
Int J Comput Vis
DOI 10.1007/s11263-007-0077-5

Region-Based Hierarchical Image Matching

Sinisa Todorovic · Narendra Ahuja

Received: 16 September 2006 / Accepted: 17 July 2007
© Springer Science+Business Media, LLC 2007

Abstract This paper presents an approach to region-based
hierarchical image matching, where, given two images, the
goal is to identify the largest part in image 1 and its match
in image 2 having the maximum similarity measure defined
in terms of geometric and photometric properties of regions
(e.g., area, boundary shape, and color), as well as region
topology (e.g., recursive embedding of regions). To this end,
each image is represented by a tree of recursively embed-
ded regions, obtained by a multiscale segmentation algo-
rithm. This allows us to pose image matching as the tree
matching problem. To overcome imaging noise, one-to-one,
many-to-one, and many-to-many node correspondences are
allowed. The trees are first augmented with new nodes gen-
erated by merging adjacent sibling nodes, which produces
directed acyclic graphs (DAGs). Then, transitive closures of
the DAGs are constructed, and the tree matching problem
reformulated as finding a bijection between the two tran-
sitive closures on DAGs, while preserving the connectivity
and ancestor-descendant relationships of the original trees.
The proposed approach is validated on real images show-
ing similar objects, captured under different types of noise,
including differences in lighting conditions, scales, or view-
points, amidst limited occlusion and clutter.

Keywords Image matching · Edit-distance graph
matching · Many-to-many matching · Maximum subtree

S. Todorovic (�) · N. Ahuja
Computer Vision and Robotics Laboratory, Beckman Institute
for Advanced Science and Technology, University of Illinois
at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL 61801,
USA
e-mail: sintod@vision.ai.uiuc.edu

N. Ahuja
e-mail: ahuja@vision.ai.uiuc.edu

isomorphism · Segmentation trees · Transitive closures ·
Association graphs · Maximum weight cliques

1 Introduction

Image matching is a long-standing problem in computer vi-
sion. While most approaches use point features and/or curve
fragments for image matching, there is also a significant
amount of work on region-based matching. For example,
matching using region properties is done to address prob-
lems from stereo matching (e.g., Medioni and Nevatia 1985;
Cohen et al. 1989a; Randriamasy and Gagalowicz 1991),
and motion/optical-flow analysis (e.g., Xuguang and Ram-
chandran 1999; Ming-Hsuan et al. 2002; Fuh and Maragos
1989) to object recognition (e.g., Basri and Jacobs 1997;
Keselman and Dickinson 2005). This work demonstrates
several advantages of using regions over interest points or
edge fragments for image matching. The higher dimension-
ality of regions makes them richer descriptors of target ob-
jects’ geometric properties, such as size and shape, and pho-
tometric properties such as gray-level contrast. The higher
dimensional character of regions also makes their match-
ing more stable to small illumination and viewpoint changes
across given images. This work, however, uses only region
geometry and appearance for matching. The motivation be-
hind the work reported in this paper is to extend the match-
ing criteria to include hierarchical region properties, which
should improve the robustness of image matching. Specif-
ically, this paper proposes a robust solution to the follow-
ing problem: given two images, image 1 and image 2, find
in image 2 a match for each region in image 1 such that
the matched regions have similar geometric and photometric
properties, the same holds recursively for their subregions,
and the set of matches maximize a combination of similarity
and total image area covered by the matched regions.

Int J Comput Vis

Similarity between regions is expressed in terms of in-
trinsic geometric and photometric properties (e.g., region
area, boundary shape, and color), as well as and the pro-
posed extension involving topological properties (e.g., re-
gion layout, and the number of subregions, and the relation-
ships between the properties of the subregions and the re-
gions). To compactly capture these requirements of the pro-
posed matching algorithm, each image is represented as a
segmentation tree. Each node in the tree denotes an image
segment whose contrast with the surround is significantly
larger than its interior variability. The root of the tree repre-
sents the entire image, and the children of any node repre-
sent subsegments contained within the parent segment. The
leaf nodes correspond to segments that are truly uniform in
brightness, or have an inhomogeneity level that is accept-
able. Successive levels of the tree thus capture smaller de-
tails completely contained within the parent regions, and
subtrees correspond to subimages. With this representation
at hand, our matching problem becomes a graph matching
problem, namely, finding all similar subtrees across the two
image trees.

In real life, however, due to lighting, viewpoint, or scale
variations successive images of the same scene do not al-
ways yield the same tree structure. For instance, a region in
image 1 may often be segmented into two or more smaller,
low-mutual-contrast regions in image 2 due to a slightly dif-
ferent illumination direction. Similarly, the reverse may hap-
pen and two regions may merge. While such minor changes
change the image appearance only slightly, they will signifi-
cantly alter the tree topologies. Our solution must thus allow
region matching despite the significant differences in the as-
sociated tree structure. We present a tree matching algorithm
that addresses this need.

We conduct tree matching by explicitly accounting for
many-to-many, one-to-many, and one-to-one node corre-
spondences at the same time. To this end, the segmentation
trees of a given image pair are modified by inserting and
appropriately connecting new nodes, referred to as mergers.
Each merger node is the union of a few children of a node. It
instantiates the hypothesis that the children were incorrectly
formed due to, for example, lighting changes etc., and there-
fore their union should be restored as a separate node. To
cover all possibilities, mergers correspond to all members of
the power set of adjacent children under each node. The ad-
jacent sibling nodes that merged are called the source nodes.
Mergers do not eliminate their source nodes in a given tree.
Instead, each merger is inserted as a sibling of its source
nodes (i.e., a merger is connected to its sources’ parent),
and inherits the children of its source nodes. Thus, the ad-
dition of mergers converts the tree into a directed acyclic
graph (DAG). Then, the transitive closure of the DAG is
constructed by adding new edges between each node and its
descendants in the DAG. The reason for constructing tran-
sitive closures is that their matching is more flexible than

matching DAGs, allowing matches of all descendants un-
der a visited node. The tree matching algorithm is then pre-
sented as a graph matching algorithm that finds a bijection
between nodes of the two transitive closures. The bijection
must satisfy the following consistency constraints whose
reasons are obvious: (1) each merger is disallowed to match
if its source nodes get matched, and (2) matching transitive
closures of DAGs should preserve the original connectiv-
ity, and ancestor-descendant relations of the segmentation
trees. These consistency constraints disallow many node-
pairs from being candidates for matching, thereby eliminat-
ing the inefficiency that would otherwise result from our for-
mulation of the tree matching problem in terms of the more
general problem of graph matching.

1.1 Literature Review and Relationship to Previous Work

Image matching by using graph abstractions has been the
focus of sustained research activity in computer vision for
more than two decades now. The two key issues investi-
gated in the graph-matching literature are how to measure
the similarity of two graphs in the presence of structural
noise, and how to search efficiently for the best match.
Early work includes Barrow and Burstall’s idea (Barrow
and Burstall 1976) to match two graphs by searching for
the maximum common subgraph. This problem can be re-
formulated as finding a maximum clique of the associa-
tion graph, whose vertices represent all pairs of nodes in
the two original graphs. Pelillo et al. (1999) use their idea
to solve the problem of attributed tree matching. Their
method finds a match by specifying an association graph
whose maximum weighted clique is in one-to-one corre-
spondence with the maximum common subtree. Although
the maximum clique problem is known to be NP-hard, pow-
erful heuristics and theoretical results exist that provide for
good approximate solutions (Pardalos and Xue 1994). Here,
the most relevant is the Motzkin-Straus theorem (Motzkin
and Straus 1965), which allows us to transform the maxi-
mum clique problem into a continuous quadratic program-
ming problem that can be efficiently solved, for example,
by replicator dynamics (Pelillo 1999; Bomze et al. 2000;
Pelillo 2002).

A different approach to graph matching uses the spec-
tral graph theory. The structural properties of graphs are
captured by the eigenvectors of the adjacency matrix, or
the Laplacian matrix. Examples include Umeyama’s idea
(Umeyama 1988) to perform singular value decomposition
on the adjacency matrices of two same-size graphs, and a
more recent work of Shokoufandeh et al. (2005), where sim-
ilar graph structures are efficiently retrieved from a data-
base of graphs by exploiting the upper bounds on the sta-
bility of graphs’ spectra with respect to minor topologi-
cal changes. While recent work on spectral graph match-
ing puts a significant effort to improve the resilience of

Int J Comput Vis

these methods to structural noise (Fowlkes et al. 2004;
Richard et al. 2005), there are two major fundamental weak-
nesses of the spectral representations: (1) structurally differ-
ent graphs may have the same spectrum, and (2) noise added
by a few spurious nodes or edges in a graph may signifi-
cantly change its spectral representation.

Another group of approaches to error-tolerant graph
matching involves directly minimizing the differences be-
tween the graph structures. Specifically, these approaches
minimize a measure of difference called the graph edit-
distance introduced by Bunke and Allermann (1983), and in-
dependently by Fu and his collaborators (Tsai and Fu 1979;
Sanfeliu and Fu 1983; Eshera and Fu 1986). Edit-distance
associates a cost with basic edit operations on nodes and
edges—such as insertion, deletion, merging, splitting and
relabeling—the sequence of which would make the two
graphs isomorphic. By minimizing the cost of modifica-
tions needed in the two graphs to match them, it is pos-
sible to compute a measure of similarity between them.
However, finding an optimal sequence of edit operations
that minimizes the specified cost is in most cases compu-
tationally prohibitive. Recently, Bunke and Kandel (2000)
have established the relationship between the size of the
maximum common subgraph and the edit-distance. They
have shown that under certain constraints on edit-costs—
namely, that deletions and re-insertions of nodes and edges
are not more expensive than the corresponding node and
edge relabeling—computing the maximum common sub-
graph and the minimum-cost edit-distance are computation-
ally equivalent. This is an important result, because under
the given constraints one can optimize the sequence of edit
operations only via insertions and deletions instead of using
a larger set of edits, thus reducing computational complex-
ity.

Recent work considers improving the robustness of edit-
distance based matching to the amount of structural noise.
In particular, Sebastian et al. (2004) have developed a vari-
ational method to measure the distance between two graphs
as the minimum extent of deformation necessary for one
graph to match the other. To extract shape skeletons of
objects in video, Golland et al. (2000) have proposed to
minimize a suitably defined cost of small perturbations of
graph nodes. These approaches are relatively robust to de-
formations in graph structure; however, while the former re-
quires that the two graphs are initially aligned in order to be
matched, the latter is computationally very expensive, which
significantly narrows the domain of their application. For the
case of matching trees, Torsello and Hancock (2002, 2003)
propose that instead of matching the original trees, one
should match their transitive closures. In transitive closures
of trees, the original set of tree nodes remains intact, whereas
new edges are added between every tree node and its de-
scendants. The transitive closures allow that a search for a

maximally matching node pair is conducted over all descen-
dants under a visited ancestor node pair, rather than stop-
ping the search if the ancestors’ children do not match. This
makes matching more flexible and robust. Also, Torsello and
Hancock (2002) redefine their tree-matching formulation so
that it could be applied to the tree-to-DAG matching prob-
lem; however, they only informally state that the theoretical
findings previously proved for their tree matching approach
generalize to this new setting. Our approach is most closely
related to this work. The main differences are that they aug-
ment only the initial set of edges, while we augment both the
set of edges and set of nodes to form transitive closures on
trees or DAGs, and that they assume only one-to-one node
correspondences, while we account for one-to-one, many-
to-one, and many-to-many correspondences, all at the same
time.

The assumption of one-to-one node correspondences in
matching is usually too restrictive. Recently, several many-
to-many and many-to-one graph-matching approaches have
been proposed to address this problem. For example, Kesel-
man et al. (2003) and Demirci et al. (2004) propose to em-
bed a tree into a normed space by partitioning the tree into N

mutually exclusive paths, corresponding to its N leaf nodes.
These N paths can be viewed as defining an N -dimensional
normed space, in which every tree node represents a vector
with entries corresponding to the paths necessary to traverse
to reach the node from the root. To embed two trees with a
different total number of leaf nodes into a unique normed
space, they use the PCA. This transforms tree matching
to the problem of many-to-many matching of points in
a low-dimensional normed space, for which they use the
Earth Mover’s Distance algorithm (Rubner et al. 1998;
Cohen and Guibas 1999). Such embedding, however, may
produce different normed spaces for the same tree, since the
choice of distinct paths in the tree is not unique. Liu and
Geiger (1999) have studied many-to-many graph matching
in the context of edit-distance. Due to the high computa-
tional cost of searching for the minimum-cost edit-sequence,
they use a sub-optimal, heuristic A* algorithm. Sebastian
et al. (2004) have also considered one-to-many node corre-
spondences. In their approach, matching a single node with
another single node is favored, while matching a single node
with many is penalized with a high cost, which may not be
justified in many cases.

Relevant to our approach is many-to-many tree match-
ing using the notion of ε-morphism proposed by Pelillo et
al. (2001). They merge n-tuplets of nodes, replacing them
with a single node, referred to as merger, and try to match
the combined node to another merger in the other tree.
Merging of nodes is allowed only if their weights differ
by less than ε. Since our approach also merges nodes, it is
worthwhile to note the differences: (1) they allow merging
among only those nodes that satisfy the threshold constraint,

Int J Comput Vis

(2) their mergers replace the source nodes, whereas ours
augment them, (3) their mergers are formed from all pos-
sible nodes along the ascendant-descendant path, whereas
ours are formed only among sibling nodes representing con-
tiguous image regions, and (4) their merging transforms the
original tree into another tree, whereas ours, into a directed
graph.

There is very limited past work on matching segmenta-
tion hierarchies in which the recursive containment of re-
gions is explicitly used as a cue for matching. For the most
part, existing methods use greedy approaches, where, for ex-
ample, matching is done top-down only between regions at
the same tree level, such that a bad match between two re-
gions penalizes attempts to match their respective descen-
dants (Cohen et al. 1989b; Perrin et al. 1998). In Glantz et
al. (2004), a sequence of planar graphs, representing mul-
tiscale image segmentations, is defined as segmentation hi-
erarchy, and ten topological relationships between any two
regions v1 and v2 in the segmentation hierarchy are defined
as a combination of the following basic relationships: (i) v1

may be adjacent to v2, (ii) v1 may enclose but not contain
v2, (iii) v1 may contain v2, and (iv) v1 and v2 may be apart.
Then, given two segmentation hierarchies, their matching
is formulated as a one-to-one mapping between regions of
one hierarchy and regions of the other, which preserves the
ten topological properties associated with each region. In
case two regions from the two hierarchies differ in a single
topological property (e.g., adjacency) their pair is discarded,
which yields poor matching results for two images with vari-
ations arising, for example, from partial occlusion of tar-
get objects. Also, as other one-to-one matching approaches,
this method suffers from low robustness to small topological
changes in graph structure.

1.2 Contributions

The main criticism that can be leveled at the existing many-
to-many, or many-to-one image matching approaches is that
image graphs are treated as general data structures, disre-
garding the fact that nodes represent structures in images.
For example, thresholding methods, which involve node
merging, specify a heuristic, single, global threshold ap-
plied to the whole graph structure. In real images, merg-
ers are needed to handle the loss of borders between re-
gions, e.g., due to illumination changes, and therefore, the
optimal threshold for merging nodes varies across the im-
age. Further, the magnitude of node attribute disparities in
two images to be addressed by mergers is a priori unknown.
Consequently, these approaches are very sensitive to thresh-
old selection. An arbitrarily small threshold on the allowed
disparity may result in a wasted effort when merging is at-
tempted, while large threshold values may lead to excessive

merging, and, hence, to an unjustified loss of structural in-
formation. Moreover, the node merging methods are primar-
ily concerned with graph transforms for forming mergers,
such that the resulting matching would be less sensitive to
structural noise, without accounting for the plausibility of
these transforms in the image space or for the costs of the
corresponding region mergers. Another characteristic of the
existing methods is that they are not capable of consider-
ing one-to-one, many-to-one, and many-to-many node cor-
respondences at the same time.

Our approach allows enforcement of image constraints
and one-to-one, many-to-one, and many-to-many node cor-
respondences, at the same time, in matching two similar im-
age trees that contain structural noise, which may be local
(e.g., a few nodes/edges missing) or global (e.g., children
nodes of a node in one tree become great-grandchildren of
that node in the other tree). We augment the image segmen-
tation tree with mergers representing the power set of only
those nodes that represent neighboring image regions. This
addition of mergers transforms the segmentation tree into a
graph. The extra nodes present in the graph represent the
redundancy needed to combat realistic noise, since only ad-
jacent regions are plausible candidates for mergers. Image
matching is formulated as graph matching, subject to the
consistency constraints that node ascendant-descendant re-
lations of the original segmentation trees must be preserved,
and matching of the mergers must be disallowed in case their
source nodes already got matched.

Recall that Torsello and Hancock (2002, 2003) have
showed that, given two trees, better performance is obtained
by matching their transitive closures than the original trees.
We advance their idea by matching the transitive closures on
directed graphs, obtained by augmenting the original trees
with mergers. In addition, our graph matching is subject to
the aforementioned consistency constraints. Hence, we gen-
eralize their work, by giving the necessary and sufficient
conditions for finding a sequence of edit-operations, which
induces a consistent subtree isomorphism between the two
transitive closures on DAGs.

For experimental validation we match images in a set to
find those containing similar objects. We use a carefully
prepared database consisting of 700 natural-scene images
showing similar objects, including flowers, animals, musical
instruments and buildings. By choosing similar resolution,
viewpoints, illumination and other imaging conditions, we
ensure that object occurrences consist of image regions that
have similar low-level properties, such as color, size, and
shape across the database. At the same time, we also ensure
that image regions occupied by a specific object type also
exhibit significant low-level differences that are expected to
be encountered in real life. To this end, we allow flowers,
animals, musical instruments to vary by selecting them from
the same class instead of being exact replications of the same

Int J Comput Vis

objects. This results in low-level variations, for example, in
color by selecting horses of different color, or in size and
shape of different sunflowers. Another cause of low-level
variations in the database comes from a certain degree of
occlusion present between objects and clutter. Also, there
exist pairs of images that have significantly different lighting
conditions. These variations result in geometric and photo-
metric differences between regions that should be matched,
and thus test the robustness of our matching criteria and
algorithm. The matching performance is measured through
(1) appropriately defined pixel- and region-matching errors,
and (2) clustering the database images into sets containing
similar objects. Such validation on real images offers more
challenges than synthetic data (e.g., in Richard et al. 2005),
binary images of object silhouettes (e.g., in Pelillo et al.
1999; Torsello and Hancock 2002, 2003), or simple scenes
of a single object in front of a uniform background, obtained
in a lab-controlled environment (e.g., in Keselman and Dick-
inson 2005). Our experimental results show that accounting
for one-to-one, many-to-one, and many-to-many node cor-
respondences at the same time, and a local regulation of im-
age graph transformation do indeed yield successful match-
ing performance on real images, and demonstrate the advan-
tages of our approach over prior work.

This paper is organized as follows. The multiscale image
segmentation algorithm, used in this paper for representing
images as trees, is reviewed in Sect. 2. The image matching
problem is formulated within the graph-theoretic framework
in Sect. 3. Section 4 presents our divide-and-conquer algo-
rithm for matching transitive closures on DAGs. Section 5
is concerned with the computational complexity of our ap-
proach. The experimental validation is reported in Sect. 7,
while our conclusions and final remarks are presented in
Sect. 8.

2 Multiscale Image Segmentation

In this paper, images are represented by trees obtained by
a multiscale segmentation algorithm discussed in Ahuja
(1996), Tabb and Ahuja (1997), Arora and Ahuja (2006).
The segmentation algorithm partitions an image into homo-
geneous regions of a priori unknown shape, size, gray-level
contrast, and topological context. Here, a region is consid-
ered to be homogeneous if variations in intensity within the
region are smaller than intensity change across its bound-
ary, regardless of its absolute degree of variability. Conse-
quently, image segmentation is performed at a range of ho-
mogeneity values, i.e., intensity contrasts, referred to as pho-
tometric scales. A segment at any photometric scale may be
recursively segmented to extract finer scale segments, char-
acterized by increasing degree of homogeneity, until one
obtains strictly constant intensity regions. As a result, this
process yields a multiscale segmentation of the image.

Specifically, the algorithm models the segmentation
process in physical terms by treating image pixels as charged
particles attracted to other pixels (Ahuja 1996). The force of
attraction of a particle to another particle is proportional to
the similarity of their gray levels and closeness of their lo-
cations. The net force of attraction exerted on a pixel thus
tends to be in the direction in which similar pixels lie close
by. Pixels belonging to a region form a smoothly varying,
convergent, force flow field, which exhibits a force diver-
gence across the region border. Since the photometric scale
parameters of image regions are unknown a priori, all the
regions can be detected by varying exhaustively the photo-
metric scale across the entire range (e.g., gray-level intensity
1–255), as illustrated in Fig. 1a. As the photometric scale
varies, the force signatures of regions emerge when the scale
parameters approach the values defining the regions. As the
photometric scale increases, regions with smaller gray-level
contrasts than the current scale strictly merge. A sweep of
the scale parameter values thus results in the extraction of
all the segments present in the image.

The segmentation tree is then derived by organizing
the segmented regions into a tree structure with respect
to their size and location in the image. In the segmenta-
tion tree, the root represents the whole image, nodes at up-
per levels, closer to the root, represent large regions, while
their children nodes capture smaller details completely con-
tained within the corresponding parent region, as depicted
in Fig. 1b. The number of tree levels and the homogeneity
values associated with regions are dynamically determined
by the algorithm for each image at hand. Thus, for exam-
ple, the segmentation tree may be highly unbalanced, with
leaf nodes occurring at any level, and with each node having
arbitrary many children, as dictated by the image topology.
In the sequel, we will use the notion of adjacent sibling re-
gions. Region v1 and region v2 having the same parent re-
gion u in the segmentation tree are called adjacent siblings
if the distance, dv1v2 , between the two closest points on the
boundaries of regions v1 and v2 is smaller than 5% of the
square-root of u’s area, dv1v2 < 0.05 · √area(u).

Each node of the segmentation tree is characterized by
the intrinsic geometric and photometric properties of the
corresponding region. The geometric properties may include
the area and shape of the region, while the photometric prop-
erties may encompass the gray level mean and variance of
the region. The choice of region properties is dictated by the
underlying application for which the proposed region-based
image matching is used.

3 Tree Matching

In this section, our objective is to formulate image matching
as the tree matching problem. To this end, below, we first
present necessary graph-theoretic concepts.

Int J Comput Vis

(a) Original image and example segmentations for photometric scales: 4, 6, 8, 10, 12, 16, 20 (in a raster scan).

(b) Segmentation tree: projections of nodes at tree levels 2, 3, 4, 5, 6, 7, 8, 9 out of 16 tree levels onto the image plane (in a
raster scan), where the root is at level 1.

Fig. 1 Images are represented by trees obtained from the multiscale segmentation algorithm (Ahuja 1996; Tabb and Ahuja 1997; Arora and Ahuja
2006)

3.1 Definitions

Let G = (VG,EG,ψG) denote an attributed, directed graph,
where VG is the set of vertices (nodes), EG ⊆ VG × VG is
the set of directed edges, and ψG : VG → � is a function
that assigns an attribute vector ψv ∈ � (e.g., geometric and
photometric properties of the corresponding region) to each
node v ∈ VG.1 For any pair of nodes u,v ∈ VG connected
by an edge, denoted as u ∼ v, u is said to be the parent of
v, and v is said to be the child of u. Children of the same

1In the general definition of a weighted graph, weights are assigned to
both edges and nodes. Since in our graphs only vertices are weighted,
we call them attributed graphs to distinguish them from weighted
graphs.

parent are called siblings. A directed path between nodes
v1, vn ∈ VG, denoted as v1 � vn, is any sequence of dis-
tinct nodes v1v2 . . . vn ∈ VG, such that vi ∼ vi+1, for i =
1, . . . , n − 1. If v1 = vn the path is called a cycle. A rooted
tree, T = (VT ,ET ,ψT), is an attributed, connected, directed
graph with no cycles, in which each node has one and only
one parent, except for the one node called root that has no
parents. Connectivity means that for each pair of nodes in T

there is an undirected path between them. The induced sub-
graph G[U] of G is a graph with U ⊆ VG as its node set,
and where u ∼ v in G[U] if and only if u ∼ v in G.

Let G1 = (VG1 ,EG1,ψG1) and G2 = (VG2 ,EG2,ψG2)

be two directed acyclic graphs (DAGs). Any bijection f :
UG1 → UG2 , where UG1 ⊆ VG1 and UG2 ⊆ VG2 , is called
subgraph isomorphism if G1[UG1] is the induced subgraph

Int J Comput Vis

of G1 and G2[UG2] is the induced subgraph of G1. That
is, a bijection between two subsets of nodes in G1 and G2,
respectively, is subgraph isomorphism if it preserves the
node adjacency and ancestor-descendent relations of G1

and G2. Subgraph isomorphism can be associated with a
cost function of matching the induced subgraphs G1[UG1]
and G2[UG2] by bijection f . One frequently used formu-
lation of the cost function is edit-distance (Barrow and
Burstall 1976). One can think of constructing the induced
subgraphs G1[UG1] and G2[UG2] as removing nodes from
VG1 and VG2 by the edit-operation called remove, after
which the remaining nodes in UG1 are matched with those
in UG2 by the edit operation called match. Let wv be the
cost of removing node v from a graph, and let mv1v2 be the
cost of matching two nodes v1 and v2. Both edit-costs can
be defined in terms of the attribute vectors ψv , as will be
discussed in Sect. 6. Then, the edit-distance of a given sub-
graph isomorphism f : UG1 → UG2 is defined as

D �
∑

v1∈VG1\UG1

wv1 +
∑

v2∈VG2\UG2

wv2

+
∑

(v1,v2)∈UG1×UG2

mv1v2 (1)

=
∑

v1∈VG1

wv1 +
∑

v2∈VG2

wv2

−
∑

(v1,v2)∈UG1×UG2

[wv1 + wv2 − mv1v2]. (2)

The goal of a graph matching algorithm can be formu-
lated as finding the subgraph isomorphism that is character-
ized by the minimum cost function. Alternatively, a match-
ing algorithm can be formulated as a search for the max-
imum subgraph isomorphism, characterized by the maxi-
mum similarity measure (also referred to as utility Torsello
and Hancock 2002, 2003) W defined as

W � max
f

∑

(v1,v2)∈f

[wv1 + wv2 − mv1v2]+, (3)

where [x]+ � max(0, x). If [wv1 + wv2 − mv1v2] ≥ 0,
∀(v1, v2), the minimum-cost edit-sequences of removes and
matches on G1 and G2 induce the maximum subgraph iso-
morphism between G1 and G2.

3.2 Problem Formulation

Tree matching can be formulated as finding two optimal se-
quences of edit-operations, called edit-sequences, on trees
T1 and T2, respectively, which produce the maximum sub-
tree isomorphism (Torsello and Hancock 2003; Bunke and
Kandel 2000). In this paper, we consider the following set
of edit-operations:

(1) Remove: Removes a node, and links its children to its
parent.

(2) Insert: Adds a new node between an existing node u

and its children v1, . . . , vn, so that the inserted node be-
comes the single child of u, and the parent of v1, . . . , vn.

(3) Merge: Coalesces n-tuples of adjacent sibling nodes
having the same parent, referred to as source nodes, into
a new node, called merger, which is then added to the
graph. In the n-tuple, all source nodes represent regions
are adjacent to each other. The merger does not remove
the sources from the graph. The merger is connected to
the sources’ parent, and inherits all the sources’ chil-
dren.

(4) Split: Generates two or more nodes from a single source
node. Each new node thus obtained is then connected to
the parent and children as the source node.

(5) Match: Matches a pair of nodes.

For the purpose of matching T1 and T2, we treat remove as
dual to insert, and merge as dual to split, because the re-
sult of remove (split) in T1 can be achieved by using insert
(merge) in T2. Consequently, edit-sequences on T1 and T2

may consist of only remove, merge and match operations.
In this paper, we take one of many possible solutions to

finding the optimal edit-sequences on T1 and T2. Specifi-
cally, we first conduct all possible merges on T1 and T2,
which yields directed graphs G1 and G2, respectively, and
then perform necessary removes and matches on nodes of
G1 and G2, which would induce maximum subtree isomor-
phism. This reduces edit-sequence optimization to selecting
the optimal sequence of removes and matches. An example
of performing one merge operation on a tree is illustrated
in Fig. 2. Note that merge transforms the tree into a DAG
in which the connectivity and ancestor-descendent relations
between nodes of the original tree are preserved by defini-
tion. The two acceptable sequences of removes and matches

Fig. 2 Suppose in the tree depicted in (a) only nodes d and f represent adjacent sibling regions embedded in a larger parent region c. Then, merge
can be applied only to d and f , which results in a new node df , depicted in (b). The transitive closure of the DAG in (b) is illustrated in (c)

Int J Comput Vis

on nodes of G1 and G2 must ensure that the resulting max-
imum subtree isomorphism between G1 and G2 satisfies
the following consistency constraint: if a merger is matched
then its source nodes cannot be matched and vice versa.

In the following section, we discuss our approach to find-
ing the optimal sequence of removes and matches.

3.3 Transitive Closures

We propose to conduct matching between two given DAGs
by matching their transitive closures. The transitive closure
is constructed from a DAG by establishing additional parent-
child connections between each pair of nodes that are con-
nected with a directed path in the DAG, as illustrated in
Fig. 2c. Formally, a transitive closure of a DAG G, denoted
as �(G), is a DAG with the same node set as G, and with
edges satisfying u ∼ v in �(G) ⇔ u � v in G. Note that
multiple distinct paths u � v ∈ G correspond to the unique
edge u ∼ v in �(G). Note that our approach generalizes
Torsello and Hancock’s (2002, 2003) idea of using transitive
closures of trees by extending it to DAGs. More specifically,
we give necessary and sufficient conditions for finding the
sequences of removes and matches on two DAGs G1 and
G2 which induce a subtree isomorphism between transitive
closures �(G1) and �(G2) subject to the consistency con-
straints. To this end, we begin with the following lemma: the
operations of transitive closure, �(·), and remove of node v

from a DAG, Rv(·), commute.

Lemma 1 Rv(�(G)) = �(Rv(G)).

Proof Since Rv(G) and Rv(�(G)) operate on the same
node v, two graphs Rv(�(G)) and �(Rv(G)) have the
same node sets. Next, we show that edge a ∼ b, a
= v,
b
= v is in Rv(�(G)) if and only if it is in �(Rv(G)).
Distinct paths between a and b in G that do not contain
v will not be effected by Rv(G) leaving the correspond-
ing edges in Rv(�(G)) and �(Rv(G)) intact. Now, sup-
pose v is on multiple distinct paths a

v� b in G, then by
definition we have a � b ∈ Rv(G) ⇔ a

v� b ∈ G. Thus,
a ∼ b ∈ �(Rv(G)) ⇒ a � b ∈ Rv(G) ⇒ a

v� b ∈ G ⇒
a ∼ b ∈ �(G) ⇒ a ∼ b ∈ Rv(�(G)). Similarly, we have
a ∼ b ∈ Rv(�(G)) ⇒ a ∼ b ∈ �(G) ⇒ a

v� b ∈ G ⇒ a �
b ∈ Rv(G) ⇒ a ∼ b ∈ �(Rv(G)). �

Recall that DAGs G1 and G2 are obtained by applying
all possible merge operations to the original trees. Lemma 1
allows us to relate the edit-based matching of G1 and G2, us-
ing remove and match operations, to a subtree isomorphism
between �(G1) and �(G2) which must satisfy the consis-
tency constraints, as stated in the following theorem.

Theorem 1 Suppose subtree t is obtained from a DAG G by
applying a sequence of removes. Then, G and t are subtree

isomorphic subject to the consistency constraints if and only
if for each two siblings v1 and v2 in t there is no edge v1 ∼
v2 in �(G).

Proof Note that Theorem 1 is a generalization of its coun-
terpart in Torsello and Hancock (2002, 2003), wherein every
sequence of removes on tree T induces an isomorphic sub-
tree of �(T). In contrast, our Theorem 1 deals with DAGs,
where some sequences of removes on G may not induce an
isomorphic subtree of �(G), and may not satisfy the con-
sistency constraints.

Suppose t = R(G), where R(G) = Rv1 ◦ · · · ◦ Rvn(G) is
a sequence of removes. Then, by virtue of Lemma 1, we have
�(t) = R(�(G)), i.e., t is a subtree of �(G). It follows that
for any two siblings v1 and v2 in t there are no edges v1 ∼ v2

in �(G), because by definition there are no directed paths
between siblings v1 and v2 in t .

Now, to prove the converse, suppose that t is a subtree of
�(G), and that for any two siblings v1 and v2 in t there is no
edge v1 ∼ v2 in �(G). Our goal is to prove that there exists
a sequence of removes on G resulting in isomorphic subtree
t . Note that a ∼ b ∈ t ⇒ a ∼ b ∈ �(G), which means that
there are possibly multiple distinct paths a � b ∈ G. It is
therefore necessary to show that for every edge a ∼ b ∈ t ,
R(G) must operate on all nodes {vi} ∈ G that are on paths
a

vi� b ∈ G.
Suppose that node v is not removed by R(G), and v is on

path a
v� b ∈ t , and a ∼ b ∈ t . Let a node u in t denote the

minimum common ancestor of a and v in t , as illustrated in
Fig. 3. Since t is connected, there exist two distinct children
of u in t , denoted as ua and uv , such that ua is ancestor of a

in t , and uv is ancestor of v in t . Node uv cannot be ancestor
of a, because u is the minimum common ancestor of v and
a. Therefore, there is a directed path ua � uv ∈ G, which
contradicts the initial assumption that edge ua ∼ uv cannot
be in �(G). Consequently, given a ∼ b ∈ t , all nodes v in
G that are on all paths a

v� b ∈ G must be removed by R.
By definition, R preserves connectivity and ascendant-

descendant relations of nodes in G. Also, note that either
the inserted mergers or their source nodes remain in t , since
R(G) must remove all nodes v in G that are on all paths
a

v� b ∈ G. Consequently, t satisfies the consistency con-
straints. �

Fig. 3 Example of a hypothetical path a
v� b ∈ t that coexists with

edge a ∼ b ∈ t : u, ua , uv , and v are hypothesized nodes in subtree t ;
dashed lines represent paths and full lines indicate edges. The figure
shows that there must exist a directed path between ua and uv , which
contradicts the initial assumption

Int J Comput Vis

In conclusion, by virtue of Theorem 1, it is possible to
find two sequences of removes on G1 and G2 that would
induce t1 and t2, which are subtree isomorphic to �(G1)

and �(G2), respectively, and satisfy the consistency con-
straints. Since minimizing the edit-cost D, given by (2), and
maximizing W , given by (3), are equivalent in our formu-
lation, the minimum-cost sequence of removes on G1 and
G2 yields the maximum consistent subtree isomorphism be-
tween �(G1) and �(G2).

4 Recursive Computation of Similarity Measure
Bottom-Up

To compute the maximum consistent subtree isomorphism
between �(G1) and �(G2), we use the following strat-
egy. For each pair of nodes (u1, u2), where u1 ∈ �(G1) and
u2 ∈ �(G2), the maximum consistent subtree isomorphism
is found for the two transitive closures rooted at u1 and u2.
In this fashion, the matching problem is solved recursively
through a set of sub-matching problems. Let us assume that
for all the children v1 of u1 in �(G1) and all the children
v2 of u2 in �(G2) we have previously computed W(v1, v2),
given by (3), of the transitive closures rooted at v1 and v2.
Then, our goal is to find the optimal set of (v1, v2) that do
not violate the consistency constraints, and at the same time
yield the largest W(u1, u2). From (3), we have

W(u1, u2) = [wu1 + wu2 − mu1u2]+
+

∑

(v1,v2)∈C(u1,u2)

W(v1, v2), (4)

where C(u1, u2) denotes the set of selected consistent pairs
of children of u1 and u2. Once computed, W(u1, u2) is fur-
ther propagated to ancestors of u1 and u2.

As shown in Barrow and Burstall (1976), Pelillo et al.
(1999), Torsello and Hancock (2003), finding C(u1, u2) is
equivalent to solving the maximum clique problem. That is,
C(u1, u2) is the maximum weighted clique of the association
graph constructed from all possible children pairs (v1, v2),
where the v1’s are the children of u1 and the v2’s are the chil-
dren of v2. Each node (v1, v2) of thus constructed associa-
tion graph is characterized by weights W(v1, v2). A clique
C is a subset of graph vertices in which all pairs of nodes are
connected by an edge. The maximum weighted clique has
the largest total weight of nodes included in the clique. Thus,
we decompose the graph-matching problem into a series of
maximum weighted clique problems, following a long-track
record of similar approaches reported in the literature since
the seminal paper by Barrow and Burstall (1976).

The maximum weighted clique formalism allows us not
only to find the maximum similarity measure associated
with the maximum consistent subtree isomorphism, but

also to account for the consistency constraints in a prin-
cipled manner, as explained below. For each node pair
(u1, u2) ∈ �(G1) × �(G2), we first construct the associ-
ation graph A = (VA,EA,WA), where VA = {i = (v1, v2) :
u1 ∼ v1, u2 ∼ v2 and u1, v1 ∈ �(G1), u2, v2 ∈ �(G2)}, EA

is the set of undirected edges, and WA : VA → R
+ is a

function that assigns positive real weights W(i) to nodes
i = (v1, v2) ∈ VA, where W(i) = W(v1, v2) is given by (4).
When specifying EA, node pairs (v1, v2) and (v′

1, v
′
2) in

A should not be connected if v1 and v′
1 or v2 and v′

2 vio-
late the consistency constraints. Hence, imposing the con-
sistency constraints is done in a simple manner during the
construction of A.

There are many approaches to solving the maximum
weighted clique problem (see Bomze et al. 1999 for a
review). In this paper, we use the game (replicator) dy-
namics approach thoroughly discussed in Pelillo et al.
(1999), Pelillo (1999), Bomze et al. (2000), Pelillo (2002).
This method uses the Motzkin-Straus theorem (Motzkin
and Straus 1965) to transform the maximum clique prob-
lem, known to be NP-hard, into the following continuous
quadratic programming problem. Consider a non-negative,
symmetric matrix Q = (qij)|VA|×|VA|, where for nodes i, j

in the association graph A we have: (i) qij � 1
2W(i)

if i = j ;

(ii) qij � 0 if i
= j , and i ∼ j ; and (iii) qij � 1
2W(i)

+ 1
2W(j)

,

otherwise. Also, consider a characteristic vector xC =
(xCi)|VA|×1 of a subset of vertices C in A, where xC is a
point in the standard simplex S|VA| = {x ∈ R

|VA| : eTx =
1,x ≥ 0}, defined as xCi � W(i)/

∑
j∈C W(j) if i ∈ C, or

xCi � 0 otherwise. Then, C is a maximum weighted clique
of A if and only if xC is a global solution of the follow-
ing optimization problem: xC = maxx∈S|VA| x

T(ξeeT −Q)x

(Bomze et al. 2000), where ξ � maxqij . This quadratic pro-
gramming problem can be solved iteratively by using the
following replicator equations in iteration step (t + 1):

xi(t + 1) = xi(t)
((ξeeT − Q)x(t))i

x(t)T(ξeeT − Q)x(t)
,

i = 1, . . . , |VA|. (5)

Starting from an arbitrary initial state (in our case xi(0) =
1/|VA|, i = 1, . . . , |VA|), it can be shown that the trajectory
of x(t) under the replicator dynamics of (5) converges to a
strict local optimizer of the above quadratic programming
problem. The stopping criterion is set at iteration step tc for
which ∀i, xi(tc) /∈ [0.05,0.95]. Then, nodes i in the associ-
ation graph A whose corresponding xi(tc) > 0.95 are taken
as nodes of the maximum weighted clique of the association
graph A.

The total weight of nodes in the maximum weighted
clique of A is inserted in (4), which gives us W(u1, u2).
In this manner, we compute the similarity measure of all
subtrees rooted at node pairs (u1, u2) ∈ �(G1) × �(G2).

Int J Comput Vis

Then, the subtree pair (u1, u2)
∗ with the largest simi-

larity measure determines the maximum consistent sub-
tree isomorphism, whose set of matched nodes is equal to
{(u1, u2)

∗} ∪ C(u1, u2)
∗.

In the following section we present the computational
complexity of the proposed approach.

5 Computational Complexity of Matching

There are two major steps in our approach which contribute
to computational complexity: augmentation of given trees
with merger nodes, and actual matching of thus obtained
graphs. The segmentation algorithm of Ahuja (1996), Tabb
and Ahuja (1997) typically produces trees with approxi-
mately |V | = 30 to |V | = 100 nodes, for the image database
described in Sect. 7. Let s denote the average number of ad-
jacent sibling nodes under a visited parent. Then, the com-
plexity of transforming a given tree into a graph by applying
merge operations is O(2s |V |). Note that s is considerably
smaller than the average total number of a node’s children.
Typically, we have 0 ≤ s ≤ 4.

Once the transitive closures on the two DAGs with ap-
proximately 2s |V | nodes are constructed, our next step is
to solve for 2s |V | × 2s |V | maximum weighted clique prob-
lems. The replicator dynamics algorithm of Torsello and
Hancock (2003), Pelillo et al. (1999, 2001) that we use con-
verges in such problems after only a few iterations. Each it-
eration involves O(|G|2) multiplications, |G| being the total
number of nodes in a graph whose maximum clique is com-
puted (Pelillo et al. 1999). Thus, complexity of the second
step is O(16s |V |4).

Overall, computational complexity of our approach is
O(16s |V |4), which typically amounts to O(1010) computa-
tions, performed in less than 20 seconds on a 2.8 GHz, 2 GB
RAM PC for all pairs of images in the database presented
in Sect. 7. This does not include the processing time of
the segmentation algorithm. Compared to Torsello and Han-
cock’s approach (Torsello and Hancock 2002, 2003), ours
increases computational complexity O(16s) times. This in-
crease is justified by significant improvements in matching
performance as reported in Sect. 7.

6 Specification of Edit-Costs

The problem of defining the optimal edit-costs has received
considerable attention in the literature (see, e.g., Torsello
and Hancock 2006 for a review). In this paper, the costs of
node removal and matching, wv1 and mv1v2 , are specified
as a function of intrinsic geometric and photometric proper-
ties of the image regions, represented by nodes v1 and v2.
Requirements of a particular application inform the selec-
tion of optimal region properties. Below, we present one of

many possible sets of region properties, which we use for
defining the edit-costs.

Let μv and σ 2
v denote the mean and variance of the gray-

level pixel values in segmented region v. Also, let av de-
note v’s area, whose centroid is located at image coordi-
nates (xv, yv). To describe the boundary shape of v, we parse
the image into L = 40 pie slices, each of which begins at
(xv, yv), and subtends the same angle 2π/L. Next, we com-
pute the normalized histogram hv(l), l = 1, . . . ,L, of the
number of pixels of region v that fall in pie slice l. The his-
togram is made rotation invariant, with respect to rotations
by angles that are integer multiples of 2π/L, by assigning
l = 1 to the slice having the largest histogram value. In case
the assumption of rotation invariance is invalid, or rotation
invariance not required, label l = 1 is assigned to the slice
containing the image’s “x” axis. The entropy of such nor-
malized histogram is defined as

Hv � −
L∑

l=1

hv(l) loghv(l). (6)

For a sufficiently high value of L (L > 20), the matching al-
gorithm is not sensitive to changes in L values. Note that ro-
tation invariance might be violated by the presence of noise
in cases where the two largest slices are of similar sizes.
Therefore, in addition to the shape histograms, we alterna-
tively use four of the well known shape affine moment in-
variants (Sonka et al. 1999), denoted as I1, I2, I3, and I4,
and given by

I1 = ν20ν02 − ν2
11

ν4
00

,

I2 = (ν2
30ν

2
03 − 6ν30ν21ν12ν03 + 4ν30ν

3
12

+ 4ν03ν
3
21 + 3ν2

21ν
2
12)/ν

10
00 ,

I3 = (ν20(ν21ν03 − ν2
12) − ν11(ν30ν03 − ν12ν21)

+ ν02(ν12ν30 − ν2
21))/ν

7
00,

I4 = (ν3
20ν

2
03 − 6ν2

20ν11ν12ν03 − 6ν2
20ν02ν21ν03

+ 9ν2
20ν02ν

2
12 + 12ν20ν

2
11ν12ν03 + 6ν20ν11ν02ν03ν30

− 18ν20ν11ν02ν21ν12 − 8ν3
11ν30ν03 − 6ν20ν

2
02ν30ν12

+ 9ν20ν
2
02ν

2
21 + 12ν2

11ν02ν30ν12

− 6ν11ν
2
02ν03ν21 + ν3

02ν
2
30)/ν

11
00 ,

(7)

where the shape moments, νpq , are computed as νpq �∑
xy xpyqF (x, y), and where x and y are the image coor-

dinates, and F(x, y) = 1 if pixel at location (x, y) belongs
to the region, and F(x, y) = 0 otherwise. The four shape
affine moment invariants of region v are grouped in a vector
Iv = [I1, I2, I3, I4].

Int J Comput Vis

The vector of intrinsic properties of region v, ψv , com-
prises the following components:

ψv = [μv,σ
2
v , av, xv, yv, hv,Iv]. (8)

Together, the intrinsic region properties are used to compute
the cost of removing node v, wv , as

wv � γ

[|μv − μu|
max(μv,μu)

+ |σ 2
v − σ 2

u |
max(σ 2

v , σ 2
u)

]

+ (1 − γ)

[
av

au

+ Hv

]
, (9)

where u is the parent of v, and γ ∈ [0,1] represents the sig-
nificance given to region photometric properties relative to
geometric properties.

The cost of matching shape histograms hv1 and hv2 of
regions v1 and v2 is specified as the χ2 test statistic:

ρv1v2 � 1

L

L∑

l=1

(hv1(l) − hv2(l))
2

hv1(l) + hv2(l)
. (10)

Then, the cost of matching two nodes v1 and v2, mv1v2 , is
defined as

mv1v2 � γ
(μv1 − μv2)

2

σ 2
v1

+ σ 2
v2

+ (1 − γ)

[∣∣∣∣
av1

au1

− av2

au2

∣∣∣∣ + ρv1v2

]
,

(11)

where u1 and u2 are the parents of v1 and v2, respectively,
and γ ∈ [0,1] is a desired weight of the photometric proper-
ties relative to geometric properties.

Alternatively, when the affine moment invariants are used
to represent region boundary shape then the term Hv in (9) is
replaced with ‖Iv‖1 = I1(v)+I2(v)+I3(v)+I4(v), and the
term ρv1v2 in (11) is replaced with ‖Iv1 −Iv2‖1 = |I1(v1)−
I1(v2)| + |I2(v1) − I2(v2)| + |I3(v1) − I3(v2)| + |I4(v1) −
I4(v2)|.

From (9) and (11), for any pair of nodes v1 and v2, ex-
pression [wv1 + wv2 − mv1v2] may not be positive. Recall
that to compute W we discard pairs (v1, v2) whose cost of
node matching is larger than the sum of their removal costs,
i.e, we use [wv1 + wv2 − mv1v2]+ in (3). From our exper-
iments, such node pairs make less than one percent of the
total number of node pairs to be matched.

7 Experiments

Given two images, the proposed region-based image match-
ing approach identifies regions in image 1 and their matches
in image 2 such that each matched pair represents the largest
regions having the maximum similarity in low-level proper-
ties given by (8). For experimental validation we choose a

setting in which the goal is to match images in a set con-
taining similar objects. To this end, we use a carefully pre-
pared database consisting of 700 natural-scene images with
similar objects, including flowers, animals, musical instru-
ments and buildings. Similar objects occupy similar subim-
ages, which may differ to a certain degree in low-level prop-
erties of their constituent regions, such as color, size, and
shape across the database. These variations in low-level re-
gion properties, which should be tolerated by the matching
algorithm, arise from: (1) differences among target objects
(e.g., black and brown horses whose legs appear in slightly
different poses); (2) different imaging conditions (e.g., im-
ages are captured under different lighting conditions, and
similar objects are viewed at different scales, or from differ-
ent viewpoints); and (3) a certain degree of occlusion and
clutter unavoidable in natural scenes.

The database is publicly available at http://vision.ai.uiuc.
edu/~sintod/datasets.html. There are 30 distinct types of ob-
jects appearing in the database images. The types of objects
include flowers, animals, musical instruments, and build-
ings. The database is divided into three datasets with respect
to the scene complexity. Dataset I consists of images each of
which shows a single object well contrasted from a homo-
geneous background, and each target object appears in only
10 images. One sample pair from the set of 10 images for
each of the 30 objects in Dataset I is shown in Fig. 4. The
objects are labeled by their position in Fig. 4 in a raster scan.
For example, snail is the 7th object. Dataset II contains only
the first 20 objects of Dataset I, i.e., flowers, animals, and
musical instruments. Again, there are 10 images per object
in Dataset II, examples of which are shown in Figs. 7 and 8.
As can be seen, Dataset II is more complex than Dataset I
in that the images are captured under greater variation in
lighting conditions, the background contains clutter, and the
objects are viewed at different scales or from different view-
points. Finally, the 20 objects of Dataset II also appear in
Dataset III, with 10 images per object. However, Dataset III
increases the complexity over Dataset II as each image may
contain multiple occurrences of similar target objects, as
shown in Figs. 9–11.

We report the results of two types of experiments. The
first type concerns matching of all possible pairs of im-
ages containing a target object, in a specific dataset. Match-
ing performance is evaluated through the pixel- and region-
matching errors. The ground truth for evaluating these errors
is obtained by hand-labeling regions comprising to the ob-
jects of interest in given images. Given two images, let G
denote the total ground-truth area of target objects in the im-
ages, and let M denote the total area of all matched regions in
the two images. Then, the pixel-matching error, ep , is com-
puted as the XOR of G and M, expressed as a percentage of
the union of G and M, ep � [(G ∪ M) \ (G ∩ M)]/(G ∪ M).
Note that in Dataset III any two images may contain a

Int J Comput Vis

Fig. 4 One sample pair of the 10 images for each of the 30 objects in Dataset I. The objects are labeled by their position in a raster scan. For
example, the statue of liberty is the 22nd object

different total number of target objects. Since the image
with fewer target objects constrains possible matches, the
ground-truth area in both images should be labeled so as
to include the maximum possible number of matches. The
region-matching error is computed as the total number of
matched node pairs that do not correspond to the same part
of the target object in the two images, expressed as a per-
centage of the total number of matched node pairs. The
evaluation of region-matching error is done by inspecting
each matched node pair, and visually comparing the ob-
ject parts associated with the two nodes. The pixel- and
region-matching errors are averaged over all possible pairs
of images containing the same target object within a specific
dataset.2

In the second type of experiments, we assess the ability
of the proposed approach to separate images containing dif-
ferent target objects from those showing similar ones. This
is done by clustering images with respect to the quality of
their match, where ideally each cluster should consists of
only those images that contain a specific target object. Im-
age tree clustering is conducted by using the normalized cuts

2Matching is evaluated on images showing objects of the same type,
but our approach does not prevent matching images that contain differ-
ent objects (e.g., roosters and hens).

algorithm (Shi and Malik 2000) with a distance between two
trees, T1 and T2, defined as (Torsello et al. 2005)

d(T1, T2) � 1 − W(T1, T2)

4|VT1 ||VT2 |
, (12)

where |VT | denotes the number of nodes in tree T ,W(T1, T2)

is the maximum similarity measure between T1 and T2,
given by (3). To show that d(T1, T2) is positive, suppose
|VT1 | ≤ |VT2 |, then from (3) and (9), the upper limit of
W(T1, T2) is given by W(T1, T2) ≤ ∑

v∈VT1
(wv + wf (v)) ≤

4 · |VT1 |, from which we have d(T1, T2) ≥ 0. The normalized
cuts algorithm considers both the total dissimilarity between
the different clusters, as well as the total similarity within the
clusters with respect to d(T1, T2) (Shi and Malik 2000).

Each cluster is labeled according to a majority vote over
the labels of target objects present in the cluster. An image
in a cluster that shows objects with a different label from
that of the cluster is declared a clustering error. The average
clustering error is computed as the total number of cluster-
ing errors, expressed as a percentage of the total number of
images. In addition, we compute the confusion matrices of
each dataset.

In both types of experiments, we compare our approach
with the following tree-matching methods. The first method
is Torsello and Hancock’s edit-distance matching by using

Int J Comput Vis

transitive closures on trees (Torsello and Hancock 2003). In
their formulation merging and splitting of nodes is not con-
sidered, and, hence, we refer to this method as One-to-one.
The second approach is the work of Pelillo and his collab-
orators (Pelillo et al. 2001), in which many-to-many node
correspondences are considered by introducing the notion
of ε-morphism. This method is a representative of those ap-
proaches in which the merging of nodes is controlled by
thresholding a measure of their match, and, therefore, we re-
fer to it as Thresholding. In our implementation of Thresh-
olding, we set ε = 0 : 0.02 : 0.1, and allow merging of all
those nodes u and v in a given tree, along a unique directed
path, whose cost of matching m(u,v), given by (11), is less
than ε. The third approach concerns the work of Keselman
et al. (2003), which is a representative of the group of algo-
rithms that achieve many-to-many matching by embedding
graphs into a low-dimensional vector space. Therefore, we
refer to this algorithm as Embedding. In our implementation
of Embedding, each vector representing node v in the origi-
nal tree is associated with weight wv , given by (9). Note that
Embedding was originally designed to match only entire im-
ages (e.g., for image retrieval), and may not be appropriate
for matching their parts. Specifically, Embedding uses the
Earth Mover’s Distance algorithm to match several vectors
obtained from one tree (which may not represent contigu-
ous image parts) to a single vector obtained from another
tree, or vice versa. We will denote the quality of matching
between two such vectors, v1 and v2, as W(v1, v2), in or-
der to have a consistent notation for all the algorithms con-
sidered. Finally, the fourth matching approach concerns the
brute-force variant of ours, where merging and splitting of
nodes is not constrained but includes all sibling nodes. As in
our approach, the mergers augment the initial trees, which
in this case leads to an exponential increase in complexity.
We refer to this method as Brute-force.

7.1 First Type of Experiments: Image Matching

The image-matching experiment consists of the following
steps. First, images are processed by the multiscale segmen-

tation algorithm (Ahuja 1996), which detects all regions in
an image, and then represents their recursive containment
structure as a tree. Each node in the tree represents a re-
gion, with its children corresponding to the subregions con-
tained within the parent region. Each node also stores a list
of region’s properties as desired, e.g., those concerning gray
level, area, shape and size. Next, all possible pairs of im-
age trees, T1 and T2, showing the same target object are
matched. For each pair of nodes (v1, v2) ∈ T1 × T2, the sim-
ilarity measure W(v1, v2), given by (4), is computed. Then,
the pair that has the maximum similarity measure Wmax is
determined, as well as the standard deviation of W(·) val-
ues with respect to Wmax, denoted as σf . All the node pairs
(v1, v2) for which W(v1, v2) ≥ Wmax − σf are selected as
the solution, i.e., the matched image regions in the two im-
ages.

Note that the optimal choice of threshold of W(v1, v2)

values is dictated by the requirements of a particular appli-
cation (e.g., supervised vs. unsupervised settings, availabil-
ity of cross-validation data, etc.), and could be a challeng-
ing research topic on its own. The aforementioned heuris-
tic threshold appears reasonable for our experiments due to
the following reasons. We hypothesize that W(v1, v2) val-
ues of node pairs (v1, v2) representing the background are
much smaller than the W(v1, v2) values of node pairs repre-
senting the target object. In addition, it is desirable to select
more than one node pair as maximally matching image re-
gions, since two images may contain several occurrences of
the target object. In our experiments, the proposed heuris-
tic threshold of one standard deviation from the maximum
similarity measure yields good results.

Figures 5–10 illustrate our matching results on Datasets I,
II, and III. Each figure shows only a subset of the matched
image regions, marked white. For the experiments presented
in Figs. 5–9, the edit-costs are computed as specified by (9)
and (11), and are not invariant to scale. The results shown in
Fig. 10 are obtained for region boundary shapes represented
by the four affine moment invariants, which are scale invari-
ant. As can be seen in the figures, the number of unmatched

(a) two original images (b) the result of matching the two images in (a)

Fig. 5 Matching in Dataset I: the tree representing left image is
matched to the tree representing right image; left and the correspond-
ing right white regions illustrate the matched nodes whose quality
of match is above the specified threshold; as can be seen, some cor-

responding parts of the building in the two images are significantly
different due to capturing the scene under different imaging condi-
tions, and therefore their quality of match is below the threshold

Int J Comput Vis

(a) (b) (c)

Fig. 6 Examples of tree matching in Dataset I: the tree representing left image is matched to the tree representing right image; a few examples of
the matched nodes are given for each experiment (a), (b), and (c); left and the corresponding right white regions illustrate the matched nodes

(a) (b)

Fig. 7 Examples of tree matching in Dataset II: see caption for Fig. 6

(a) (b)

Fig. 8 Examples of tree matching in Dataset II: see caption for Fig. 6

(a) (b)

Fig. 9 Examples of tree matching in Dataset III: see caption for Fig. 6

Int J Comput Vis

(a) (b) (c)

Fig. 10 Examples of tree matching in Dataset III, where shapes are represented by the four affine moment invariants: see caption for Fig. 6

pixels belonging to the target object is small. Also, note that
the matched nodes in most cases do correspond to the same
object parts in the two images.

The results shown in Fig. 11 allow us to point out the
main characteristics of the competing algorithms. The re-
sult of Thresholding, shown in Fig. 11c, is the best for
ε = 0.06 over the range ε = 0 : 0.02 : 0.1. Ours, shown in
Fig. 11f, is obtained for γ = 0.5 and with the scale-invariant
region shape representation. Regions marked white are all
the matched regions for which W(v1, v2) ≥ Wmax − σf .
Note that among the matched regions are those represent-
ing non-target objects (e.g., grass patches), which are not
counted toward error, according to the definitions of pixel-
and region-matching errors. Typically, One-to-one, Thresh-
olding, and Embedding yield matched regions with many
“holes” in them, which represent unmatched, recursively
embedded image subregions. Further, for all the algorithms
on Dataset III, it may happen that different parts of one tar-
get object in image 1 are matched with parts of several target
objects in image 2. For example, in Fig. 11e, the body and
head of the left rhino in the right image matched the body
of the leftmost rhino and the head of the middle rhino in the
left image, respectively. This does not influence the region-
matching error, as long as the matched regions represent se-
mantically the same parts of the target objects.

The quantitative comparison is shown in Fig. 12. The
plots depict the average pixel- and region-matching errors
over Datasets I, II, and III. Note that the two entries in the
legend, referred to as our approach, differ in region shape
representation, as discussed in Sect. 6. The matching er-
rors presented for Thresholding (Pelillo et al. 2001) are the
best results found over the range of ε values, obtained for
ε = 0.04,0.06,0.06 on Datasets I, II, and III, respectively.
The results of Thresholding are very sensitive to the choice
of the threshold. The results of our approach are obtained
for γ = 0.5. From Fig. 12, our approach significantly out-
performs the competing methods with respect to the both

matching errors. For example, the average pixel- and region-
matching errors of our approach on Dataset I are 9.2% and
14.3%, respectively, while the corresponding errors of the
second best Thresholding are 17.8% and 25.2%. When the
scale invariant region shape representation is used, our ap-
proach yields improvements on Datasets II and III, as com-
pared to when the histogram shape representation is used:
14.4% and 17.5% vs. 16.3% and 19.1% pixel-matching er-
rors on Datasets II and III, respectively.

Brute-force exhibits the worst performance on all three
datasets, with respect to both matching errors, despite the
extra redundancy present due to mergers being the power
sets of all sibling nodes. Our analysis of the nodes that got
matched by this method indicates that Brute-force is biased
towards matching larger merger nodes. The larger the num-
ber of source nodes forming a merger, the more likely it is
for that merger to get matched.

The results presented in Fig. 13 demonstrate the impact
of different γ values on the performance of our algorithm.
For small γ values, 0 ≤ γ < 0.5, the region geometric prop-
erties are a dominant factor in computing W , given by (3).
Conversely, for large γ values, 0.5 < γ ≤ 1, the photo-
metric properties become more important in computing W .
From Fig. 13, the optimal γ value for all three datasets, for
which the pixel- and region-matching errors are minimum,
is γ = 0.5. While these are average results, the experiments
show that the optimal γ value is very close to 0.5 for each
of the 30 target objects, too. That is, the strategy that uses
equally weighted geometric and photometric properties as
cues for matching outperforms the method that uses either
of the properties. This observation is supported by each of
Datasets I, II, and III.

Table 1 details the average processing time it takes our
algorithm and the competing ones to match two images in
Datasets I, II, and III. It is worth noting that the code for
One-to-one, Thresholding, and Embedding is not publicly
available, and that our implementation of these algorithms

Int J Comput Vis

(a) Two images from Dataset III

(b) Brute-force (c) Thresholding (Pelillo et al. 2001)

(d) Embedding (Keselman et al. 2003) (e) One-to-one (Torsello and Hancock 2003)

(f) Ours

Fig. 11 Comparison of different matching approaches; tree T1 representing left image is matched to tree T2 representing right image; left and the
corresponding right white regions illustrate all selected matched node pairs (v1, v2), v1 ∈ T1, and v2 ∈ T2, for which W(v1, v2) ≥ Wmax − σf

(a) (b)

Fig. 12 Comparison of the average matching errors of six tree-
matching approaches on Datasets I, II, and III: (a) pixel-matching error,
(b) region-matching error. The results of our approach are obtained for

γ = 0.5, while those of Thresholding, for ε = 0.04, 0.06, 0.06 for
Datasets I, II, and III, respectively

Int J Comput Vis

(a) (b)

Fig. 13 Average (a) pixel-matching error, and (b) region-matching error for Datasets I, II, and III over a range of γ values

Table 1 Average processing time of matching two images

Ours One-to-one Thresholding Embedding

ε = 0.04

Dataset I 15.4 s 8.3 s 7.9 s

Dataset II 16.9 s 9.2 s 8.8 s <5 s

Dataset III 18.4 s 13.7 s 12.8 s

may not yield optimal execution times. However, since our
algorithm shares a number of steps with One-to-one and
Thresholding (e.g., replicator dynamics algorithm), the com-
parison with these two algorithms is sufficiently fair. The
code for Embedding is implemented in MATLAB, while the
code for the other three approaches is implemented in C, and
run on a 2.8 GHz 2 GB RAM PC. The presented times do
not include multiscale image segmentation/tree generation.
The increase in processing time from Dataset I to III is due
to the increase in the size of maximum clique problems to
be solved for images with several occurrences of the target
object. Embedding has the best runtime, while Thresholding
is the second best, as expected, by reducing the number of
nodes in the original tree via ε-node merging.

7.2 Second Type of Experiments: Image Clustering

The experimental set-up for image clustering is similar to
that of image matching, described in Sect. 7.1. After seg-
menting the images and finding their tree representations,
all the trees within a specific dataset are clustered by using
the normalized cuts algorithm (Shi and Malik 2000), with
respect to the distance metric, given by (12).

Figure 14 shows the clustering error of the competing al-
gorithms and ours. The clustering errors of our approach for

γ = 0.5 with the scale invariant region shape representation
are 22.2%, 22.7%, and 27.4% on Datasets I, II, and III, re-
spectively. The second best method is Thresholding (Pelillo
et al. 2001) with clustering errors of 24.4%, 27.1%, and
35.6% obtained for ε = 0.02, 0.04, 0.06 on Datasets I, II,
and III, respectively. Brute-force has the worst performance.
The results presented in Fig. 14b, show that the best perfor-
mance of our approach is again obtained for equal contri-
butions of photometric and geometric properties to W , i.e.,
when γ = 0.5.

Finally, Fig. 15 presents two confusion matrices on
Datasets I and III, respectively, for our approach with the
scale invariant region shape representation and γ = 0.5.
Rows of the confusion matrices indicate the labels of tar-
get objects, and columns represent the cluster labels. From
Fig. 15, the most confused objects have labels 1 and 2, and 4
and 5, the appearances of which are also difficult to correctly
classify for a human (see Fig. 4).

8 Conclusion

Image matching is of special interest to a wide range of
computer vision problems, from stereo matching to object
categorization. While most such work uses point or edge
features, there are also approaches that use regions for im-
age matching. The motivation behind the work reported in
this paper is that the use of hierarchical region properties
should significantly extend the robustness of image match-
ing to noise.

One of the main difficulties in region matching is that
low-contrast contiguous regions may easily merge into a
large, less homogeneous region, and the reverse may happen

Int J Comput Vis

(a) (b)

Fig. 14 (a) Comparison of the clustering errors of five tree-matching
approaches on Datasets I, II, and III; the results of our approach
are obtained for γ = 0.5, while those of Thresholding, for ε =

0.02,0.04,0.06 for Datasets I, II, and III, respectively. (b) The average
clustering error of our approach with the scale invariant shape repre-
sentation for Datasets I, II, and III over a range of γ values

(a) (b)

Fig. 15 Clustering using our approach with the scale invariant shape
representation for γ = 0.5; (a) Confusion matrix of 30 object cate-
gories in Dataset I; (b) Confusion matrix of 20 object categories in
Dataset III. Object categories are enumerated as explained in the cap-

tion of Fig. 4. Rows of the confusion matrix indicate object category,
and columns represent clusters. The shade of matrix entries (i, j) in-
dicates the number of images from category i in cluster j , where this
number ranges from 0 (white) to 10 (black)

when a large region splits into several smaller, more homo-
geneous regions. These phenomena occur when the images
showing the same scene are captured under different lighting
conditions, or when the scene is viewed at different scales or
from varying viewpoints. In this paper, we have proposed an
algorithm that addresses these problems.

Images are represented as trees whose nodes correspond
to segmented image regions at various scales, obtained by

a multiscale segmentation algorithm. In the segmentation
tree, large regions appear at upper tree levels closer to the
root, while their children nodes capture smaller details com-
pletely contained within the corresponding parent region.
The two trees are augmented with new nodes, called merg-
ers, which represent the power sets of contiguous regions
that are embedded in the same parent region. This trans-
forms the trees into directed acyclic graphs (DAGs) that

Int J Comput Vis

preserve connectivity and ancestor-descendent relations of
nodes in the original trees. Then, transitive closures on the
DAGs are constructed, whereby ascendant-descendant re-
lationships in the DAGs are transformed into parent-child
node connections. Thus, image matching is formulated as
a search for the maximum subtree isomorphism between
the transitive closures of DAGs. This search is constrained,
because each inserted merger node must be disallowed
to match if its source nodes got matched, and the ob-
tained maximum similarity common subtree must respect
ascendant-descendant relationships of the initial trees.

The proposed approach is validated on three datasets,
each introducing a higher degree of scene complexity. Ex-
perimental results of image matching and clustering are re-
ported. In addition, the performance of our approach is con-
trasted to that of the competing methods, which (1) thresh-
old possible node merges, (2) embed the trees into a low-
dimensional vector space, and there specify many-to-many
matching, (3) do not consider splitting/merging of nodes,
and (4) allow for all possible merges of children nodes under
a visited parent. Selection of optimal region properties for
image matching is discussed. It is shown that the matching
strategy with equally weighted region photometric and geo-
metric properties outperforms those strategies where either
photometric properties or geometric properties are favored.
The results demonstrate that our approach outperforms the
conventional methods with respect to suitably defined pixel,
region and clustering errors, at a price of a reasonably in-
creased complexity. Contrary to intuition, the brute-force
method, where all sibling nodes of the original trees are al-
lowed to merge, introducing exponential complexity, yields
the worst performance.

Acknowledgements Himanshu Arora provided the segmentation
code. The support of the Office of Naval Research under grant N00014-
03-1-0107 is gratefully acknowledged.

References

Ahuja, N. (1996). A transform for multiscale image segmentation by
integrated edge and region detection. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 18(12), 1211–1235.

Arora, H., & Ahuja, N. (2006). Analysis of ramp discontinuity model
for multiscale image segmentation. In ICPR.

Barrow, H. G., & Burstall, R. M. (1976). Subgraph isomorphism,
matching relational structures and maximal cliques. Information
Processing Letters, 4(4), 83–84.

Basri, R., & Jacobs, D. (1997). Recognition using region corre-
spondences. International Journal of Computer Vision, 25(2),
145–166.

Bomze, I. M., Budinich, M., Pardalos, P. M., & Pelillo, M. (1999).
The maximum clique problem. In D. Z. Du & P. M. Parda-
los (Eds.), Handbook of combinatorial optimization (supplement
Vol. A) (pp. 1–74). Boston: Kluwer Academic.

Bomze, I. M., Pelillo, M., & Stix, V. (2000). Approximating the maxi-
mum weight clique using replicator dynamics. IEEE Transactions
on Neural Networks, 11(6), 1228–1241.

Bunke, H., & Allermann, G. (1983). Inexact graph matching for
structural pattern recognition. Pattern Recognition Letters, 1(4),
245–253.

Bunke, H., & Kandel, A. (2000). Mean and maximum common
subgraph of two graphs. Pattern Recognition Letters, 21(2),
163–168.

Cohen, S., & Guibas, L. (1999). The Earth Mover’s Distance under
transformation sets. In Proc. IEEE Int. Conf. Computer Vision
(Vol. 2, pp. 1076–1083).

Cohen, L., Vinet, L., Sander, P., & Gagalowicz, A. (1989a). Hierarchi-
cal region based stereo matching. In Proc. IEEE Conf. Computer
Vision Pattern Rec. (pp. 416–421).

Cohen, L., Vinet, L., Sander, P., & Gagalowicz, A. (1989b). Hierarchi-
cal region based stereo matching. In Proc. IEEE Conf. Computer
Vision Pattern Rec. (pp. 416–421).

Demirci, M. F., Shokoufandeh, A., Dickinson, S., Keselman, Y.,
& Bretzner, L. (2004). Many-to-many feature matching using
spherical coding of directed graphs. In Lecture notes in com-
puter science: Vol. 3021. Proc. European Conf. Computer Vision
(pp. 322–335).

Eshera, M. A., & Fu, K. S. (1986). An image understanding sys-
tem using attributed symbolic representation and inexact graph-
matching. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 8(5), 604–618.

Fowlkes, C., Belongie, S., Chung, F., & Malik, J. (2004). Spectral
grouping using the Nystrom method. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 26(2), 214–225.

Fuh, C. S., & Maragos, P. (1989). Region-based optical flow es-
timation. In Proc. IEEE Conf. Computer Vision Pattern Rec.
(pp. 130–135).

Glantz, R., Pelillo, M., & Kropatsch, W. G. (2004). Matching segmen-
tation hierarchies. International Journal of Pattern Recognition
and Artificial Intelligence, 18(3), 397–424.

Golland, P., Eric, W., & Grimson, L. (2000). Fixed topology skele-
tons. In Proc. IEEE Conf. Computer Vision Pattern Rec. (Vol. 1,
pp. 10–17).

Keselman, Y., & Dickinson, S. (2005). Generic model abstraction from
examples. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(7), 1141–1156.

Keselman, Y., Shokoufandeh, A., Demirci, M., & Dickinson, S. (2003).
Many-to-many graph matching via metric embedding. In Proc.
IEEE Conf. Computer Vision Pattern Rec. (Vol. 1, pp. 850–857).

Liu, T. L., & Geiger, D. (1999). Approximate tree matching and shape
similarity. In Proc. IEEE Int. Conf. Computer Vision (Vol. 1,
pp. 456–462).

Medioni, G., & Nevatia, R. (1985). Segment-based stereo matching.
Computer Vision, Graphics, and Image Processing, 31(3), 2–18.

Ming-Hsuan, Y., Ahuja, N., & Tabb, M. (2002). Extraction of 2d mo-
tion trajectories and its application to hand gesture recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(8), 1061–1074.

Motzkin, T. S., & Straus, E. G. (1965). Maxima for graphs and a new
proof of a theorem of Turan. Canadian Journal of Mathematics,
17(4), 533–540.

Pardalos, P., & Xue, J. (1994). The maximum clique problem. Journal
Global Optimization, 4, 301–328.

Pelillo, M. (1999). Replicator equations, maximal cliques, and graph
isomorphism. Neural Computation, 11(9), 1935–1955.

Pelillo, M. (2002). Matching free trees, maximal cliques, and
monotone game dynamics. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 24(11), 1535–1541.

Pelillo, M., Siddiqi, K., & Zucker, S. W. (1999). Matching hierarchical
structures using association graphs. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21(11), 1105–1120.

Pelillo, M., Siddiqi, K., & Zucker, S. W. (2001). Many-to-many match-
ing of attributed trees using association graphs and game dynam-
ics. In Lecture notes in computer science: Vol. 2059. Int. Work-
shop Visual Form. (pp. 583–593).

Int J Comput Vis

Perrin, B., Ahuja, N., & Srinivasa, N. (1998). Learning multiscale im-
age models of 2D object classes. In Proc. Asian Conf. Computer
Vision (Vol. 2, pp. 323–331).

Randriamasy, S., & Gagalowicz, A. (1991). Region based stereo
matching oriented image processing. In Proc. IEEE Conf. Com-
puter Vision Pattern Rec. (pp. 736–737).

Richard, W. C., Hancock, E. R., & Luo, B. (2005). Pattern vectors from
algebraic graph theory. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(7), 1112–1124.

Rubner, Y., Tomasi, C., & Guibas, L. J. (1998). A metric for distrib-
utions with applications to image databases. In Proc. IEEE Int.
Conf. Computer Vision (pp. 59–66).

Sanfeliu, A., & Fu, K. S. (1983). A distance measure between at-
tributed relational graphs for pattern recognition. IEEE Transac-
tions on Systems, Man, and Cybernetics, 13(3), 353–362.

Sebastian, T. B., Klein, P. N., & Kimia, B. B. (2004). Recognition of
shapes by editing their shock graphs. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 26(5), 550–571.

Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(8), 888–905.

Shokoufandeh, A., Macrini, D., Dickinson, S., Siddiqi, K., & Zucker,
S. W. (2005). Indexing hierarchical structures using graph spectra.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
27(7), 1125–1140.

Sonka, M., Hlavac, V., & Boyle, R. (1999). Image processing, analysis,
and machine vision (2nd ed.). Pacific Grove: Brooks/Cole.

Tabb, M., & Ahuja, N. (1997). Multiscale image segmentation by
integrated edge and region detection. IEEE Transactions Image
Processing, 6(5), 642–655.

Torsello, A., & Hancock, E. R. (2002). Matching and embedding
through edit-union of trees. In Lecture notes in computer science:
Vol. 2352. Proc. European Conf. Computer Vision (pp. 822–836).

Torsello, A., & Hancock, E. R. (2003). Computing approximate tree
edit distance using relaxation labeling. Pattern Recognition Let-
ters, 24(8), 1089–1097.

Torsello, A., & Hancock, E. R. (2006). Learning shape-classes using
a mixture of tree-unions. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(6), 954–967.

Torsello, A., Rowe, D. H., & Pelillo, M. (2005). Polynomial-time met-
rics for attributed trees. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 27(7), 1087–1099.

Tsai, W. H., & Fu, K. S. (1979). Error-correcting isomorphism of at-
tributed relational graphs for pattern analysis. IEEE Transactions
on Systems, Man, and Cybernetics, 9(12), 757–768.

Umeyama, S. (1988). An eigendecomposition approach to weighted
graph matching problems. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 10(5), 695–703.

Xuguang, Y., & Ramchandran, K. (1999). A low-complexity region-
based video coder using backward morphological motion field
segmentation. IEEE Transactions on Image Processing, 8(3),
332–345.

	Region-Based Hierarchical Image Matching
	Abstract
	Introduction
	Literature Review and Relationship to Previous Work
	Contributions

	Multiscale Image Segmentation
	Tree Matching
	Definitions
	Problem Formulation
	Transitive Closures

	Recursive Computation of Similarity Measure Bottom-Up
	Computational Complexity of Matching
	Specification of Edit-Costs
	Experiments
	First Type of Experiments: Image Matching
	Second Type of Experiments: Image Clustering

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

