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Abstract

This paper proposes, and presents a solution to, the
problem of simultaneous learning of multiple visual cate-
gories present in an arbitrary image set and their inter-
category relationships. These relationships, also called
their taxonomy, allow categories to be defined recursively,
as spatial configurations of (simpler) subcategories each of
which may be shared by many categories. Each image is
represented by a segmentation tree, whose structure cap-
tures recursive embedding of image regions in a multiscale
segmentation, and whose nodes contain the associated re-
gion properties. The presence of any occurring categories
is reflected in the occurrence of associated, similar subtrees
within the image trees. Similar subtrees across the entire
image set are clustered. Each cluster corresponds to a dis-
covered category, represented by the cluster properties. A
(subcategory) cluster of small matching subtrees may occur
within multiple clusters (categories) of larger matching sub-
trees, in different spatial relationships with subtrees from
other small clusters. Such recursive embedding, group-
ing and intersection of clusters is captured in a directed
acyclic graph (DAG) which represents the discovered tax-
onomy. Detection, recognition and segmentation of any of
the learned categories present in a new image are simulta-
neously conducted by matching the segmentation tree of the
new image with the learned DAG. This matching also yields
a semantic explanation of the recognized category, in terms
of the presence of its subcategories. Experiments with a
newly compiled dataset of four-legged animals demonstrate
good cross-category resolvability.

1. Introduction

This paper is about unsupervised extraction of subim-
ages having similar appearances and topology from a given
set of arbitrary images, as well as discovering the spatial
relationships among subimages belonging to all discovered
sets of similar subimages. Topology here refers to recursive
embedding of homogeneous regions, captured in a multi-
scale image segmentation. Subimages are called 2D ob-

jects, and each set of similar subimages in the image set
is said to define a category of objects. The categories, in
general, have hierarchical mutual relationships. Thus, a cat-
egory may be defined recursively by specifying properties
and configurations of its subcategories. Such hierarchical
category definitions may also include sharing of simple cat-
egories by more than one, complex categories. For exam-
ple, category “leg” is shared by all legged animals, and, in
turn, “leg” is an articulated combination of the simpler cat-
egory of elongated shapes, which also occurs in the defini-
tions of the categories of stools and scissors. It is reason-
able to expect that simple categories occur more frequently
in real-world images, and their occurrences exhibit smaller
variations than encountered in more complex categories.
This makes learning of simpler categories more robust. In
turn, representation and learning of complex categories be-
comes more compact by exploiting the simpler descriptions
of their subcategories, and more efficient as subcategory
sharing makes the complexity of representation/learning of
multiple categories sublinear in the number of categories.In
this paper, we refer to the recursive representation of com-
plex categories as spatial configurations of smaller, simpler
subcategories as the taxonomy of the categories.

This paper is aimed at solving the following related prob-
lems: 1) simultaneous discovery of multiple categories of
different complexities occurring in an arbitrary image set;
2) learning category-specific photometric (color), geomet-
ric (area, shape), and topological (recursive region embed-
ding) properties; 3) identification of categories of different
complexities and their relationships, i.e., learning the taxon-
omy; 4) simultaneous detection, recognition and segmenta-
tion of all objects from the learned categories present in a
previously unseen image; and 5) retrieving the semantic ex-
planation of why a category is found in a new image, i.e.
in terms of the simpler categories detected and the learned
taxonomy. Below, we first point out differences between
this paper and prior work, and then present an overview and
main contributions of our approach.

Prior work: In general, object recognition approaches con-
sist of four major stages: feature extraction, category rep-
resentation, training, and recognition. We review here the
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Figure 1. The results of our algorithms: (left) segmentation trees of house images; (right) learned taxonomy. The subtrees representing
categories “roofs” (red), “windows” (blue), “window-panels” (green), etc., are each clustered, since they have similar photometric, geomet-
ric and topological properties. The subtrees of “window-panels” are contained within the subtrees of “windows” and “doors;” therefore,
categories “windows” and “doors” share category “window-panels.” The subtrees of “roofs” and “chimneys” are not contained within a
larger subtree but co-occur in the segmentation trees; therefore, they define co-occurrence category “roof-chimney” (orange). Similarly,
“roof-chimney,” “quad-window-groups” (pink), and “windows-door” define co-occurrence category “house-front” (cyan).

state of the art with respect to each of these stages. Regard-
ing the first stage, most recent work uses local features (e.g.,
keypoints [9], and curve fragments [10]). There is also a
significant number of region-based approaches [12, 13, 14].
Advantages of region features are that (i) they are higher-
dimensional and thus in general richer descriptors than lo-
cal features, (ii) their boundaries often coincide with rel-
evant boundaries of objects, facilitating simultaneous ob-
ject detection and segmentation, and (iii) they enable easy
use of the constraints dealing with spatial cohesiveness and
multiresolution structure of images. For these reasons, we
use image regions as features. For category representation
in the second stage, most approaches partition features into
clusters, called “parts,” whose boundaries are in general dis-
tinct from those of the true object parts. They represent
the objects as either a planar, or hierarchical graph of these
“parts.” For example, the constellation model [3] is a planar
graph with a user-specified number of “parts,” configured in
a known model structure. The hierarchical models of, e.g.,
[5, 4, 15] are derived by hierarchical clustering of features,
where smaller feature clusters can be shared by larger ones.
The structure of these hierarchical models is typically con-
trolled by a pre-specified hierarchy depth. Our hierarchical
model (i.e., taxonomy) differs in that it has an a priori un-
known hierarchy depth, and arbitrary number of subparts
forming arbitrary spatial layout configurations, all of which
are learned from the image set. Also, our taxonomy encodes
sharing of entire categories, while prior work is concerned
only with feature sharing. Related to ours are approaches
that use the graph-theoretic framework to learn hierarchical
models of categories [8, 14]. In [14], the tree-union of a
single category is learned. Instead, we simultaneously dis-
cover multiple categories, and learn a more general graph

than tree-union, i.e., the taxonomy of shared categories. For
training, most prior work requires each training image be la-
beled with the category or a few categories it contains. For
example, [2] solves the problem of translation from visual
features to semantics, provided training images are labeled
with semantics. Recently, the required degree of supervi-
sion has been reduced such that each training image does
not have to be labeled [13, 14]. However, unlike our ap-
proach, [13] requires specification of the total number of
categories present. Object recognition, in stage four, is typ-
ically evaluated only through image classification (category
present/absent) [3, 6]. Few approaches, like ours, precisely
delineate the boundaries of detected objects [14, 13].

Overview of our approach: (1) An image is represented
by a segmentation tree [1, 14] which captures the low-level,
spatial and photometric image structure. Nodes at upper
levels correspond to larger segments, while their children
nodes capture embedded, smaller details (e.g., the quad-
window-group nodes in Fig. 1 are parents to the window
nodes). (2) Category instances (e.g., roofs, doors, windows
in Fig. 1) appear as similar subimages, whose correspond-
ing subtrees are accessible in the segmentation trees. To
identify the instances, we measure the similarity of all seg-
ments across the image set, in terms of their intrinsic pho-
tometric, geometric and topological properties, as well as
in terms of the same properties of their embedded subre-
gions. (3) The identified similar subimages are clustered,
and the resulting clusters are treated as evidence and exact
instances of the categories present. The similar subimages
within a cluster (e.g., of all doors) together provide for ro-
bust learning of the subtree properties characterizing theas-
sociated category. (4) The clusters containing less complex
subimages are associated with more common, simple cate-
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gories (rectangular panels). These subimages form compo-
nents of the hierarchical definitions of subimages in other
clusters representing more complex categories (windows,
doors). The clusters inherit the containment properties of
their constituent subimages, which allows us to establish
hierarchical, containment links between the clusters (child
link from the window cluster to the panel cluster), yielding
a directed acyclic graph (DAG). The root nodes of the DAG
represent the set of most complex categories, while those
near the leaves represent the simplest, often most shared
subcategories, as illustrated in Fig. 1. (5) The categories
found in (3) may indeed represent different parts of a com-
plex category. (roof and front wall of the house), and, may
not belong to any single subtree in the segmentation tree.
The detection of the parts can be used to encode such “co-
occurrence” categories (house front marked cyan in Fig. 1).
(6) To recognize the occurrence of any of the learned cat-
egories in a new image, its segmentation tree is searched
for matches with the DAG. Any matches found denote the
occurrences of the corresponding categories as well as all
the associated subcategories. The subcategories, along with
their hierarchical structure within the DAG, serve as a se-
mantic (category-space) explanation of why the category is
found. Simultaneously, the matches also specify the exact
boundaries of the detected objects.
Contributions: 1) To our knowledge, this is the first solu-
tion to completely unsupervised learning of hierarchical and
sharing relationships, or taxonomy, of visual categories.2)
Unlike in prior work, each unlabeled training image in our
case may contain multiple instances of multiple target cat-
egories, whose total number is unknown. 3) Our approach
derives a generative, hierarchical model of a category’s im-
age structure, instead of learning a classifier of pre-specified
categories. 4) While prior work learns only sharing of
features among known categories, and establishes similar-
ity relationships between the categories with respect to the
number of shared features, we instead learn sharing of en-
tire categories. 5) Recognition capabilities of prior workare
extended by providing a semantic basis of recognition. 6)
We introduce a new co-occurrence category, which cannot
be handled by most existing approaches (e.g., [14]). 7) We
introduce a new graph similarity measure. 8) A new dataset
of four-legged animals is compiled and used for evaluating
resolving subtle cross-category differences.

Next, we describe our image representation and estima-
tion of similarity between subimages in Sec. 2, clustering
of similar subimages in Sec. 3, organizing the clusters of
similar subimages into a DAG in Sec. 4, and finally experi-
mental evaluation of these algorithms in Sec. 5.

2. Locating Subimages of Potential Categories

This section describes Steps 1 and 2 of our approach.
Since these steps are similar to those used in [14], we here

only point out the major differences.
Images are represented by trees obtained by a multi-

scale segmentation algorithm, presented in [1, 14]. Any
cutset of the segmentation tree corresponds to one possi-
ble image segmentation, while parent-child node relation-
ships capture recursive region embedding. The number of
nodes (≈ 150–200), branching factor (≈ 0–5), and the num-
ber of levels (≈ 10–15) in different parts of the segmen-
tation tree are image dependent. A vectorψv of region
properties is associated with each nodev in the tree, de-
fined relative to the corresponding properties ofv’s parent-
nodeu, to allow scale and rotation-in-plane recognition in-
variance. The region’s principal axis is estimated as the
eigenvector of matrix 1

µ00

[

µ20 µ11

µ11 µ02

]

associated with the
larger eigenvalue, whereµpq are the region’s standard cen-
tral moments. The components ofψv are as follows: (1)
gray-level contrastgv betweenv and its parentu; (2) nor-
malized intensity varianceσ2

v= var(v)
var(u) ; (3) normalized area

av,
area(v)
area(u) ; (4) area dispersion ADv,

∑

w∈C(v)(aw−āw)2

overv’s childrenw∈C(v); (5) bending energy (a measure
of boundary jaggedness) BEv, 1

Lv

∑Lv

i=1 κ2
i , whereLv is

the length in pixels ofv’s boundary, and{κi} is an ar-
ray of curvature values computed at each boundary pixel
from the standard 8-connected chain code; (6) squared

perimeter over area, PAv,
L2

v

area(v) ; (7) angleϕv between
the principal axes ofv andu; (8) normalized displacement−→
∆v,

duv√
area(u)

−→r uv, whereduv (∡−→r uv ) is the distance (unit

vector) from the centroid ofu to that ofv; (9) context vec-
tor

−→
Φ v,

∑

w∈Nv

area(w)
d2

vw

−→r vw that records the general di-
rection in whichv sees its sibling regionsw∈Nv, and disal-
lows matching of scrambled layouts of regions. Each entry
of ψv is normalized to take a value in the interval[0, 1].

Having obtained the tree representation of a given im-
age set,T={t1, t2, . . .tN}, we proceed with estimating the
similarity between all pairs of subimages (i.e., subtrees)in
T. Accordingly, we define a similarity measure,Svv′ , be-
tween two regions (nodes),v andv′, in terms of their in-
trinsic region properties,ψv andψv′ , as well as the prop-
erties of their embedded subregions,w andw′, i.e., descen-
dant nodes underneathv andv′ in the segmentation trees.
Svv′ is computed by the well-known tree matching algo-
rithm presented in [11, 16, 14], which for two given trees
finds their common subtrees. Given two treest=(Vt, Et)
andt′=(Vt′ , Et′), whereV andE are the sets of nodes and
edges, the goal of matching is to find the topologically con-
sistent subtree isomorphism,f :Ut→Ut′ , whereUt⊆Vt and
Ut′⊆Vt′ , which maximizes their similarity measure

Stt′ , max
f

∑

(v,v′)∈f (rv+rv′−mvv′ ), (1)

whererv is the saliency of regionv, andmvv′,|rv−rv′ |
is the cost of matchingv∈t andv′∈t′ in bijection f . The
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region saliency is defined as a linear combination of region
propertiesrv,ξTψv, whereξ is a vector of weighting coef-
ficients so that||ξ||=1 andξ≥0. From (1), for all node pairs
(v, v′)∈t×t′, Svv′ can be computed recursively, bottom-up:

Svv′ = rv + rv′ − mvv′ +
∑

(w,w′)∈Cvv′
Sww′ , (2)

whereCvv′ is the maximum weight clique of the association
graph constructed from all descendants(w, w′) of the node
pair(v, v′) [11, 16, 14]. If each of the two trees has no more
than|t| nodes, complexity of their matching isO(|t|4).

The main deficiency of the similarity measure, given by
(2), versus our objectives is that the measure depends on
the size of the hierarchies being matched. In particular, the
matches of more structured image regions are favored over
those of simple, homogeneous regions. It is not clear if and
to what extent should the similarity between two nodes de-
pend on their subtree depths and branching factors. For the
purpose of this paper, we have chosen to make the match
quality depend only on the intrinsic matches between the
paired nodes, without any direct dependence on the subtree
depths. To this end, we weight the contributions to similar-
ity of each node-pair in (2) as follows:

S̃vv′,ρvv′(v, v′)(rv+rv′−mvv′)+
∑

Cvv′

ρvv′(w, w′)S̃ww′ ,

(3)
where the weightsρvv′(w, w′) make the contributions of
the regionsw andw′ proportional to the relative areas they
occupy withinv andv′. We defineρvv′ (w, w′) as the total
outer-ring area of{w∪w′} that is not occupied by the other
descendants ofv andv′ in Cvv′ , expressed as a percentage
of the total area of{v ∪ v′}. With this new similarity mea-
sure, the matching algorithm yields a set of pairs of matched
subimages drawn from images in the entire set, along with
their similarity values, which are then used for identifying
different categories present.

3. Discovering Multiple Categories

The matched subtree pairs obtained above link multiple
occurrences of the same category with high similarity val-
ues. Thus, all occurrences of the same category across the
image set are expected to be transitively connected by a se-
quence of high-value links. This section describes the next
step (Step 3 in Sec. 1) in our algorithm, which is aimed at
clustering together all highly similar subimages. The re-
sult is one cluster per category thus discovered. Since we
do not know how many categories exist in the data, and
what the extent of their intra- and inter-category variations
are, we conduct hierarchical, agglomerative, binary cluster-
ing. The result of this hierarchical clustering can be eas-
ily transformed into a particular categorization, given a de-
sired degree of cross-category resolvability (e.g., by merg-

ing together all clusters whose similarities are closer than
the specified level of sensitivity).

We conduct the standard, complete linkage, agglomera-
tive clustering over the entire set of regionsv∈T from all the
images, where the two most similar clusters are merged into
a larger one at each stage, provided that none of the nodes
within the clusters has a descendant or ancestor present in
the other. This is done until there are no more clusters that
can be merged. The pairwise cluster merging is based on the
minimum intercluster similarity value (Hausdorff distance).
Some of these mergers may combine two clusters contain-
ing instances of the same category, while others might force
two different populations to merge. Although each merger
selects the best candidates available for merging, in the lat-
ter case it combines two categories which we may want to
keep as separate, because the difference in their geomet-
ric, photometric and topological properties is above our de-
sired sensitivity level. In contrast, in the former case, the
merger is desirable and enlarges the set of samples in the
common category of the merged clusters. To formally eval-
uate the validity of agglomerative merging of two clusters
at any given stage, we will assume that similarity values
S̃vv′ within a cluster are samples drawn from a probability
density function (pdf) characteristic of the associated cate-
gory. Then, erroneous merging of two distinct categories,
into an artifact category, would amount to treating two dif-
ferent pdf’s as the same.

Distinguishing Categories:To prevent erroneous category
merging, we use the well-known Kolmogorov-Smirnov test
(KS-test). The null hypothesis for the KS-test is that the two
sample sets of similarity values are drawn from the same
continuous pdf, while the alternative hypothesis is that they
are drawn from different pdf’s. The null hypothesis is re-
jected if the test is significant at levelα, which we set to
the standard value ofα=5%, thus quantifying our level of
sensitivity to inter-category differences. The attractive char-
acteristics of the KS-test are that it does not require assump-
tions about the distribution of data, and binning of the sam-
ples (as, e.g.,χ2-test), and that the distribution of the KS-
test statistic itself does not depend on the underlying pdf
being tested. Rejection of the null hypothesis results in the
retention of both clusters as distinct categories. Since the
KS-test is more reliable over large clusters, we first create
the complete binary merger tree, and then prune erroneous
mergers top-down, which results in a forest of binary cluster
mergers. The pruning process ends when no null hypothe-
sis is rejected. The roots of the agglomerative clustering
hierarchy (i.e., the largest clusters) that remain at the end of
the pruning process are taken as representing the categories
discovered in the image set. Each cluster root is guaranteed
to be a category by itself, because it has passed the KS-test
for being distinct from all others. Each category discovered
is assigned a label,c, and a vector,ψc, which is the mean
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of the property vectorsψv associated with all subtreesv
contained within clusterc.

4. Taxonomy of All Categories Discovered

This section presents Steps 4 and 5 of our approach
(Sec. 1) aimed at organizing the clusters of similar subtrees
(described in Sec. 3) into a DAG, and thus obtaining the tax-
onomy of the discovered categories. Each cluster contains
the transitive closure of matched pairs of subtrees across the
image set. Subtrees in one cluster may contain those in an-
other cluster. These subtree containment relationships from
the original segmentation trees can be directly extended to
the clusters (i.e., categories). If a subtree in clusterc1 is con-
tained within a larger subtree in clusterc2, thenc1 becomes
a child of c2. When subtrees inc1 are contained within
larger subtrees in a number of other clusters – the case of
sharing a simpler category by many more complex cate-
gories –c1 may have more than one parent cluster. This can
be represented by a directed acyclic graph (DAG), whose
nodes are the categories and edges capture their parent-child
relationships. Each category may have an arbitrary number
of child and parent links emanating from it. The property
vectorψc of categoryc (explained in Sec. 3) is associated
with the nodec in the DAG.

The image set may also contain categories that are more
complex than those at the highest level of the taxonomy ob-
tained. One such type of a complex category may be defined
by simultaneous occurrence of some of the discovered cat-
egories in the images (house front in Fig. 1). Such a co-
occurrence category appears as a forest of disjoint subtrees
in the segmentation trees, and thus could not be discovered
by using the similarity measure defined in (3), since it ac-
counts only for the substructure within given regions. Dis-
covering co-occurrence categories can be easily addressed
by explicitly checking for simultaneous appearance of al-
ready discovered categories. In case such a category is dis-
covered, we introduce a new node in the DAG, and connect
it as a parent to its co-occurring subcategories. The newly
obtained co-occurrence categories are recursively checked
if they concurrently appear with any other categories.

Given a new image, all instances of the learned cate-
gories present in the image are simultaneously identified by
matching the segmentation tree of the new image with the
DAG, using the same algorithm as used in Sec. 2.

5. Results

Experiments are designed to evaluate the algorithm’s ca-
pability to: (i) extract the taxonomy from a given set of
unlabeled training images; (ii) simultaneously detect, rec-
ognize and segment all instances of the learned categories
present in a test image; (iii) resolve small cross-category
differences; and (iv) provide a semantic explanation as to

why the categories are found in the test image. To this
end, we use two benchmark datasets, and another newly
compiled one. Specifically, we use 40 categories from
Caltech-101 [3] (including 435 faces, 800 motorbikes, 800
airplanes, 526 cars-rear), as well as 108 UIUC multiscale
car images. Each Caltech-101 image contains only a single,
prominently featured object from the category. The Caltech
cars-rear and the UIUC cars-side increase complexity, since
the images contain multiple cars, which appear at differ-
ent scales, have low contrast with the textured background,
and may be partially occluded. UIUC images also contain
other frequently occurring categories (e.g., trees, buildings),
allowing us to test identifying multiple instances of multi-
ple categories per image. However, the main deficiency of
these benchmark sets is that their categories significantly
differ in appearance and topology, and thus are not conve-
nient for evaluating how well the algorithm resolves subtle
cross-category differences, and identifies subcategory shar-
ing. To address this issue, we have compiled a new dataset,
referred to as Animals, containing 200 images of horses,
cows, camels, deer, sheep and goats (Fig. 4). This dataset is
the most challenging of the three, since each image contains
multiple instances of several very similar categories (e.g.,
horses and deer), co-occurring in the images at different
scales, possibly partially occluded. Since the animals are
similar, they share a number of similar parts, which should
be captured by our model. The animals also have category-
specific, discriminative subcategories (e.g., only deer have
antlers), which allow for categorization, and thus should be
learned as non-shared subcategories in the taxonomy.

Multiple-category learning with the Caltech dataset is
carried out on a training set that contains a total ofNcat

target categories, whereNcat={4, 10, 20, 30, 40} but is un-
known to the algorithm. WhenNcat=4, we use the Caltech
faces, motorbikes, airplanes, and cars-rear. ForNcat≥10,
in addition to these four, the training set contains a mix
of other randomly drawn categories. A number of im-
ages, N cat

train={5, 10, 15, 20, 25, 30}, are randomly drawn
per each category, resulting in the training set of size
Ntrain=Ncat×N cat

train. From the remaining images, the test
set is randomly drawn so that it containsN cat

test=50 images
per each target category, including the background cate-
gory, totalingNtest=(Ncat+1)×N cat

test test images. People in
the Caltech test and training images for faces are different.
VaryingN cat

train andNcat allows us to test the algorithm’s per-
formance against the number of available training samples,
and its sensitivity to the total number of categories to be
learned. As for UIUC cars and Animals, the training sets
containNtrain={10, 40} randomly drawn images from the
entire dataset, respectively, while the remaining images are
used for testing. Detection, recognition and segmentation
is performed simultaneously, by matching the learned DAG
(i.e., taxonomy) with the test-image trees. Each experiment
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is repeated 10 times to estimate the average performance.
For quantitative evaluation, we define detection, seg-

mentation and recognition errors. We use manually delin-
eated outer contours of each category instance appearing
in the test images as ground truth. Those matched sub-
trees in the test images whose similarity measure is larger
than a specified threshold are adjudged as detected ob-
jects. The threshold is varied to plot the recall-precision
curves, while for the purposes of showing specific re-
sults in tables and figures, we use use the similarity-
measure threshold yielding the highestF -measure, where
F,2·Precision·Recall/(Precision+Recall). Let the area
that a matched subtree covers in the test image beAd, and
the ground-truth object area beAg. Then, the matched sub-
tree is said to be false positive (FP) ifAd∩Ag

Ad∪Ag
<0.5. The

remaining cases are declared true positives (TP). Segmen-
tation error is defined as the ratioXOR(Ad,Ag)

Ad∪Ag
. The recogni-

tion performance is evaluated only on the TP’s as follows.
Each node in the DAG represents a cluster of subimages
from one learned category. For testing purposes, the mean-
ing of each learned category is assigned manually, by ob-
serving the majority of entries in the corresponding cluster.
Thus, for example, if mostly faces are grouped in clusterc,
then categoryc will mean faces. Then, recognition is done
by assigning to each TP this user-specified meaning of the
matched node in the DAG, and if different from the ground
truth (verified by visual inspection) the TP is declared er-
roneously recognized. Depending on specific training im-
ages in each experiment, a different number of categories
of varying complexities are discovered. For testing pur-
poses here, we focus only on labeled categories in the Cal-
tech dataset (i.e., faces, motorbikes, etc.), cars in the UIUC
dataset, and the six animal categories in Animals. We will
call them target categories. Evaluation of other discovered
categories (road, grass, sky, etc.) is omitted for brevity.
Qualitative evaluation – Segmentation:Figs. 2–5 demon-
strate high accuracy in simultaneous object detection and
segmentation on Caltech, UIUC and Animals images, for
the training sets containingNtrain={40, 10, 40} images, re-
spectively. Detected instances of the target categories de-
clared TP’s are shown in Figs. 2, 3 and 5 by drawing their
outer contours on the original image, and in Fig. 4 by mask-
ing undetected image parts. Each TP in the figures is cor-
rectly recognized. Segmentation performance is good even
in cases when object boundaries are jagged and blurred
(e.g., motorbikes in Fig. 3), when objects are partially oc-
cluded (e.g., faces in Fig. 3), and when objects from the
same category occlude each other, forming a complex re-
gion topology with low-intensity contrasts (e.g., small and
large camel in Fig. 4). Objects that are not detected, for the
most part, have low intensity contrasts with the surround,
and thus do not form category-characteristic subtrees in the
segmentation tree that can be matched with the DAG.
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Figure 2. UIUC cars: (left) Contours of detected objects areover-
laid on the original. In addition to “cars” (red), the DAG encodes
“windows” (yellow), “park-meters” (green), “trees” (blue) among
other categories.Ntrain=10. (right) Recall-precision curves for
UIUC cars. The comparison is with [14, 3, 7].

Qualitative evaluation – Semantic Explanation:Fig. 5 il-
lustrates a part the DAG learned over the training set shown
in Fig. 4a. Specifically, the matched parts of a given test im-
age, showing a horse and five cows, depict the correspond-
ing DAG nodes. As can be seen, the rider and horse are
matched with a DAG node representing “rider-on-horse”
category, learned from the training images that do indeed
contain horseback riding scenes. This complex category is
found, because its subcategories “rider” and “partial-horse”
are identified. Similarly, only four cows are detected, where
the three are recognized as category “cow,” and one as
“spotted cow,” which is a co-occurrence category learned
from frequent co-occurrences of disjoint cow parts. The
DAG also provides an explanation that “horse” and “cow”
share learned subcategories “hind leg” and “muzzle,” and,
further down the taxonomy, “limbs.” We do detect and rec-
ognize “hind leg” of the occluded, leftmost cow, and do
not confuse its contours with those of the occluding cow
in front. Such identification of subcategory instances can
be used in some applications with a higher level of super-
vision for indicating the presence of partially visible par-
ent categories. Dogs appearing in the test image are not
detected, as they are not present in the training set, and
thus are not learned. In Fig. 4b we also depict subcate-
gories of each of the six target categories, which are not
shared among them. These subcategories are discrimina-
tive, category-specific, and facilitate cross-category resolv-
ability. These results suggests that the discovered taxonomy
is meaningful.

Quantitative evaluation: Averages of object detection,
segmentation, and recognition errors are summarized in Ta-
ble 1. In comparison with [14], we outperform their 9.3%
segmentation error obtained for the simpler, single-scale
UIUC cars images, and have similar performance to their
6.8% segmentation error on Caltech faces (within a standard
deviation). Also, our segmentation error is close to 6.0% re-
ported in [17] for a much simpler dataset of sideview cars,
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Figure 3. Caltech-101: (left) Contours of detected objectsare overlaid on the original.Ncat=4 andN
cat
train=10. (right) The plots of recall-

precision rates against the number of training images per category forNcat=4, and recognition errors versus the number of randomly drawn
categories present in the training set forN

cat
train=10. The comparison is with the spatial pyramid matching (SPM) approach [6].

(a) Sample training images from Animals: each image may
contain multiple instances of very similar animals, posinga
challenge for cross-category resolvability.c a m e l s c o w s s h e e p d e e r g o a t s h o r s e s
(b) Learned discriminative, non-shared subcategories of the
target categories. (c) Masked out are the image parts not occupied by detected instances of target categories.

Figure 4. Animals: detection, recognition and segmentation on the test images shown in (c; rows 1,3) using the DAG learned on the training
images shown in (a). The DAG successfully resolves the subtle differences among the animals, since it learns the subcategories of each of
these six that are not shared, namely: camel’s hump and head,cow’s udder and head, deer’s antlers, goat’s beard and horns, horse’s reins
and mane; shown in (b) are the parts of the test images in (c) that got matched with the non-shared DAG nodes.

as compared to the UIUC multiscale dataset we use. Our
recall and precision rates for the Caltech faces are similarto
those of [14], reporting recall 84.6% and precision 78.2%,
but they learn “faces” as a single category, while we simul-
taneously learnNcat=4 categories. Recall-precision curves
over the UIUC cars are compared with those of [14, 3, 7] in
Fig. 2. Despite the fact that most of these methods use sim-
pler and more forgiving evaluation metrics (e.g., bounding
boxes containing detected objects), our detection rates can
be seen to be very close to the state of the art. For the Cal-
tech faces, motorbikes, airplanes and cars-rear, we also plot
recall-precision rates against the number of training images
per category in Fig. 3. As the training set becomes larger,
we get only modest improvements after reaching a certain

size of the training set (N cat
train>20 for Ncat=4 Caltech cat-

egories). Finally, we plot the recognition error versus the
number of categories present in the training set, randomly
selected from the Caltech database, in Fig. 3. These results
are compared against the best classifier on Caltech-101 that
uses spatial pyramid matching (SPM) [6].

Parameters and Run-time: Since the entries in region
property vectorψv are chosen to represent distinct char-
acteristics of regions, we setξ=1/|ψv|, where|ψv| is the
number of components inψv. The computation time of
our training (steps presented in Sec. 2, 3, and 4) for the 40
Caltech training images took 4.5 hours on a 2.4GHz, 2GB
RAM PC. Matching the DAG model with the test-image
segmentation tree takes approximately 10-30s, depending
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Faces Motorbikes Airplanes Cars rear UIUC cars side Horses Cows Deer Sheep Goats Camels
Recall % 88.6±7.3 80.1±3.5 84.5±8.2 82.6±12.3 87.6±6.9 78.9±12.3 75.6±14.8 84.3±5.9 78.2±10.4 72.1±9.5 86.6±8.1

Precision % 78.1±5.8 87.6±3.8 87.1±11.4 78.6±11.3 81.6±6.4 82.8±7.5 79.9±11.7 82.2±4.9 78.1±7.2 78.8±5.3 86.2±7.2

Seg. error % 9.7±6.5 16.6±6.9 16.3±9.5 19.7±14.3 8.5±3.4 16.1±7.3 18.1±4.2 12.2±7.24 25.9±8.2 21.3±11.2 12.1±4.2

Rec. error % 6.4±4.6 7.7±7.3 4.7±4.5 8.6±4.8 4.7±2.8 8.6±3.2 7.2±4.1 9.2±2.4 9.2±6.1 15.9±6.4 3.6±4.9

Table 1. Average recall, precision, segmentation, and recognition error (in %) on the Caltech, UIUC, and Animals datasets for the highest
F -measure; for Caltech-101Ncat=4, N

cat
train=10; for UIUC carsNtrain=10; for AnimalsNtrain=40.

Figure 5. A part of the taxonomy of animals learned over the train-
ing images shown in Fig. 4. Contours of detected objects are over-
laid on the original. Segments represent the matches of the DAG
nodes with the corresponding parts of the test image. The DAG
learned that cows and horses share hind legs and muzzles, while
their respective non-shared subcategories are horns and tails.

on the number of nodes in these graphs.

6. Conclusions

We have proposed the problem of simultaneous learning
of multiple visual categories present in an arbitrary image
set, and their hierarchical relationships or taxonomy. Our
solution yields state-of-the-art recognition and segmenta-
tion of all instances of multiple categories present in a test
image. Moreover, a semantic explanation of each category
found is provided in terms of the presence of its constituent
subcategories.
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