magenta), corresponding to the two car partselghend roof. (bottom left) ROC
curves for LabelMe and Weizmann Horses, obtained by vartiiegminimum allowed DTW
similarity between pairs of matching contours which arauirtp CASW. (best viewed in color)



