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Summary:  Multispectral machine vision systems have the potential to provide mechanical inspection 
personnel with a tool to automatically assess and monitor the condition of rolling stock.  By incorporating 
the visible and infrared spectra with machine vision algorithms, such a system can analyze physical and 
thermal condition.  If a machine vision algorithm determines that a component is outside its normal 
operating range, the other spectrum can be analyzed to determine if there is any correlated anomaly.   We 
present preliminary results on a project developing multispectral machine vision technology for 
inspection of the undercarriage of rolling stock.  We have developed a system to record digital video 
images from a below-track perspective, and several machine vision algorithms to identify and analyze 
features of interest in these images. 
 
Index Terms: automated mechanical equipment inspection, machine vision, infrared, condition 
monitoring, safety, electrical, component 
 
 
1. INTRODUCTION 
 
Current practices for inspection of railroad rolling 
stock include both visual and automated systems 
[1, 2].  However, inspection of the undercarriage 
is almost entirely a manual process.  Visual 
inspections by humans are performed either in a 
pit or trackside.  The equipment is usually 
stopped over the pit or run slowly past the 
trackside inspector.  In the latter case, it is not 
possible for a human to have an unobstructed 
view of the undercarriage as a train rolls by.  
 
Automated inspection by electronic systems has 
the potential to overcome certain limitations of 
human inspection.  The systems can be placed 
closer to the track or between the rails where it 
may be considered unsafe for a human to be 
positioned when a train passes.  Machine vision 
systems have the ability to store and retrieve 
images and make objective comparisons of 
different images.  Although current wayside 
defect detectors measure thermal energy in the 
infrared spectrum, they do not record images.  
Inspection of some components would be 

enhanced if visible and infrared imagery could be 
stored and analyzed together. 
 
We are developing a machine vision system to 
improve both the efficiency and effectiveness of 
this inspection process by incorporating visible 
and infrared range information.  Critical 
inspection tasks that will be investigated include 
disc brake performance and condition, bearing 
component wear, incipient failure of electrical 
systems, and identification of missing equipment.  
In addition, experiments to detect foreign objects 
underneath the rail vehicle are planned.   
 
2. METHODOLOGY 
 
We evaluated the methods and configurations 
necessary for a machine vision system to inspect 
the undercarriage of railroad rolling stock.  
Camera location was the first to be considered 
because it affects various other design elements 
and constraints.  The wheels, trucks, and any low-
hanging part of the railcar would obstruct a 
camera view from the field side of the track.  The 
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least obstructed view of the undercarriage is from 
between the rails below railhead height.   
 
Multispectral image acquisition is required to 
capture the necessary data to fulfill the project 
requirements.  A camera in the visible range is 
used to inspect components in the same light 
spectrum that humans can see.  A camera in the 
infrared range is used to inspect the thermal 
condition of components and complements the 
visible range information.  Heat energy may be 
created by either mechanical or electrical 
systems, for example, brakes and traction motors, 
respectively.  Thermal energy is present in all 
components to some degree, but elevated levels 
may indicate overheating and possible incipient 
failure.  Conversely, lack of thermal energy 
where it is expected can also indicate a 
malfunction, e.g. cold wheels or brake shoes 
during or following an application of brakes. 
 
The system we are developing will record a train 
rolling overhead in both the visible and infrared 
spectra.  With reference to stored information 
about components on a railcar, the system can 
first identify and then analyze those components 
for discrepancies that would indicate a failing or 
failed state.  Since the system has both visible and 
infrared imaging capabilities, an anomaly in one 
spectrum can be correlated with the other 
spectrum using machine vision algorithms.  
Components can be analyzed against reference 
data, historic data, or other similar components 
on the car or in the train.  For example, under 
appropriate circumstances, a stuck brake (either 
applied or released) will have a different thermal 
indication than others in the train. 
 
With the ability for information storage and 
retrieval, the system also has the capability to 
determine trends among different pieces of 
equipment.  For example, a brake pad that is 
increasingly hotter than others at consecutive 
inspection stations could be demonstrating 
evidence of component wear.  Detected defects or 
incipient failures can trigger alerts and also be 
stored in memory for future reference by 
inspectors or the machine vision system itself. 
 
3. MACHINE VISION SYSTEM 
 
The machine vision system consists of the image 
acquisition system and computer algorithms for 
interpretation of rolling stock components in the 
camera's view.  Design of the machine vision 
system for undercarriage inspection is determined 
by the following factors: 1) the characteristics of 
a video acquisition system and environment in 
which the video of a moving rail vehicle is 

recorded, 2) the geometric and photometric 
properties of undercarriage components 
appearing in the video, and 3) the accuracy, 
generalizability and real-time requirements of the 
inspection system.  
 
3.1 Image Acquisition System 
 
In machine vision installations for rolling stock 
inspection, the camera is generally stationary 
while the vehicle rolls past [2, 3, 4].   Obtaining 
video images of the undercarriage of rolling stock 
imposes additional restrictions on the recording 
equipment not encountered in wayside machine 
vision systems.  Initial recordings have been 
taken from rolling stock inspection pits.  The 
camera is located below rail level and looks 
upward at the bottom of the vehicle (Figure 1).  
For the camera to see the entire undercarriage 
from side to side, the limiting factor for the 
camera's line of sight is the gauge face of the rail.  
This creates an inverted triangle in which two 
corners are formed by the bottom-outside edges 
of the railcar and the third by the camera.  Based 
on previous experience [2, 3, 4], we decided that 
the best orientation of the camera was 
perpendicular to the undercarriage of the rolling 
stock.   

 
Figure 1: Camera Perspective From Beneath Railcar 

 
3.1.1 Visible Spectrum Recordings 
 
A digital video camera was selected that records 
images with a 640x480 pixel resolution.  The 
camera is mounted inside a weatherproof 
enclosure to protect the camera from the effects 
of weather and other environmental conditions 
such as dripping fluids, dust, dirt, and any other 
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material from the undercarriage of the train 
(Figure 2). 
 

 
Figure 2:  Camera and Lighting Configuration Used for 

Preliminary Testing 

 
The video camera is controlled by a laptop 
computer via a FireWire cable connection that is 
long enough to allow the computer to be located 
outside the pit.  The computer is powered by 
standard 110 VAC and contains software that 
allows the user to record and store digital video 
images as well as adjust the shutter speed, white 
balance, and frame rate, etc. of the camera.  The 
video camera records at 30 frames per second.  
The lens aperture is fully opened to allow for 
maximum light to reach the camera's charge 
coupled device (CCD).  The shutter speed is 
adjusted relative to the strength of the light source 
in the pit.  A greater amount of light enables use 
of a faster shutter speed and thus reduces blurring 
from the motion of the train. 
 
Given the constraints on camera location, we 
needed to determine the focal properties needed 
to provide the necessary field of view in terms of 
image width and height.  From the inverted 
triangle described above, we can determine a 
maximum depth of the camera lens below the 
railhead for a given piece of rolling stock.  For a 
railcar with a maximum width of 3.2 meters (10.5 
feet), 127 cm (50 inches) above the railhead, the 
maximum depth (l) is calculated using Equation 
1.  
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=

+
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The video camera has two characteristics that 
determine the field of view: the CCD size and the 

focal length of the lens.  Our current camera has a 
13mm (½ inch) CCD.  Equation 2 is a general 
equation that relates focal length (f) with distance 
from scene to lens (D) and horizontal width (w).  
Given that the horizontal width is 1,435 mm (4 
feet 8.5 inches) at railhead height, a maximum 
distance of 103.25 cm (40.65 inches), and the 
constant (k) of 6.4 for a 13mm (½ inch) CCD [5], 
the maximum focal length yields,  
 

 

! 

f = k
D

w
= 6.4

1032.5

1435
= 4.6mm. (2) 

 
We determined that a lens with a 3.6-mm focal 
length yielded images that were satisfactory for 
our testing (Figure 3).  This is one millimeter 
shorter than the maximum focal length, to 
accommodate a camera enclosure over 30.5 cm 
(12 inches) in length mounted on a tripod used in 
pits as shallow as 1.2 m (4 feet). 
 

 
Figure 3: Visible Spectrum Image of Axle and Disc Brakes 

 
Changing the focal length of the camera is a 
balance between several factors.  Increasing the 
focal length to its calculated maximum reduces 
the fish-eye effects of the lens and therefore 
produces better quality at the edges of the image.  
However, a larger focal length also increases the 
distance from scene to lens necessary to obtain 
the requisite width and therefore requires 
positioning the camera farther below the railhead.  
Conversely, shorter focal lengths reduce the 
depth of the camera installation, but cause greater 
warping of the image. 
 
3.1.2 Infrared Spectrum Recordings 
 
Similar considerations are needed for infrared 
imaging.  Current infrared cameras do not offer 
focal lengths as short as visible range cameras.  If 
the camera cannot capture the entire width of the 
undercarriage, it can be positioned to capture a 
select section (Figure 4).  Multiple cameras can 
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then be employed to capture the remainder of the 
undercarriage as necessary.  
 

 

axle bracket cover 

wheel 

 
Figure 4: Infrared Image of Locomotive Wheel 

 
3.1.3 Image Quality from Recordings 
 
When working with two different energy spectra, 
certain recording requirements are shared 
between both systems, while others are spectrum 
specific.  Both imaging systems require high 
frame rates and fast shutter speeds to capture 
clear, detailed images.  Ambient light levels will 
generally be inadequate to obtain sufficient 
sharpness in visible spectrum images of 
undercarriage components; therefore, artificial 
lighting is required to produce the necessary 
illumination.  Testing revealed that the light 
sources must be sufficiently diffuse to prevent 
multiple shadows on the undercarriage.  A 
comparison of an image recorded in our first test 
(Figure 3) and one recorded in a subsequent test 
(Figure 5), in which light level and balance were 
enhanced, demonstrates the resultant 
improvement in image clarity.   
 

 

Figure 5: Wheelset with Improved Illumination 

By contrast, because the infrared camera 
measures the heat energy, or emissivity, of the 
source itself, it needs no external source of 
lighting.  Since the cameras are in exclusive 
energy spectra, the artificial lighting source has 
no discernable effect on the ability of the nearby 
infrared camera to pick up the emissivity of the 
undercarriage of the railcar. 
 
3.2 Machine Vision Algorithms 
 
The goal of machine vision algorithms for 
undercarriage inspection is to detect and segment 
components, to discover missing or damaged 
objects, and to detect the presence of incipient 
failures.  Therefore, another set of important 
factors in considering machine vision algorithms 
is the appearance of the components of interest in 
the video.  The selection of the appropriate 
algorithms also depends on the quality of 
lighting, resolution, and other imaging conditions 
as described above.  We have studied several 
image-analysis approaches in order to select the 
set with the best performance in undercarriage 
inspection.  
 
The measurement criteria of the system’s 
performance must be developed to reliably 
accomplish the inspection tasks such as detecting 
variations from the norm in appearance, shape, 
and/or temperature of components.  The normal 
values for these parameters and their allowable 
variations can be learned from a set of training 
images and from other similar components in the 
car or train.  If the detected variation exceeds the 
specifications, the system could automatically set 
off an alert about the defect.  This alarm can be 
sent as a report for the railroad inspection system, 
including how certain the machine vision 
algorithm is that the defect is present.  Images in 
the visible and infrared range can be sent to 
inspection personnel to further analyze the defect. 
 
We are also interested in algorithms that are 
amenable to inspection of a wide range of 
undercarriage components.  Rather than 
implement a different set of algorithms for each 
component, our approach is to develop solutions 
that are sufficiently general that a wider range of 
equipment types and their components can be 
addressed within a unified framework.  This will 
also allow faster processing times, another 
important factor in design choices. 
 
3.2.1 Panoramic Image Creation 

 
A panoramic image of an individual railroad 
vehicle is created to allow the system to perform 
a matching algorithm to determine the type as 
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well as pick out individual components.  
Panoramic images are created for both the visible 
and thermal ranges in order to correlate them to 
each other.  Panoramic ‘stitching’ is useful when 
a component is larger than the field of view for a 
camera (Figure 6). 
 

 
truck frame 

traction motor 

 
Figure 6: Infrared Image of Traction Motor Edge 

 
When the camera is oriented perpendicular to the 
object it is recording, the panoramic process takes 
two individual steps to complete: image 
dewarping and image stitching.  The lens used to 
capture video creates a fish-eye effect on each 
individual frame.  The images are first dewarped, 
based on knowledge of the lens distortion, to 
create a flat image of the picture.  Then, to 
minimize loss of detail, a thin strip from the 
center of each image is saved.  The strips from 
consecutive images are then stitched together to 
create a single, panoramic image. 
 
The panoramic image creation varies if multiple 
cameras are used in recording the undercarriage 
in one spectrum.  In the case of multiple images 
at discrete angles, the images are first dewarped 
from lens distortion.  Before being stitched 
together, any image from a camera not 
perpendicular to the captured object needs to be 
rotated to a flat orientation through a 
homographic transform.  Selected areas of the 
transformed image are then stitched side-by-side 
and end-to-end to create the panoramic view. 
 
3.2.2 Component Detection Algorithms 
 
When designing an algorithm for detection and 
segmentation of components, we are primarily 
concerned with the accuracy, generalizability and 
real-time requirements of the railroad inspection 
system.  For accuracy, the detection rate of true 
defects should be sufficiently high and the false 
alarm rate sufficiently low.  For generalizability, 

the algorithms developed for inspection of one 
undercarriage part should be easily modified for 
inspection of other parts, and if possible, the 
algorithmic solutions should be able to handle 
more than one type of a car.  Finally, for real-time 
requirements, algorithms must have the 
appropriate balance between speed and quality to 
be useful to inspection personnel.  There are 
many sophisticated machine vision systems that 
are not appropriate for this purpose.  Although 
some may produce very accurate detection and 
segmentation results, which lead to accurate car 
undercarriage inspection, their performance is 
accomplished at the expense of long processing 
time. 
 
We selected traction motors as one of the initial 
components to test component identification.  
Traction motors appear as a rectangular-shaped 
object, positioned along the locomotive’s 
longitudinal axis.  Due to the camera position 
beneath the train, it is possible to select optimal 
frames from the video that contain the frontal 
view of the target component.  Thus, the first step 
of our algorithm for detection and segmentation 
of traction motors is to select the optimal frame, 
such that the traction motor is positioned closest 
to the image center (Figure 7).  Consequently, it 
is necessary to detect where the traction motor 
appears in the sequence of frames. 
 

 
Figure 7: Original Image of Traction Motor 

 
The traction motor appears in the image as a 
rectangular homogeneous region.  To identify the 
traction motor, it suffices to first detect edges in 
the image by using an edge detector.  Edge 
detection is a well-studied problem in machine 
vision, for which there are numerous off-the-shelf 
algorithms.  We use the Canny detector, which 
views edges in the image as abrupt changes in 
gray-level intensity, and hence searches for 
maxima in the gradient of the image (Figure 8).  
Concentration of lighting on component parts 
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creates glare that makes it difficult for the 
algorithm to detect edges.  Also, components that 
are closer to the camera appear to move faster 
than those farther from the camera, which can 
cause motion blurring of edges in the image.   

 

 
Figure 8: Edge Detection of Traction Motor 

 
As a result, edge detection produces curve 
fragments instead of fully connected boundaries 
of objects in the image.  Therefore, we have to 
implement an algorithm that completes 
disconnected curve fragments, and thus segments 
the traction motor.  Since the traction motor 
appears as a large homogeneous region 
containing three characteristic circular subparts 
(i.e., bolts), we first localize such a region in the 
image.  Homogeneity here is measured with 
respect to gray-level intensity of pixels within a 
region.  Then, only those curves that enclose the 
identified homogeneous regions are connected 
(Figure 9).   
 

 
Figure 9: Segmentation of Traction Motor 

 
Finally, from a video sequence of images in 
which we detected and segmented the traction 
motor, we select the one where the horizontal 
axis of the traction motor is the closest to the 

image center.  The selected image is called the 
optimal frame, since it is assumed that the 
explained detection and segmentation is the most 
accurate for that image.   
 
The traction motor was chosen as one of the first 
components to be detected for several reasons 
related to the project objectives: 1) railroad 
industry advisors to the project expressed 
particular interest in this capability, 2) 
generalizing this algorithm would allow detection 
of traction motors on different types of 
locomotives, and 3), traction motors are a source 
of thermal energy and thus provide an 
opportunity to correlate the detected warm areas 
with the visible spectrum images.  A 
segmentation algorithm was also developed for 
disc brakes and axles (Figure 10) for similar 
purposes.   
 

 
Figure 10: Segmentation of Disc Brakes and Axle 

 
3.3 Registration of Visible and Thermal 

Images 
 
In some cases, undercarriage component defects 
are not viewable in the visible light spectrum.  
The shape, position, and appearances do not 
deviate from accepted parameters, but it may be 
possible to detect incipient failures due to thermal 
irregularities detected by the infrared camera.  
Our goal is to capitalize on the advantages of 
each system by comparing the two 
complementary sources of information.  The heat 
of one part is easily transmitted to another in 
conductive materials, like metal; therefore, edge 
demarcation is less well defined.  Consequently, 
it is difficult to analyze individual infrared 
images alone to accurately determine which 
component is overheating (Figure 11). 
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Figure 11: Infrared Image Showing Hotspot  

on Traction Motor 
 
To alleviate this problem, the machine vision 
system can analyze both the visible spectrum and 
the corresponding infrared image of the 
undercarriage.  Taking cues from the thermal 
image, the visual system is better able to identify 
the component of interest, precisely delineate its 
boundaries, and superimpose the detected 
boundaries onto the infrared image.  The heated 
area with the highest intensity in the infrared 
image will be uniquely identified as a part worthy 
of further attention.  Therefore, we will correlate 
the two sources of information coming from the 
visible and infrared cameras. 
 
4. DISCUSSION 

 
The system currently under development will 
analyze railroad rolling stock undercarriages for 
inspection of components in both the visible and 
infrared spectra.  It is intended that it will provide 
an adaptable framework that will enable further 
enhancement to improve its capabilities and 
automation.   
 
As a larger database of undercarriage components 
and rolling stock is developed, comparisons with 
known conditions by reference to stored 
information can be used to inspect the cars and 
train being recorded.  This can be done at 
different levels of granularity starting from an 
equipment type, to a fleet, down to individual 
vehicles.  The finer the granularity, the more 
precise the component and overall undercarriage 
monitoring becomes.  If granularity is kept at a 
level of type or fleet, more recorded images are 
beneficial in creating an optimal panoramic 
template to compare against a car for any of that 
group.  The system can also reference a vehicle's 
Automatic Equipment Identification information 
to automate the data retrieval and storage 
abilities. 

 
4.1 Image Alterations Induced by Weather 

 
All video recordings completed so far have been 
under good weather conditions without any 
effects of rain or snow.  We are scheduling 
recordings under winter conditions in subsequent 
months.  We anticipate that moisture on the 
undercarriage of cars will enhance the reflectivity 
of objects in the visible range and will have no 
effect on the emissivity of temperature in the 
infrared range. 
 
Packed snow will provide a challenge for both the 
visible and infrared range.  As snow builds up, 
we expect that the ability to detect detail on 
objects on the undercarriage will be diminished. 
Infrared cameras can only detect the heat of the 
nearest physical object, so the snow buildup itself 
will register rather than the component above it.  
Components that remain warm may not 
experience snow and ice accumulation, in which 
case the infrared camera should be able to detect 
the actual temperature. 
 
5. CONCLUSION 

 
From this work we hope to demonstrate that 
automated, multi-spectral machine vision systems 
can provide mechanical inspection personnel with 
a tool to assess and monitor the condition of 
rolling stock between maintenance and service 
visits from a below-the-track perspective.  Such a 
system would provide enhanced analysis of 
components and compare them to reference data 
and/or similar components in the train to 
determine temporal and spatial trending.  By 
incorporating the visible and infrared spectra into 
automated machine vision algorithms, more 
effective analysis is possible.  The correlation of 
images from separate sources. can enrich the 
inspection information of undercarriage 
components, improve the analysis over what each 
spectrum provides separately, and provide more 
useful information for individual vehicle record-
keeping and to mechanical inspection personnel. 
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