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Chapter 1: Introduction

In this work our goal is two-fold. Firstly, temporally segment videos into intervals of

activity from one of the classes of interest. Secondly, generate visualizations of the most

important video parts for the prediction. We focus on the domain of NFL (National

Football League) football videos [1], for the task of segmenting videos into three distinct

viewpoints and classifying each resulting segment by the playtype. For these tasks, the

viewpoint types include ‘front view’, ‘side view’ and ‘scoreboard’. The playtypes include

‘Rush’, ‘Pass’, and ‘Other’.

Temporal video segmentation has a wide range of applications, including rapid ex-

traction of video intervals, automatic annotation of videos for browsing and retrieval as

well as video decomposition to scenes for further processing. Deep learning approaches

have made significant advances in video segmentation [10][9]. However, predictions of

deep neural networks are hard to understand by a human. Recent research has at-

tempted to provide explanations of the predictions made by deep models [21][15]. One

of the goals in this research is to also enable providing human-readable explanations for

the classification decisions of neural networks with minimal human intervention. Our

work is an initial step towards this goal.

1.1 Challenges

The domain of NFL football videos presents many challenges. There are large differences

among videos due to a multitude of factors, including variations in player appearance,

appearance of the field, as well as stadium-specific characteristics such as logos on the

field and color of grass. Additional challenges include variations in lighting conditions

and camera viewing angles.

The dataset of the NFL videos that we consider has a non-uniform distribution of

target classes for both viewpoints and playtypes. This data imbalance makes the train-

ing of classifiers difficult. There are also video artifacts like noisy frames and sudden

camera movements. For current video analysis systems, variations in camera viewpoints
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typically present the greatest challenge. Therefore in this work we make our video anal-

ysis viewpoint invariant by first identifying the viewpoint and then applying the suitable

classifier for this viewpoint. Thus our video analysis consists of two steps, viewpoint

segmentation and playtype classification.

1.2 Contributions

To our knowledge, this is the first work on visualizations aimed at explaining the segmen-

tation of football videos. We also compiled a new dataset of NFL videos and manually

annotated video intervals by viewpoints and playtypes.

1.3 Overview of our Approach

Video segmentation in our approach is addressed in two steps. We first detect intervals

of different viewpoints and then classify each with a playtype class. This is illustrated

in Figure 1.1. The viewpoint segmentation module partitions the input NFL video into

viewpoint segments.

We consider three types of viewpoints: a scoreboard view, a side view and a front

view of the field. Some examples of these views are shown in Figure 1.2.

For viewpoint segmentation, we use the VGG network [16] for predicting the view-

point class of each frame. Then we use the Encoder-Decoder Temporal Convolutional

Network (ED-TCN) [10] to smooth out the resulting frame predictions into temporally

coherent segments. The second step of our approach is the playtype classification module

which classifies previously segmented video intervals into three categories of plays, ‘Pass‘,

‘Rush‘ and ‘Other‘ as shown in Figure 1.3. The playtypes in the ‘Other‘ category are

underrepresented in the dataset and have been grouped together. The category ‘Other‘

includes playtypes such as ‘Kickoff‘, ‘Punt‘ and ‘Field Goal‘ among others. The playtype

classifier uses the VGG network for feature extraction for each frame as well as ED-TCN

that fuses VGG features from all frames and predicts the playtype.

Toward explaining the above predictions, we also develop an explaining variational

auto-encoder which we call X-VAE. Figure 1.5 shows our X-VAE model. The inputs

to this model are attention maps, the most discriminative parts of video frames. An
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Figure 1.1: Overview of the Video Analysis Architecture. Given a sequence of frames
from an input video, we extract deep features from every frame using a convolutional
network. We make per-frame predictions for the viewpoint classes by applying the ED-
TCN model over the input features. We obtain viewpoint segments for every consecutive
sequence of frames with the same class. By separating the sequences between scoreboard
views, we obtain new frame sequences, each one corresponding to a single play. We
perform the same procedure, using a modified version of ED-TCN that produces a single
prediction for every play sequence. The final predictions correspond to the playtype
classes under consideration.

Figure 1.2: Sample input for viewpoint segmentation

attention map includes areas in a frame that give rise to high-activations in the network.

Visualizing these attention maps to the user provides an explanation of the prediction

in terms of what areas are responsible for the prediction. For example, if the attention
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Figure 1.3: Sample input for playtype classification

map falls on a person performing an activity and the activity is correctly predicted, then

we have the case that the correct prediction was made for the right reason. On the other

hand, if the attention map falls on the background, then we could have that the correct

prediction was made for the wrong reason. Analyzing these and similar cases would

provide insights into how the network works.

For providing explanations, we use the Excitation Backpropagation algorithm (E-BP)

for the network’s predictions. To estimate attention maps we use E-BP which computes

the neural activations in the predictor network in a top-down manner. The attention

maps of all frames of all videos in the NFL football dataset provide new data that we

analyze for providing explanations of the network’s decisions.

Figure 1.4: Overview of the Excitation Backpropagation method. A prediction such as
‘Side View’ (green) or ‘Scoreboard’ (brown) produces an attention map that shows the
parts of the image relevant to the prediction. By using E-BP over a video segment, we
obtain the attention maps for the sequence of frames in that segment.
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Figure 1.5 shows our X-VAE architecture used for providing explanations to network

predictions. Although attention maps relate to single predictions, we want to extract

frequent patterns when considering all attention maps, as these patterns are typically

meaningful. Overall, we cluster the attention maps then visually inspect the meaning of

each cluster in the football domain and use these semantic words to explain the network’s

prediction on a new video. Formally, our explanation of a prediction is specified as a

histogram of the dictionary of words representing clusters of attention maps.

For clustering we account for both spatial and temporal properties of attention maps.

This is realized as a cascade of two auto-encoders where the first encodes spatial prop-

erties of each attention map and the second one accounts for temporal properties in a

sequence of attention maps. In this way we project input attention maps to a latent deep

feature space that captures both spatial and temporal properties of attention maps.

Figure 1.5: Overview of the X-VAE Architecture

Given a video, we predict its playtype segments, then compute attention maps for

every frame, and assign codewords to each attention map. Then, we compute a histogram

of attention map codewords for each video segment.
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Chapter 2: Literature Review

In this chapter we give an overview of prior work in football analysis, followed by work

in action segmentation and video classification. We also cover visual attention models.

Other types of literature will be reviewed later in the text.

2.1 Football Analysis

Past work has addressed the analysis of football videos [12][3][6][7]. These attempts

focus on particular parts of football analysis, like moment of snap detection, or playtype

recognition. In [12], moment of snap detection is achieved by leveraging optical flow

and an active cell approach that splits every video frame into cells. Hough transforms

are employed in [3] to extract field lines and use mid-level feature detectors to predict

playtypes. In [6], recognition of team formation is automated for further use in higher-

level analysis. Other work [7] specifically targets playtype recognition but depends on

player trajectories as input to the model. Our work differs from the above in that we do

not leverage traditional image processing techniques with hand-crafted features, instead

opting for deep learning methods where feature extraction is learned. We are not aware

of any previous work for football analysis based on deep learning methods.

2.2 Action Segmentation

For action segmentation, current approaches typically extract per-frame deep features,

and then use a temporal model for frame labeling. For example, in [19] the authors use

an LSTM network to model feature dependencies over a fixed temporal interval. In [17]

a multi-stream bi-directional recurrent neural network is presented for the task of fine-

grained action detection. Well-known limitations of recurrent models include difficulty of

training [14], and limited attention span [17]. We instead use [10] for temporal viewpoint

segmentation, which compares favorably to the aforementioned work on bi-directional
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LSTM baselines while being easy to train and use with the Excitation Backpropagation

algorithm.

2.3 Video Classification

The main approaches for video classification are typically the following:

Using a convolutional network to extract features, and passing them through a re-

current neural network, as mentioned in the previous section on action segmentation.

A 3d-convolution where kernels have a receptive field that extends beyond the 2-

dimensional surface of an image into a 3d volume that extends in width, height and

time. As the authors note in [18], the main drawback of this method is the increased

amount of GPU memory required, so that model parallelism is required to train their

proposed model.

Extraction of features using a convolutional network, but passing them through an

RNN at a later time, without joint training. This approach is identical to the approach

mentioned in a) if the convolutional network features are pre-computed without back-

progating gradients to it from the RNN network. This approach is conceptually simpler

and the corresponding models are easier to train. However, the second part of our

approach requires back-propagation of signals from predictions to input, which is not

possible with two disjoint networks.

Combining any of the above methods with optical flow estimation can lead to better

model performance, since it encodes useful motion information between pairs of frames

and produces a vector field that can be used to augment the inputs in a deep network.

Networks like Flownet [4][5] are trained on synthetic datasets (e.g. the flying chairs

dataset) and then used on different datasets where motion can be generalized effectively.

For our particular task of NFL playtype classification, such methods are not very reliable

because of fast changes in camera angles, large motions of objects etc.

2.4 Visual Attention Models

There is limited prior work on the estimation of various forms of attention in deep

models. The ability to find where the prediction-causing signals occur in the input of a

model has been explored in many works. One of the earliest works to appear towards
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this goal [20] used de-convolutional networks that were appended to directly map feature

activations to the pixel space. Using feedback networks, the authors of [2] are able to

infer the activation of hidden layer neurons. More recently, the authors of [21] use a

modification of the gradient back-propagation algorithm to produce a distribution of

pixels most likely responsible for a model’s prediction. They introduce the idea of using

contrastive signals to separate important parts of an image conditioned on a specific

output. The contrastive version of this algorithm , called Excitation Back-propagation

(E-BP), is able to produce attention maps for multiple object categories within a given

image with great detail compared to other methods. We use E-BP to extract our dataset

of attention maps that form the basis for analyzing explanations using our framework.

E-BP has appeared in even more recent work, as in [15]. Our approach is different from

[15] as we analyze an entire dataset of attention maps from the first layer of a network,

instead of using explanation modules that use E-BP locally in different layers throughout

the network.
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Chapter 3: Playtype Recognition

3.1 Viewpoint Segmentation

The overview of our approach has been shown in Figure 1.1. The first building block of

our approach is the VGG classifier [16] as illustrated in Figure 3.1. This model is used

for extracting deep features from every frame in the video. These features are later used

as input to the ED-TCN model for video segmentation.

The main idea of the VGG network, as compared to previous work, was to use 3× 3

convolutional kernels thereby reducing the number of parameters, while also being able

to increase the depth of the model significantly. Fully connected layers in the model

map kernel activations to the final classes. VGG is a common feature extractor in the

community.

Figure 3.1: Standard VGG-16 architecture

We train the VGG model to make per-frame predictions of viewpoints. Specifically,

we use a standard VGG-16 model trained on the Imagenet dataset, and remove the last

fully connected layer, since the original model is trained for predictions over 1000 classes.

We then append a new fully connected layer and use a softmax layer to make predictions

over the three viewpoint classes. We use a learning rate of 1e−4 and weight decay 1e−6

as the hyper-parameters of the Adam optimizer [8]. During training, we fine-tune our
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hyper-parameters using grid-search until training converges. We train our model for ten

epochs as a frame-wise baseline.

Model predictions can be inconsistent in labeling similar frames under the same class

because of input noise. To smooth out the predictions as well as integrate information

from the whole sequence of frames, we additionally use the encoder-decoder temporal-

convolutional-network (ED-TCN) on top of the VGG deep features. We again remove

the last fully connected layer of the VGG model and thus are able to extract 4096-

dimensional features per frame for further processing. We then use the ED-TCN model,

described in ”Temporal Convolutional Networks for Action Segmentation and Detection”

[10] on multiple frames. Convolutional models like ED-TCN that convolve with kernels

through time have surpassed bidirectional LSTM baselines. They are more appropriate

for use with methods like excitation backpropagation, because they allow calculation of

back-propagating signals through time while evaluating backwards passes for comput-

ing gradients only through convolutional, fully-connected, max-pooling and up-sampling

layers. The original algorithm for Excitation Back-Propagation applies to these layers,

but cannot be directly applied to RNNs [21].

For ED-TCN, we use two encoding layers and two decoding layers, with kernel sizes 64

and 96. We follow the suggestions of the authors and use a convolutional layer, followed

by dropout, ReLU and max-pooling layers for every encoding layer in the network. For

decoding layers, we invert the order of the layers, and substitute the max-pooling layer

with a bilinear up-sampling layer. We use a frame window of 7 frames for the length

of the convolutions through time, and predict one out of three classes per frame at the

output using a fully connected layer from the convolutional features to the number of

outputs. We use the same hyper-parameters as before to jointly train the VGG model

with the ED-TCN model, on fixed-size sequences of frames.

3.2 Playtype Classification

Given video segments of viewpoints, we classify each segment using the VGG+ED-TCN

model. After we have segmented the input video into viewpoint intervals, we remove all

scoreboard views and separate the remaining intervals into a set of plays. The entire

model uses the same VGG feature extractor as used in viewpoint segmentation to extract

per-frame features, that will be used with the encoder part of ED-TCN to predict the
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Figure 3.2: Encoder-Decoder Temporal-Convolutional-Networks. The input to ED-TCN
is a set of video features from the VGG network extracted from every frame in a video
sequence. In the output of the model we obtain a class label for each frame.

correct playtype. We use the same ED-TCN architecture as before. The intermediate

temporal features at the layer prior to the decoder part of the network are used to make a

prediction. To do so, we use two fully connected layers from the temporal features to the

final playtype prediction, with the number of nodes per layer being {96× 32, 16, 3}. The

softmax over the three outputs after the fully connected layers provides the network’s

playtype prediction for the entire sequence.

The inputs to the model explained above are obtained from fixed-size sequences

of frames, extracted from viewpoint segments where a play occurs. During training, we

predict the whole segment’s playtype label from a randomly sampled contiguous sequence

of frames inside the segment. During inference, a majority voting scheme allows us to

predict a single playtype label for the entire segment. This is done by using a scanning

window along time, where windows can be overlapping or consecutive. The incremental

step for every overlapping window is one tenth of the window size.
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Chapter 4: Datasets

The 2016 NFL videos are RGB videos pre-formatted to follow a ’scoreboard’-’play’-

’replay’ layout, without intermissions. The post-processed inputs to our models are

video sequences extracted from these videos, and resized to a resolution of 256 × 256.

Playtype annotations exist for all 2016 NFL videos but they are associated with game

time instead of video time. We randomly selected a subset of 14 videos for which we

manually annotated the viewpoint segments, leading to a one-to-one correspondence

between the annotated playtypes and the viewpoint intervals between scoreboard views.

This subset of videos contains 2149 plays for a total of 21 hours of football. We include

both the play and replay information available in the videos to predict the playtype of

each viewpoint interval between scoreboard views. The inclusion of replays is important

because while they show the same events on the field, a different camera angle is used.

Our dataset does not allow matching of viewpoints between plays and replays because

their durations and number of frames per view are typically very different. This provides

additional visual information for our video analysis. Our viewpoint segmentation model

was trained with an additional subset of scoreboard views, used to balance the dataset.

We have some insight the challenges of segmenting viewpoints when we try to create

an automated viewpoint annotation architecture which was not based on deep learning

models. We implemented a method based on color histogram comparisons. We divided

every image frame into a grid of size 4 × 4, and calculated the correlation between the

color histograms of every frame in the video as it relates to the average of the scoreboard

frames. For some videos, the median and minimum values of the correlations of all image

parts of the grid were useful in predicting whether the scoreboard was present or not,

however field logos as well as noisy frames made the task of selecting a clear dividing point

between field views and scoreboard views difficult. Specifically, for varying thresholds

of hyper-parameters that divided the frames into two sets, we either obtain a consistent

number of plays for most thresholds, or fail to match the number of plays with the

number of pre-existing playtype annotations. Thus only a very small number of videos

could be automatically annotated.
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After using contrastive Excitation Backpropagation on viewpoint and playtype model

predictions, we obtained two additional datasets of attention maps, one for viewpoint

sequences and another one for playtype sequences. In the training set of attention maps

we only include the attention maps where the network makes correct predictions.
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Chapter 5: Experiments of Video Analysis

We evaluate viewpoint segmentation predictions using frame-wise accuracy, con-

fusion matrices, as well as textbfIoU scores and Precision-Recall curves over the

segmented viewpoint intervals. Frame-wise accuracy is not enough to determine whether

the intervals we produce are of high enough quality to use with playtype classification.

Errors in single frame prediction may not contribute enough to frame-wise accuracy to be

deemed important, however single frame errors leading to erroneous viewpoint interval

detection will lead to entire segments of viewpoints being misclassified by our playtype

classification model.

For playtype classification we note that the intervals produced by viewpoint seg-

mentation using our best model are identical to the ground truth intervals, with minor

differences only in the exact location of the beginning and ending frames of each view-

point interval. Thus our evaluation of playtype classification focuses on the differences

of prediction accuracy when using the predicted intervals instead of the ground truth

intervals. In both cases, the differences in the input intervals lead to insignificant dif-

ferences between prediction accuracy, as discussed in the playtype experiments section

below.

Our baseline model for viewpoint segmentation is a frame-wise model that predicts

a class for every input frame without using any temporal information. The next models

use ED-TCN over fixed window intervals of 32 or 196 frames, called EDTCN-32 and

EDTCN-196 respectively. Finally, the model ED-TCN (no fine-tuning), where the

initial frame-wise VGG model has been trained for 10 epochs but we only update the

ED-TCN parameters after this initial training phase. This model uses window intervals

of 32 frames.

For playtype classification, we first discuss our ablation studies over multiple model

architectures, regarding the use of EDTCN. Our baseline model uses the decoder part

of the network, includes the final VGG model trained on the task of viewpoint segmen-

tation, and includes a window size of 32 frames. For determining the best architecture

regarding EDTCN, we exclude the ‘Other’ playtype category so that the task of playtype



15

classification is a binary classification task. We refer to the validation set of our dataset

as a testing set during the comparisons with other models. We include comparative

evaluations by removing the decoder of the EDTCN model, training from scratch, as

well as expanding the window size to 64 frames.

We then evaluate multiple models on the task of playtype classification over three

playtype categories. Our baseline for these experiments is a model that is trained from

scratch without a decoder network. We compare models that use 8 frames, 16 frames

and 32 frames. We then turn our attention to the importance of including both side view

and front view of plays, by comparing the performance of models over single views of

the field, or a combined view of both. Our final results on the testing set show confusion

matrices and final testing accuracy on both ground truth and predicted intervals. For

this final evaluation, we use a window size of 32 frames on both views of the play.

Our first experiments focus on viewpoint segmentation and playtype classification,

using the dataset of 2016 NFL videos as introduced in Chapter 4. We achieve a 99.5%

testing accuracy for viewpoint segmentation. By classifying the previously segmented

video intervals by playtype, we achieve 80.1% testing accuracy. We also evaluate our

models using IoU scores and Precision-Recall curves for a performance measure over the

entire pipeline of viewpoint segmentation and playtype classification.

5.1 Viewpoint experiments

Our playtype recognition architecture consists of two modules, a viewpoint segmentation

model and a playtype classification model. The first module is comprised of the VGG

network, that has been pre-trained on isolated frames, and the ED-TCN network that

uses the VGG features on every frame to segment the video into plays using convolutions

through time. We split the dataset into training and testing videos, using an 80%-20%

split. For the training videos, we remove 10% of the frame sequences to use for validation

and the rest are used for training. The testing videos come from stadiums and games

that the models have not seen, which is suitable for thoroughly testing the generalization

ability of the models. We train the baseline framewise model for viewpoint segmentation,

which we will use as pre-training for the combined VGG+ED-TCN architectures.

We then evaluate the viewpoint segmentation models with a per-frame accuracy

metric. We include the pre-trained framewise model as well as three models which em-
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Figure 5.1: Viewpoint classification
/ Loss

Figure 5.2: Viewpoint classification
/ per-frame accuracy

Figure 5.3: Training set normalized
confusion matrix over the view-
point classes. Predicted vs. ground
truth classes.

Figure 5.4: Testing set normalized
confusion matrix over the view-
point classes. Predicted vs. ground
truth classes.

ploy ED-TCN over windows of frames, namely, EDTCN-196 with a window size of 196

frames, and EDTCN-32 with a window size of 32 frames as well as EDTCN-32 (no fine-

tuning) where the VGG network’s parameters are not updated. We evaluate on both

consecutive frame sequences and sliding-window overlapping frame sequences, for both

validation and testing sets.

We also use the Intersection-over-Union (IoU) metric to determine whether the seg-

mented temporal intervals overlap sufficiently with the ground truth intervals. We em-

ploy the Viterbi algorithm over the resulting intervals to smooth-out any inconsistencies

that would lead to invalid viewpoint changes that never occur in the dataset. The pa-
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Figure 5.5: Viewpoint segmentation per-frame accuracy

rameters for the Viterbi algorithm are obtained from the statistics of the training dataset.

Figure 5.6: Viewpoint segmentation IoU before viterbi

Figure 5.7: Viewpoint segmentation IoU after viterbi

Viewpoint segmentation needs to produce high-quality intervals, in the sense that

the two end-points of each interval should be as close to the ground truth end-points

as possible. To evaluate the quality of viewpoint segmentation, we use Precision-Recall

curves over multiple IoU thresholds in the range [0.5, 0.9], as shown in Figures 5.8 and

5.9 respectively.
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Figure 5.8: Precision-Recall curve
for all viewpoint models for differ-
ent IoU thresholds (before viterbi).

Figure 5.9: Precision-Recall curve
for all viewpoint models for differ-
ent IoU thresholds (after viterbi).

5.2 Playtype experiments

We first attempt to use the same architecture used for viewpoint segmentation with

multiple adjustments for playtype recognition. We compare models with 32 uniformly

sampled frames in the input, where the output of ED-TCN consists of 16-dimensional

features that are used as input to the fully connected layers leading to the playtype

prediction. We include a model with 64 uniformly sampled frames as input, and also

evaluate performance with lack of pre-training for the VGG, which is trained from scratch

on the playtypes. We remove the decoder network as we are no longer interested in per-

frame labeling, but predicting a single label for the entire duration of the play. We see

that the performance of the model when no decoder network is used outperforms all

other models while including less parameters. This model is used for the second set of

experiments for playtype classification.

We now provide details over the experiments on the playtype classification. As ex-

plained in the first part of the experiments of video analysis, we evaluated multiple

models for our ablation studies. Our results show the performance of the model when

we include more frames per play, remove the decoder network (so that there is no action

segmentation) and initialize without loading a pre-trained viewpoint VGG model. For

our initial set of experiments, we only train and evaluate our models on binary classifi-

cation of the two majority classes. The test set used for this set of experiments is the

validation set of the next set of experiments.
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Figure 5.10: Testing accuracy,
baseline model

Figure 5.11: Training loss, baseline
model

To determine whether the playtype classification would show improvement if more

frames were included, we run experiments with more frames per play (which are still

uniformly sampled from the frames of the play).

Figure 5.12: Testing accuracy,
model has 64 frames

Figure 5.13: Training loss, model
has 64 frames

Removing the decoder part of the network means that we are only convolving through

time and using less parameters. This is a more natural approach to classification of an

entire play with a single label, so it is worthwhile to note whether the accuracy of the

model is lower when we do not use a decoder network.

Removing the pre-trained VGG model induces better attention maps but the testing

accuracy does not drop compared to other models.
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Figure 5.14: Testing accuracy,
model has no decoder

Figure 5.15: Training loss, model
has no decoder

Figure 5.16: Testing accuracy,
model without pre-training

Figure 5.17: Training loss, model
without pretraining

Model Test acc. (after model converges)

baseline model 90%

64-frames 87%

no-decoder 92%

no-pretraining 88%

In conclusion, the best models for the task of playtype classification work regardless of

pre-training or inclusion of the decoder network. Thus the model used for the clustering

analysis will be a model trained from scratch without the decoder part of ED-TCN.

We now train our playtype classifier on three classes, using only the encoder network,

and classifying the playtype afterwards. We train the network from scratch, and then



21

freeze the VGG layers to only train the temporal part of the network. We use sliding

windows and consecutive windows for evaluation. We obtain 85.4% on the validation set

for 3 playtypes with the final model, and 80.6% on the testing set. Testing set frames

and plays are outside the training dataset and involve new unseen stadiums.

Figure 5.18: Comparison of different window sizes

Figure 5.19: Comparison of different viewpoint inclusions

As shown in Figures 5.18 and 5.19, we tested different window sizes and viewpoints,

with early stopping. At epoch 20, it is clear that both viewpoints with a window size of

32 frames is the most appropriate.

Over-fitting is a concern when combining the VGG model with the ED-TCN model,

so we freeze the model of VGG after epoch 20 and train for another 20 epochs we only

update the ED-TCN model parameters. We evaluate on overlapping and non-overlapping

intervals, but all predictions remain identical. We also find that when the viewpoint

segmentation is used to detect scoreboard vs. field views (which include front and side

views), 100% of ground truth field viewpoints are included for playtype classification.

Table 5.1: Predicted intervals, confusion matrix

Classes ‘Rush’ ‘Pass’ ‘Other’

‘Rush’ 0.19 0.06 0.02

‘Pass’ 0.03 0.38 0.01

‘Other’ 0.03 0.06 0.23
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Table 5.2: Ground truth intervals, confusion matrix

Classes ‘Rush’ ‘Pass’ ‘Other’

‘Rush’ 0.19 0.06 0.01

‘Pass’ 0.03 0.39 0.01

‘Other’ 0.03 0.05 0.23

Table 5.3: Predicted intervals, accuracy

Classes Test acc. on predicted intervals

all classes 80.6%

’Rush’ 74.7%

’Pass’ 90.9%

’Other’ 76.1%

Table 5.4: Ground truh intervals, accuracy

Classes Test acc. on ground truth intervals

all classes 81.7%

’Rush’ 74.6%

’Pass’ 92.6%

’Other’ 77.8%

At inference time, we compare ground truth predictions with viewpoint segmentation

predictions where all intervals are assigned the majority playtype they overlap with. We

see a slight decrease in performance when using the predicted intervals. These are the

final results over the selected model that we determined was most appropriate given our

ablation studies.
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Chapter 6: Visual Explanations

6.1 Excitation Backpropagation

To understand model predictions, we use the contrastive Excitation Backpropagation

method. For every input-prediction pair of either the viewpoint segmentation model or

the playtype classification model, we can back-propagate gradients that produce gray-

scale maps of attention. These attention maps relate the prediction at the output of the

model to the input signals that have caused the prediction.

Excitation Backpropagation is based on a winner-takes-all (WTA) formulation for

determining which neurons of a neural model have the highest likelihood for responsible

for the above layer’s activations.

Figure 6.1: Excitation Backpropagation, probabilistic WTA formulation

Back-propagation of signals can be defined in a recursive way. For any two layers, the

positive-weight connections between neurons relate the activations of neurons at both

ends of a connection to determine the probability that the bottom-layer layer neuron

will activate. By applying the same process repeatedly in a top-down manner, we obtain

the probability distribution of neural contribution at any layer.
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P (aj) =
∑
ai∈Pj

P (ai|aj)P (aj)

P (ai|aj) =

{
Ziajwij , if wji ≥ 0

0, otherwise

}

We use Excitation Backpropagation until we reach the first layer of the VGG model, to

obtain detailed attention maps that are as close to the dimensions of the input images

as possible. Excitation Backpropagation is used through both the VGG and ED-TCN

models, and it produces attention maps for multiple frames simultaneously.

6.2 Spatio-temporal Autoencoders

Attention maps are the contributions of pixels in the original frame towards a single

model prediction. These attention maps exist in isolation, so the next part of our ap-

proach involves grouping attention maps that have common patterns as typically these

patterns can be meaningful in the context of predictions. In order to relate common

patterns in attention maps, we need to resolve two problems. The first one is translation

invariance. When an attention map includes a pattern that occurs throughout many

attention maps at different location, we want to be able to represent it in a similar way.

The second one is using a better representation compared to raw pixel space, so that

we can capture more high-level features of the attention maps. Such representations can

be obtained from the latent dimension of an auto-encoder, in absence of any supervised

information over the attention maps.

To capture both translation invariance as well as obtain a compact representation of

attention maps that is appropriate for groping similar attention maps together, we use

a convolutional variational auto-encoder (Conv-VAE).
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Figure 6.2: Convolutional variational auto-encoder

Our Conv-VAE model consists of four alternating convolutional and max-pooling

layers for the encoding network. We use 96 convolutional kernels for the first two con-

volutional layers and 196 kernels for the next two convolutional layers. Three fully con-

nected layers map the convolutional features to the latent code, which has dimension 32.

The two hidden layers have 512 hidden nodes each. We construct the decoder network

by reversing the ordering of the layers, and substituting max-pooling and convolutional

layers with bilinear-upsampling and transposed convolutional layers respectively.

Figure 6.3: Variational Autoencoder, original formulation of the architecture
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To train the auto-encoder, we use the standard loss for variational auto-encoders,

which is the sum of two loss functions. The first is a reconstruction loss, where mean

squared error is used to determine if the output of the auto-encoder is pixel-wise similar

to the input. The second one is a regularization loss, KullbackLeibler divergence (KL-

divergence), which is a measure of how the latent distribution of z matches a prior

distribution, in this case a multivariate unit Gaussian.

Total VAE Loss =

N∑
i=1

li

li(θ, φ) = −Ez∼qθ(z|xi)[log pφ(xi|z)] +KL(qθ(z|xi)||p(z))

Our intent is to cluster the latent representations of all attention maps to groups we

call code-words. These code-words can be used to explain the way a model makes predic-

tions. By borrowing from Natural Language Processing, we aim at connecting the latent

representations of attention maps with the context in which an they occur. Word-2-Vec

[13] models are appropriate in the context of word embeddings, in order to represent

semantically similar words closer together in an embedded space. However, since the

original attention maps as well as their corresponding latent code is continuous, we can-

not use one-hot encodings of either the attention maps or their latent representations

that Word-2-Vec models require.

To resolve this problem, we use a conditional variational auto-encoder that produces

a generative distribution of the context of each attention map in the dataset. This

resembles the skip-gram architecture of Word-2-Vec models, where an input word is used

to predict the context. For a given sequence of attention maps and a window centered

on any part of the sequence, we first use the spatial auto-encoder to obtain the latent

representations of the attention maps within the window. Then we train the conditional

variational auto-encoder to predict the latent representations of nearby attention maps

conditioned on the attention map in the center of the window.

The conditional variational auto-encoder does not use convolutional layers, instead

employing two fully connected layers for both the encoder and decoder network. We use

a latent space of dimension 4 for predicting the context of the conditioned latent spatial

representation of our input frame. Both the context being reconstructed as well as the

conditioned input are the spatial latent codes that our Conv-VAE produced. To train
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the conditional variational auto-encoder, we follow the same procedure as for the Conv-

VAE model, except that both input and latent representation are concatenated with

the conditional latent code of the input frame. The entire model of the two variational

auto-encoders is jointly trained end-to-end.

6.3 Clustering

Given a sequence of attention maps, we want to obtain a contextual representation of

each map. To do so, we concatenate the latent representations of the conditional vari-

ational auto-encoder as it reconstructs multiple contextual samples around our current

attention map. We then concatenate its own spatial latent representation to the condi-

tional representations, to form a spatio-temporal representation for the attention map.

After obtaining the representations for all attention maps, we perform a k-means

clustering procedure to produce groups of semantically similar attention maps. To pro-

vide an explanation after the clustering, we first find cluster membership for all attention

maps, after extracting their spatio-temporal representation. We then provide the repre-

sentatives of each cluster as exemplars for the type of reasoning that is related to our

current attention map.

6.4 Visual inspection for finding semantic meaning

A user can assign semantic meaning to each cluster that is considered meaningful through

visual inspection by associating each cluster with an English word. These verbal mean-

ings can then be associated with the clusters, along with the visual representatives closest

to each cluster center. This way each sequence of codewords corresponds to list of mean-

ingful English words and attention map parts.

We use watershed segmentation over the attention maps closest to the clustering

centers to obtain map parts which explain the type of cluster the attention map belongs

to. By separating the relevant image parts of every visual codeword, we can visualize a

collection of the most significant visual cues that our model has learned to focus on, to

make predictions that are semantically similar to the current one.
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We visualize the presence of every meaningful cluster at every frame, quantifying the

number of times each cluster is present in this sequence of frames inside a histogram of

visual codewords and associated English words.
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Chapter 7: Experiments of Visualizing Attention Maps

The dataset we use for our explanations is obtained by using Excitation Back-propagation

over the training set of NFL football videos. We obtain one dataset for attention maps of

viewpoint segmentation predictions and another dataset for attention maps of playtype

classification predictions.

The first experimental section contains an overview of the type of data we collect

after applying Excitation Backpropagation through time. We show results over multiple

models covered in the Video Analysis chapter, for both viewpoints and playtypes.

In the next section, we discuss experiments for the qualitative evaluation of our

X-VAE framework. We compare reconstructed inputs to the outputs of the variational

auto-encoders over attention maps in a separate testing dataset, to show that our models

have not overfit the training dataset. To do so, we use a 90%−10% split of each dataset

of attention maps into training and testing sets. We also explore how the spatial and

contextual auto-encoders map attention maps to latent codes.

In the clustering section of the experiments, we discuss our clustering results. Using

clustering over the attention maps as a baseline, we show why it is important to learn

abstract representations of the features in attention maps using the spatial auto-encoder,

and how it compares to the inclusion of contextual information. Thus we compare our

clustering of raw attention maps to the clustering of spatial latent codes as well as the

combination of spatial and contextual latent codes. We then associate clusters with

English words. To do so, we visually inspect all the clusters, and choose the ones that

prove semantically meaningful based on the original images that are associated with

these clusters.

In the final section of our experiments, we apply our entire method to both viewpoint

and playtype models and present the resulting visual and textual narratives associated

with specific sequences of images. Specifically, we provide histograms of codewords over

sequences of attention maps, and relate these codewords to the English words they have

been annotated with.



30

7.1 Excitation Backpropagation through time

In this section we want to discuss some qualitative results over the NFL playtype clas-

sification task. We introduce pairs of sequences where the original images are compared

to the attention maps produced by EB when it is applied throughout both the ED-TCN

model and the VGG model.

Without a contrastive signal to remove common excitations between categories, we

get signals from multiple classes over the input frames. These signals cannot be used to

distinguish between classes that are present in the same image or sequence of images. A

trained model will produce attention maps for all frames, and attend to multiple class

signals per frame as shown in Figure 7.1.

Figure 7.1: Attention maps for
standard EB

Figure 7.2: Original images for
standard EB

Consequently, all further results will be shown relative to the contrastive attention

maps for predictions that match the ground truth. Our initial results showed better

performance over models that were not pre-trained with viewpoint annotations.

Our next comparisons reflect our model’s ability to provide meaningful features per

frame that can be later accumulated into a single label. By using the ED-TCN model

to predict a single label for the entire sequence, we obtain the attention maps illustrated

in Figures 7.3 to 7.6.
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Figure 7.3: Contrastive EB, trained
model

Figure 7.4: Original images,
trained model

Figure 7.5: Contrastive EB, trained
model

Figure 7.6: Original images,
trained model

Increasing the number of frames per sequence to 64, we can see if the attention

maps contain major fluctuations between frames. We notice that the attention maps are

unavailable for parts of the playtype sequences for both 64 frame models and 16 frame

models.

In Figures 7.9 to 7.12 we see that the most discriminative results are obtained with

models that either do not use pre-training on viewpoints or do not employ decoders but



32

Figure 7.7: Contrastive EB, play-
type model with 64 frames

Figure 7.8: Original images, play-
type model with 64 frames

instead only convolve through time before making the final classification decision.

Figure 7.9: Contrastive EB, no
viewpoint pre-training

Figure 7.10: Original images, no
viewpoint pre-training
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Figure 7.11: Original images, no
decoder

Figure 7.12: Contrastive EB, no de-
coder

7.2 Spatio-temporal Autoencoders

In Figures 7.13 and 7.14 we can see reconstructions of attention maps from the viewpoint

segmentation task. Using the spatial variational auto-encoder, we can extract the latent

representation that best reconstructs a given attention map. The 32-dimensional latent

codes used for the reconstruction appear below the attention maps.

Figure 7.13: Viewpoint latent code
samples. From top row to bottom
row: original images, correspond-
ing attention maps, reconstructions
of attention maps, latent codes.

Figure 7.14: Another set of view-
point latent code samples. The
similarity between the second and
third frame is apparent even though
the reconstruction is not perfect.
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The conditional variational auto-encoder accepts an input frame and is a generative

model of its context. By randomly sampling from the conditional auto-encoder, we

can obtain attention maps that are likely to occur near our input attention map. The

reconstruction is over the latent space of the original spatial auto-encoder. We visualize

such reconstructions as illustrated in Figures 7.15 to 7.17.

Figure 7.15: Conditional
sample, the three spatial
latent codes correspond to
a frame before the input
frame, the spatial code of
the input frame and the
spatial code of the sam-
pled frame.

Figure 7.16: Another con-
ditional sample, for the
same latent codes of the
prior frame and the input
frame. In both these ex-
amples, the sampled latent
codes are more similar to
the input frame.

Figure 7.17: A conditional
sample for the context of a
frame containing a group
of players, from playtype
attention map sequences.
Both prior, current and
sampled latent codes are
similar.

7.3 Clustering

For our clustering results, we use k-means clustering over the latent space of both the

spatial and temporal VAEs. Given an input frame, we use the spatial VAE to obtain

the latent representation of the frame. For nearby frames around the window, we obtain

their latent representation as well. The temporal VAE accepts the latent code of the

input frame, and tries to reconstruct the latent codes of nearby frames. By doing so,

we obtain the contextual latent representations of these nearby frames, and concatenate

the spatial latent code of the input frame with the temporal latent codes of the nearby

frames.

We thus obtain a 64-dimensional representation of each frame that relates to its

spatial configuration as well as the context in which it occurs. After clustering, we can

use the example nearest to a clustering center as the codeword representative of the
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entire cluster. We first visualize the results of clustering over raw frames and spatial

latent codes.

Figure 7.18: Clustering collection of attention maps for viewpoints on the raw pixel data.
Clusters are typically not meaningful, as they contain multiple mixed visual categories.

Figure 7.19: Clustering collection of attention maps for viewpoints on the spatial latent
codes. The clustering no longer produces clusters that confuse scoreboards with field
views, but vertical and horizontal lines are mixed.

In Figure 7.20 we illustrate the clustering mechanism that assigns each input frame

to a contextual frame. We extract the relevant parts of each attention map to provide



36

clues as to the whereabouts of important visual cues inside the frame, that best explain

the model prediction.

Figure 7.20: Clustering and attention frame membership on viewpoints based on spatio-
temporal similarity.

Figure 7.21: Extraction of relevant parts based on attention map segmentation over the
original frames.
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We also extract the important visual cues from the original frames as shown in Figure

7.21. By using watershed segmentation over the input attention maps we can overlay

bounding boxes over areas that correspond to the important parts of the input frame.

To ground our visual codewords to specific terms, to be used in conjunction with the

histograms of explanations, we provide an illustration of our method in Figure 7.22. We

visually inspect all clusters that group semantically similar frames together, and give

them a corresponding English name that represents the clustering category.

Figure 7.22: Viewpoint groups produce clustered representations from which we pick
the closest exemplar. By visual inspection, we can introduce different English labels to
each cluster. For the case of spatio-temporal latent code clustering, we find that most
clusters are separated into meaningful groups with few outliers for both viewpoints and
playtypes.
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7.4 Providing Explanations

For the final explanation of a model’s prediction, we provide a histogram of codewords

over a sequence of images. We have shown how each codeword corresponds to a collection

of visual cues that reveal where the model focuses when making a prediction. We now

show that sequences of frames can be represented as a histogram of codewords with

associated English names, providing a clear view of the set of visual codewords that are

most relevant in the predictions made for the entire sequence.

Figure 7.23: Histogram of viewpoint groups to which a sequence of frames belongs to.
The sequence contains thirty two frames, from which we visualize eight. During inference,
we predict the cluster each frame belongs to to produce a histogram of English codewords
along with their corresponding visual representatives.

Figure 7.24: Histogram of playtype groups to which a sequence of frames belongs to.
We see that the final number of clusters suffices to detect similarities in original frames
even though clusters with similar attention maps come from multiple videos. Thus the
representatives of the clusters come from the same video as the inference video interval.
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Chapter 8: Conclusion

We have shown that Excitation Backpropagation is a very powerful tool in providing ex-

planations for model decisions. Combined with unsupervised methods and clustering of

the attention maps into semantic categories, we provide a way to produce visual explana-

tions without human interference. Using our method, it is possible to not only provide a

thorough qualitative evaluation of a model but also make explicit the representations of

the reasoning leading to model predictions, shedding light into the complex interactions

inside modern deep learning architectures.

For our video analysis, we get robust results for viewpoint segmentation and playtype

classification, which can then be used together to form a complete playtype recognition

system. Our explanatory X-VAE framework, which minimally requires the extraction of

attention maps, provides a visualization of the reasoning patterns behind model predic-

tions, and is model agnostic.

Our work has highlighted the potential for conceptual explanations of deep models

that extend beyond image classification to the realm of video action recognition. We have

not extended our findings into deep models that segment or localize objects in images,

and have only used convolutional architectures to extract attention maps. Currently, our

approach includes multiple hyper-parameters, like window sizes or latent representation

sizes, that need to be hand-tuned. More sophisticated formulations can in the future

allow for a system that either automatically determines the values of these parameters

or entirely circumvents the need to use them.



40

Bibliography

[1] https://www.nfl.com/.

[2] Chunshui Cao, Xianming Liu, Yi Yang, Yinan Yu, Jiang Wang, Zilei Wang,
Yongzhen Huang, Liang Wang, Chang Huang, Wei Xu, Deva Ramanan, and
Thomas S. Huang. Look and think twice: Capturing top-down visual attention
with feedback convolutional neural networks. ICCV, 2015.

[3] Sheng Chen, Zhongyuan Feng, Qingkai Lu, Behrooz Mahasseni, Trevor Fiez, Alan
Fern, and Sinisa Todorovic. Play type recognition in real-world football video.
WACV, 2014.

[4] Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip Husser, Caner Hazrba,
Vladimir Golkov, Patrick van der Smagt, Daniel Cremers, and Thomas Brox.
Flownet: Learning optical flow with convolutional networks. ICCV, 2015.

[5] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy,
and Thomas Brox. Flownet 2.0: Evolution of optical flow estimation with deep
networks. CVPR, 2017.

[6] Shaunak Ahuja Karthik Muthuswamy Narendra Ahuja Indriyati Atmosukarto,
Bernard Ghanem. Automatic recognition of offensive team formation in american
football plays. CVPRW, 2013.

[7] Shaunak Ahuja Bernard Ghanem Narendra Ahuja Jagannadan Varadarajan, In-
driyati Atmosukarto. A topic model approach to represent and classify american
football plays. BMVC, 2013.

[8] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
ICLR, 2015.

[9] Hilde Kuehne, Juergen Gall, and Thomas Serre. An end-to-end generative frame-
work for video segmentation and recognition. WACV, 2016.

[10] Colin Lea, Michael D. Flynn, Rene Vidal, Austin Reiter, and Gregory D. Hager.
Temporal convolutional networks for action segmentation and detection. CVPR,
2017.



41

[11] Colin Lea, Austin Reiter, Rene Vidal, and Gregory D. Hager. Segmental spatiotem-
poral cnns for fine-grained action segmentation. ECCV, 2016.

[12] Behrooz Mahasseni, Sheng Chen, Alan Fern, and Sinisa Todorovic. Detecting the
moment of snap in real-world football videos. IAAI, 2013.

[13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. ICLR, 2013.

[14] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. ICML, 2013.

[15] Zhongang Qi and Fuxin Li. Embedding deep networks into visual explanations.
ICLR, in press.

[16] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition. ArXiv e-prints, September 2014.

[17] Bharat Singh, Tim K Marks, Michael Jones, Oncel Tuzel, and Ming Shao. A multi-
stream bi-directional recurrent neural network for fine-grained action detection.
CVPR, 2016.

[18] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
Learning spatiotemporal features with 3d convolutional networks. ICCV, 2015.

[19] Serena Yeung, Olga Russakovsky, Ning Jin, Mykhaylo Andriluka, Greg Mori, and
Li Fei-Fei. Every moment counts: Dense detailed labeling of actions in complex
videos. IJCV, 2015.

[20] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. ECCV, 2014.

[21] Jianming Zhang, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and Stan Sclaroff. Top-
down neural attention by excitation backprop. ECCV, 2016.




