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Abstract

This paper addresses the problem of object detection angmion in complex scenes,
where objects are partially occluded. The approach preddrdrein is based on the hypoth-
esis that a careful analysis of visible object details abvarscales is critical for recognition
in such settings. In general, however, computational cerifygi becomes prohibitive when
trying to analyze multiple sub-parts of multiple objectsamimage. To alleviate this prob-
lem, we propose a generative-model framework — namely, dim&ree-structure belief
networks (DTSBNS). This framework formulates object détecand recognition as infer-
ence of DTSBN structure and image-class conditional @istions, given an image. The
causal (Markovian) dependencies in DTSBNSs allow for desigtomputationally efficient
inference, as well as for interpretation of the estimatadttire as follows: each root repre-
sents a whole distinct object, while children nodes dowrstlietree represent parts of that
object at various scales. Therefore, within the DTSBN fraon, the treatment and recog-
nition of object parts requires no additional training, mdrely a particular interpretation
of the tree/subtree structure. This property leads to &esglydor recognition of objects as a
whole through recognition of their visible parts. Our expmmtal results demonstrate that
this approach remarkably outperforms strategies withepligt analysis of object parts.

Key words: generative models, Bayesian networks, dynamic treesgti@ral inference,
image segmentation, object recognition
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1 Introduction

This paper addresses the problem of object detection angmémon in complex
scenes, where objects are partially occluded. A numberctdifa contribute to the
difficulty of this problem including variations in cameraaiity and position, wide-
ranging illumination conditions, and extreme scene ditgvéth partial occlusions
[1-5]. A review of the literature offers various approactiest usually address only
a subset of the outlined problems. For instance, the mgjofitesearch efforts is
focused exclusively on either image segmentation (i.¢eatien) [6—8], or image
classification (i.e., recognition) [2,4,5] of scenes witltloisions. Moreover, related
work (e.g., [7-9]), usually considers auxiliary infornatiprovided, for example,
by image sequences or stereo views of the same scene.

In contrast, we seek a framework that is sufficiently expvest cope with un-

certainty in images, jointly addresses object detectiahrasognition in a unified
manner, and represents a viable solution for scenes witlusoos. To this end,
the probabilistic framework proposed formulates the dbjecognition problem

as inference of structure and conditional distributionshef generative statistical
model — more specifically, dynamic tree-structure belidivoeks (DTSBNs) —

representing a given image.

DTSBNSs are directed acyclic graphs, where edges indicateststal Markov de-
pendencies between nodes, which in turn represent hidakaleservable random
variables, as illustrated in Fig. 1a. As with other dynamees, the DTSBN is char-
acterized by a joint distribution over image-class labatsciated with each node)
and the structure of the network [10—13]. Consequentlyyfi@rence, in addition to
finding posteriors of image-class labels, the network stingcis optimized for the
given image. The main differences between the DTSBN and taehinvestigated
in our prior work [13], referred to as dynamic tree (DT) angidéed in Fig. 1b,
concern the treatment of observable random variables anidfiérence algorithm.
In DTs [13], observables exist at all hierarchical levelsh@ model; these observ-
ables can change along with the iterative modifications efntlodel’s structure in
inference. Such model design was found suitable to addnesshiallenges adin-
supervisedmage segmentation and matching, as reported in [13]. Itrast) for
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Fig. 1. (a) DTSBN; (b) DT as in [13]. The DTSBN consists of adfsir of subtrees, each
of which segments the 1-D signal into regions marked by mlistshading; round- and
square-shaped nodes indicate hidden and observablelearigiangles indicate roots.

the supervisedsetting investigated herein, the DTSBN has a fixed set oflesing
layer observables extracted only once by the feature e@xaramodule, which pre-
cedes the classifier in the proposed object recognitioesysthat is, unlike in the
DT, observables in the DTSBN occupy its lowest level only.r&mnportantly, for
learning model parameters on training images, in gendrad,dssumed that the
underlying image processes are stationary. Consequémnthypervised settings,
observables should not be allowed to change along with dimelmanges of model
structure. As such, the DTSBN can be viewed as a special dake OT that is
more appropriate for supervised settings. In additionptioposed architecture al-
lows for fair comparisons of DTSBNs with representativeslistriminative and
descriptive models, as detailed later in this section.

Inference of DTSBNSs is handled as a special case of the mferalgorithm pro-
posed in our prior work [13], which relaxes the assumptiaiated to the varia-
tional approximation of Storkey and Williams [12]. Afterference, the DTSBN
represents a forest of sub-trees, each of which segmernitadige. More precisely,
leaf nodes that are descendants down the subtree of a gigeform the image
region characterized by that root, as depicted in Fig. 1sésegmented image re-
gions can be interpreted as distinct object appearancég iimiage. That is, infer-
ence of DTSBN structure provides a solution to object deiaciThen, for recog-
nition of detected objects (i.e., segmented image regiams possible approach
is to label leaf nodes as one of classes, by using the MAP classifier. Finally, a
majority vote over each segmented region can be used toedenithe class of the
object as a whole. Below, this approach is referred to asvtiwe-object recogni-
tion strategy.

When objects are partially occluded, however, such an agpronay yield poor
results, as demonstrated in the experiments reported ito8ex Therefore, we
propose a different strategy, where recognition is coretlist two stages through
interpretation obbject parts More specifically, this strategy first seeks to identify
visible object details, and then, by using this resultpudtiely recognizes the object
as a whole. Below, this strategy is referred tmbagect-part recognition

We hypothesize that such an approach to recognition may Ipe rasilient to oc-
clusion, and therefore more appropriate when considehiagecognition of par-



tially occluded objects. In addition to the percentage aflaugion, which object

parts are occluded is also critical for recognition. Notcalinponents of an object
are equally important for its recognition, especially whiegt object is partially oc-

cluded. Given two similar objects in the image, the visildetp of one object may
mislead the algorithm to recognize it as its counterpareréfore, careful consid-
eration should be given to the analysis of detected visibjead components. The
main advantage of such analysis is its flexibility to devel@pious recognition

strategies that weigh the information obtained from thected object parts more
judiciously.

Many existing approaches addressing occlusions, howae&rexplicit representa-
tion of object components at multiple scales [2, 4, 5]. A majostacle in the treat-
ment of image sub-classes is prohibitive computationalpierity, which arises
when the initial given set of classes (i.e., objects) is asigg@d with new classes
of object parts. The problem could be alleviated by usingdyealgorithms (e.g.,
[14]), which result, however, in suboptimal solutions. bntrast, by utilizing the
generative property of DTSBNs, physical meaning can begasdi to DTSBN
nodes such that they represent object parts at variousssddlerefore, within the
DTSBN framework, the explicit treatment and recognitionobfect parts repre-
sents merely a particular interpretation of the tree/sgbstructure.

To fully specify the object-part recognition strategy stiecessary to define a cri-
terion, which balances the complexity of interpreting atetted object sub-parts
(i.e., DTSBN nodes) versus the reduced accuracy when anglynly a subset

of nodes. The considerations of such a criterion lie beytedstope of this pa-

per. Even a simple two-stage procedure, however, showgkairia improvements

over the whole-object recognition approach. After infeenf DTSBN structure

for a given image, this procedure first selects the set of ichate children under

each root. These selected nodes are then treated as nevofsotstrees, which,

in turn, segment the image into smaller image regions, thaihject parts. MAP

classification and majority voting follow for selected ineagegions, thereby iden-
tifying object parts. Finally, in the second stage of ourogaation strategy, these
results are fused by yet another majority vote over the fabkthose object parts
that descend from a unique root. The block-diagram of theatkpart recognition

strategy is shown in Fig. 2.

The set of experiments in this paper show that scenes wittiajyaroccluded
objects require a careful interpretation of visible objdetails. In exploiting the
DTSBN'’s capability to explicitly represent object partsnatiltiple scales, signifi-
cantly better recognition performance is achieved whenpaoed with strategies
where object components are not explicitly analyzed. Tiggests that such analy-
sis should be an integral part of object recognition systemscenes with partially
occluded objects.

Ultimately, what allows us to overcome obstacles in analyacenes with occlu-
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Fig. 2. Object-part recognition strategy: after inferemeDTSBN structure, select the
roots’ children as new roots, and classify image regiongtmehth them; shading indicates
four distinct subtrees under four selected children notlesigles indicate roots.

sions in a computationally efficient and intuitively appeglmanner is the pro-
posed generative-model framework. This framework provaeexplicit represen-
tation of objects and their sub-parts at various scales;hylm turn, constitutes the
key factor for improved interpretation of scenes with glyioccluded objects, as
demonstrated in Section 5. Thus, our choice of a generatigehis directly driven
by our image interpretation strategy and goals, and apjpedier suited than alter-
native statistical approaches, such as descriptive, oridigative models [15, 16].
Descriptive models lack the necessary structure, whileridnsnative approaches
directly model conditional distributions of hidden varies® given observables, and
thereby loose the convenience of assigning physical mganithe statistical pa-
rameters of the model.

This paper is organized as follows. Section 2 first definesBEN$Swhile Section 3
discusses their probabilistic inference. Then, Sectiorplagns how to learn the
parameters of the joint prior distribution for DTSBNs. Ne$ection 5 first re-
ports experimental results on DTSBN-based unsupervisagerasegmentation, and
then proceeds to results on supervised image classifidati@aenes with partially
occluded objects. Performance of DTSBNSs is also contrastddMarkov Ran-
dom Fields (MRFs) [17], Discriminative Random Fields (DRFE3], and fixed-
structure TSBNs [19]. This comparison demonstrates th&8 BNs, trained using
SVA, outperform all these alternative modeling paradighsthermore, in exper-
iments with occlusions, recognition strategies condétbon correct identification
of object parts significantly improve overall recognitioerfprmance.

2 DTSBNs

DTSBNSs can be viewed as generalized tree-structured edigforks (TSBNSs)
which have been applied extensively in the image processidgcomputer vision

2 In this paper, the terms quad-trees and TSBNs are usedtiatggeably to denote the
same model; this convention departs somewhat from thatlitex, where the term TSBN
has been associated with more general tree structures.



literature [19-25]. For example, TSBNs have been appliedutiiscale document
segmentation [21], simultaneous image denoising and segiinen [24], and med-
ical applications [25]. There are several variants of vdfigcient inference algo-
rithms for TSBNs [19, 22]; in this paper, our inference algon for DTSBNS is
compared to the most prominent of these — namely, Peatfsmessage passing
scheme, also known as belief propagation [26].

Despite the powerful expressiveness of TSBNs and the eftigief their inference

algorithms, TSBN-based segmentation/classificationessiffrom boundary arti-

facts. Due to the fixed structure of TSBNs, dependenciesdmtWSBN nodes may
be inadequately modeled, causing blocky discontinuitiethe literature, several
approaches have been proposed to address this probleadimgbverlapping tree
models with distinct nodes corresponding to overlappingspa the image [27],

random cascades on trees of multiresolution coefficiel®s §hd two-dimensional
hierarchical models with nodes mutually dependent bothngitparticular layer

through a Markov-mesh and across resolutions [29]. In taggeoaches, the de-
scriptive component of the models is improved at some isg@aomputational
cost, leading to superior segmentation results when caedgarstandard TSBNSs.
However, these approaches do not alleviate the main causieaky discontinu-

ities — that is, the fixed-tree structure of TSBNs. This peoblis more explicitly

addressed in research concerning dynamic/irregular traetgres. Thus, for ex-
ample, Montanvert et al. [30] have explored irregular nsghile tessellation that
adapts to image content. Also, Williams’ group of researshave introduced sev-
eral variants of dynamic and position-encoding dynamiesf@0—-12]. Finally, we

have previously investigated dynamic trees in unsupedvesgtings, concluding
that the model’s random structure is critical to the supesegmentation perfor-
mance of dynamic trees over TSBNs [13].

2.1 Definition of DTSBN

DTSBNs are most closely related to position-encoding dyodraes [12], where
observables are fixed and present only at the lowest modal By contrast with

DTSBNSs, the dynamic trees in our previous work [13] comptige disjoint sets

of random variables, one of which represents multi-layereservable data at all
model levels that change as a function of the dynamic modéiiscture. In our

brief definition of DTSBNs below, differences between prioodels and DTSBNs
are highlighted where appropriate.

A DTSBN is a directed, acyclic graph with nodes in Bebrganized in hierarchical
levels,V*, ¢={0,1, ..., L—1}, whereV’° denotes the leaf level. The number of nodes
is identical to that of the quad-tree, such thit|=|V* 1| /4=...=|V°| /4. Each
node is characterized by a set of random variables, the fisshiwh are network
connectivity indicators.



Any node at level can be a root, or connect only to the nodes at the At
level. A node at level can have only one parent; however, all the node&+dt
are candidates to become the parent of that node. The eatritvth nodes and
j are connected is represented by an indicator random variéhl). The set of
z(iy)'s over all nodes forms a random matttk which is further augmented with
an additional zero (“root”) column, where entrigg0) are equal to 1 if is a root
node. The distribution over connectivity is defined as

P(Z) & [ jev [(i) 7 1)
wherey(ij) is the probability ofi being the child of;.

Next, the position of each noder;, is random and takes continuous values in the
image plane. The distribution af; is conditioned on the position of its parent
using the normal distribution

exp(—2(ri—r;) TS (ri—r)))
27T|ZZJ|%

P(rifr;, 2(ij)=1) £ )

where;; is a diagonal matrix with elements(}‘) and o—g), which represent the
order of magnitude of object size along "x” and "y” image cdioates, respectively.
In this fashion, the model explicitly expresses geometioponent-subcomponent
relationships through multiple scales in the image. Thatjprobability of R =

{r;|VieV'}, is given by

P(R|Z) 2 L, jev [ P(rilry, 2(i5)) 7 (3)

Atthe leaf level °, node positions are fixed to pixel locations. Thereféte7, R'| R)
is used as the prior over positions and connectivity, whighex {r;|VicV°}, and
R & {r;|VicV\V}.

Further, each nodeis associated with an image-class labgland an image-class
indicator random variable(ik), such thatc(ik)=1 if x;=k, wherekeM, and M
represents the set of image classes, which is assumed Tih#eémage class of
node: is conditioned on image clagsf its parentj and is given by conditional
probability tablesP*’. Thus, the joint probability ok £{x(ik)|i€V, ke M} is con-
ditioned on network connectivity and given by

z(ik)z(j1)z(i7)
| . (4)

P(X|Z) £ I jev Migens [P

Finally, leaf nodes are characterized by observable rangamorsy,, whereY =
{y;|vieV°}. Observableg; represent image-feature vectors comprising image
texture and color cues in the neighborhood of nod&®. The observableg; are
assumed to be conditionally independent given the corretipgz(:k):

P(Y|X, RO) £ [Licvo Ilkem P(yi|$(ik))x(ik)a (5)



whereP(y;|z(ik)=1) is a mixture of Gaussians:

P(y;l(ik)=1) £ X0% m.(9) N (yi; vie(9), Za(g)) (6)

The Gaussian-mixture parameters can be grouped in theviabjoset:

0 = {(Gr, mi(9), v(9), Zalg)) | Yk € M} .

For largeG, a Gaussian-mixture density can approximate any protadiinsity
[31].

The DTSBN can be viewed a special case of the dynamic trestigeged in our
earlier paper [13], where observables at all levels dependaule positions as

P(Y|X, R, p) = Iiev Iyenr [P(yoolak. p(0))]™ . and wherep(i) is a suitably
defined function of’s random position. Setting(:) = 7 for all i’s that belong to
¢ = 0 level leads to the formulation for DTSBNSs.

Speaking in generative terms, for a given setiohodes, firstP(7) is defined
using Eq. (1) and°(R|Z) using Eq. (3) to give u$(Z, R). Leaf level node po-
sitions are then fixed to pixel locations to obtdhtZ, R’|R°). Combining Eq. (4)
with P(Z, R'|R°) results inP(Z, X, R'|R*)=P(X|Z)P(Z, R'|R"). Finally, from

Eq. (5), it follows that a DT is fully specified by the joint pri

P(Z,X,R,Y|R°) = P(Y|X,R")P(X|2)P(Z,R|R°) . ©)

All the parameters of the joint prior can be grouped in théofeing set:

0 2 {y(ij), i, PH. 60}, Vi, j € V, Vk,l € M.

17 )

3 Probabilistic Inference

One of the principal challenges in applying the DTSBN to imagterpretation
is the derivation of efficient algorithms for its inferendbat is, for computing
posterior probabilities ofZ, X, and R’ givenY and R°. As for many complex-
structure models, the exact inference for DTSBNSs is indéfalet, which makes us
consider inference approximation methods. In variati@pgdroximation, averag-
ing phenomena in the model are exploited, such that a givesf sariables is as-
sumed approximately independent of the rest of the netWidr&.idea is to approx-
imate the true intractable distributid?(Z, X, R'|Y, R°), by a simpler distribution
Q(Z, X, R'|Y, R%). In our discussion below, the conditioning Bhand R° is omit-

ted to simplify notation. The approaches proposed in priorkwange from a fac-
torized approximating distribution over hidden variabig6”Z, X') = Q(Z2)Q(X)

— the method known as mean field variational approximatioR\(A) [10] — to



more structured solution9(Z, X, R') = Q(Z2)Q(X|Z)Q(R'), where dependen-
cies among hidden variables are enforced [12].

In variational approximation, the goal is to fin Z, X, R’) closesttaP(Z, X, R'|Y, R°).
This is achieved by minimizinfree energy[32], J(Q, P), specified as

J(Q,P)= KL(Q|P)~log P(Y|R’)~log P(R’),

_ : : Q(Z, X, R)
RIdRZQZXR)lgm (8)

where K L(Q|| P) denotes Kullback-Leibler (KL) divergence betwe@, X, i)
andP(Z, X, R'|Y, R%) [33], defined as

QZ, X, R)
P(Z, X, R|Y,R%)

L@QIP)2 [ dR'Y. Q(z.X,R)log ©)
ZX

From Eq. (8), it follows that minimizing (@, P) amounts to minimizing KL diver-
gence. As a direct corollary of Jensen’s inequality [38],(Q|| P) is non-negative
for any two distributions) and P, and K L(Q|| P)=0 if and only if Q=P. Conse-

quently, minimizing free energy(Q|| P) with respect ta)(Z, X, R’) guarantees a
unique global solution tQ)(Z, X, R').

In this paper, inference of DTSBNSs is carried out throughstuurctured variational
approximation (SVA) algorithm [13], in which the approxitiray variational dis-
tribution is specified as

QZ,X,R) £ Q(Z)QX|Z)Q(R|Z) . (10)

This formulation enforces that both state-indicator Malga X and position vari-
ablesR’ be statistically dependent on the tree connectidityinlike the function
proposed by Storkey and Williams [12] that has a simpler fopk, X, R') =

Q(2)Q(X|Z2)Q(R'). Moreover, the approximating distributions are defined as

QZ) 2 e (€)Y, (11)
QUX1Z) £ L jev Mpens [@1] (12)
QR|2)2T] ”ew[ QUril=(if)) (13)
Q(rilz(ij)= 1)é27f\9m\2 p(—%("‘i—ll/z’j)Tijl(ri—uij))7 (14)

where{(ij) corresponds toy(ij), Q¥ is analogous taP}, andV'£V\V°. Note

that covariance®;; and mean valueg;; form the set of Gaussian parameters for a
given node over its candidate parenisV'. Thus, the sampling af; is determined



by the pair(p;;, €2;;), provided there is a connection betweemd;. In our imple-

mentation, thé&)’s are diagonal, since the the node positions along the “&™gh

image axes are assumed uncorrelated. The diagonal eleofiéhisare denoted as
(x

2 andwg).

wij

From the derivation steps reported in [13], it is straightfard to obtain the infer-
ence equations for DTSBNSs, by taking into account the cairgtthat observables
in the DTSBN cannot be modified in inference, and that thegtexily at the/ = 0
level. For completeness, Fig. 3 summarizes the final désivaiesults, where the
signo is used to denote that the right-hand side should be norethl&ich that the
term on the left-hand side represents a probability. Natettie upward-downward
propagation, specified by Steps (2.2) and (2.3) in Fig. 3mdar to belief propa-
gation for TSBNs [19,22,26]. In the special case, whgri)=1 only for one parent

j, that is, the set of candidate parents is reduced to only ode,rthe algorithm
reduces to the standardr rules of Pearl's message passing scheme for TSBNs.
Also, in Step (2.6) in Fig. 34,; represents the influence of observalitesn the
connectivity distribution, and;; represents the contribution of the geometric prop-
erties of the network to the connectivity distribution.

In [13], convergence of SVA was compared with the followimgerence algo-

rithms: Gibbs sampling [34], mean-field variational appneation proposed in

[10], and structured variational approximation discussgd?2]. The reported em-
pirical results demonstrate that Gibbs sampling becomésasible as image size
grows, and that the mean-field variational approximatidntais very poor perfor-

mance. In summary, SVA converges to the largest likelihpiodbe fewest number
of iterations, an order of magnitude faster than the se@back structured varia-
tional approximation proposed by Storkey and Williams [12]

3.1 Inference Algorithm

For the given set of parametegsthat fully specify the joint prior of the DTSBN,
the Bayesian formulation of the inference problem amoumtsinimizing the ex-
pectation of a cost functiof:

(Z,X,R) = arg min E{C((Z, X, R),(Z", X", R"))|Y,R’, 0},  (15)

whereC(-) penalizes the difference between the estimatédX, '), and the true
configuration(Z*, X* R"™). As in [13], the following cost function is used:

C((Z, X, R),(Z*, X*,R")) & ¥ijev[1-0(2(ij)—="(ij))]
+ Siev Speml1—06(z(ik)—a*(ik))]  (16)
+ Ziev[1=0(ri—r])]

10



where* stands for true values, ain¢) is the Kronecker delta function. By using the
variational distribution instead of true posterif,.Z, X, R'|Y, R°) ~ Q(Z)Q(X|Z)Q(R|Z),
it follows from Eqgs. (15) and (16) that:

~

Z =argming Y, Q(2) Zmev[l_a(z(ij)—f (i5))], (17)
X = argminy Yzx QX, Z) Yiev Ykem[1-0(x(ik)—*(ik))], (18)
R =argming [p dR'Y; Q(R, Z) ey [1—6(ri—77)). (19)

Furthermore, the minimization in Eq. (17) is equivalent talfhg parents:
(VO)(VieV*)(Z:70) j=arg max;eo,ve+1y & (1), (20)

where¢(ij) is computed as in Step (2.6) in Fig. 3. He#g denotes-th column of
Z,andZ;#0 indicates that there is at least one non-zero element imuokj (i.e.,

1 has children). The global solution to Eq. (20) is intractalglading us to resort
to a stage-wise optimization in which the consecutive seleof parents is made
in a bottom-up pass. Thus, starting from the leaf leéwe{0, 1, ..., L—1}, optimal
parents at/“*! are selected as:

(VieV")(Zi#0) j=argmax;cqo ey £(i5), (21)

whereZ; denotes-th column of estimated, andZ;-£0 indicates that has already
been selected as the optimal parent when optimizing theque\levelV*.

Next, from Eg. (18), the Bayesian estimation of image-clalsls reads
(VieV) &; = argmaxpens > Q(2(ik)=1|2)Q(Z) = argmaxpepy mF . (22)

where the approximate posterior probability that nodei is assigned to image
classk is computed as in Step (2.3) in Fig. 3.

Finally, from Eq. (19), the Bayesian estimation of node pposs is conducted as
(V€>O)(WEVZ) T; = arg maxg, Yz Q(”“z‘|Z)Q(Z) = ZjevHl Hijf(ij)a (23)
wherep,; is computed as in Step (2.4.2) in Fig. 3.

Our inference algorithm for DTSBNSs is summarized in Fig. 3.

Figure 3: SVA Inference Algorithm for DT SBNs

(1) Initialization: Assume that’, L, M, ©, N., €, andgs, are given. Initialize¢=0,
Vi, jeV, Yk, leM, £(ij; t=0)=y(ij), QF(t=0)=P}'. SetVi, jeV, p;;(t=0)
to node locations in the corresponding quad-tree. Set dalgglements of
Q,;(t=0) to be equal to the area of corresponding dyadic squares ojide:-
tree.

11



(2) REPEAT Outer Loop
1) t=t+1;
(2.2) Compute in bottom-up pass f6£0, 1, ..., L—1, Vi, jeV*, Yk, leM

. P(y;|x(ik)) , 1e Vo,
Ai (t)= hvap o 1EED
HCEV {ZaEM P )‘ ( )} y € V ;

and

i (1) o< PAT(1),

17 Y

(2.3) Compute in top-down pass the approximate posteravahility m? that
node; is labeled as image claésgivenY andR?, for/(=L—1, L—2, ..., 0,
ViVt YkeM,

mi(t) =Y ev E(ig;t — 1) Sien QEH(H)mA(1),

(2.4) REPEAT Inner Loop
(2.4.2) Computs/s, jeV”,

-1
Nzytln Z£]p7t12 +Z£CZt1
peV’ ceVv’
. [Z Eps t—=1)55 mip(tin—1)+ D §(Ci;t—1)zc_ilucz(tin—1)] :
peV’ cev’
1
1 1 Tr{3 Q. (tn—1)} ]2
o= o | 1+ 2 EGpt—1) l { - inllin )}]
Wij (tin) 0ij peV’ Tr{X; Qi (tin—1)}
1 Tr{Z‘-lﬁc,-(tin—l)}] :
+ ci;t—1) 1+ “ ,
c%;f (X) ( [Tr{zcilgij(tin_l)}

wherec andp denote children and grandparents of nedeespec-
tively. Similarly, computevi, jeV’, w (t.n)
(2.5) UNTIL |pa5(tin) —peij(tin—1)|/ pij(tin—1) < Eps
(2.6) ForQy; = Q;(tin), pij = pij(tin), and Mg, = (pij—mp) (i~ 1)
computevi, jeV’,

§(27)(t) o< (1) exp (Ay(t) — By(t—1)),
where

Ay(t) = > Qut)mi(t)log( Y PAL()),

kleM aeM
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1, |3
Bi;(t—1)= lo | |+ Tr{Z Q)

|QZ]|
+ > G t—D)Tr{E; Q1 Tr{ 1y, ) 2
peV’
1 ) _
+ B Z f(JPQt—l)Tr{Eijl(ij+Mijp)}
peV’
1
+3 Y E(eist—=1)Tr{S (Qi+Meij)}
ceV’
+ 3 e t-1)THE Q) Tr{E 10,07
ceV’

wherec andp denote children and grandparents of nodespectively.
(3) UNTIL |Q(Z, X, R;t)-Q(Z, X, R';t—1)|/Q(Z, X, R';t—1)<e for N, con-
secutive iteration steps ;
(4) Compute in bottom-up pass 60,1, ..., L—1
(VieV)(Z#0) j=arg max;c o yery £(ij; 1);
(5) ComputgVieV) 2; = arg maxyep mi(t);
(6) ComputgV(>0)(VieV*) #; = 3 cpen py (H)E(ig; 1);

Fig. 3. The SVA inference algorithm [13] adapted to accoonfiked single-layer observ-
ables in DTSBNSs t andtj, are counters in the outer and inner loops, respectivEly,
ande,, control the convergence criteria for the two loops.

3.2 Implementation Issues

As discussed in [13], for SVA inference, it is necessary tdarteke additional
computation steps to prevent numerical underflow. Herentbst problematic is
computation oﬁ) in Step (2.2) in Fig. 3. Fortunately, if thés are appropriately
scaled, then the computation @fj does not change when the scaledalues are
used. Thus, if the\’s are scaled as

- A\
P m Vie V, VkeM | (24)
ae 7
then, it follows that
Pkl}\k Pkl;\k

kl __
o al
Zael\/l sz )\z ZaEM Pal)\a

(25)

Next, note that,, controls the convergence criterion of the inner loop in Big.
wherep;; and(;; are computed. Whe,=0.01, the average number of iteration
stepstin, in the inner loop, ranges from 3 to 5 depending on the imaxge vihere
the latter corresponds 56 x 256 images.
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Finally, although SVA guarantees a global unique solutm@t~, X, R’), setting

an inappropriate value afthat controls the convergence criterion of the outer loop
in Fig. 3 may lead to sub-optimal solutions. Therefore, tthdittonal convergence-
control parameterV, needs to be specified as well. In our experiments the two
convergence parameters are seas10 ande=0.01.

4 Learning

In order to perform the SVA inference, it is first necessargton the parameters of
the joint prior,0={~(ij), X;;, P}, 0}, Vi, jeV, Vk,leM, on a given set of train-
ing images. Below, we first explain how to compuyté;) andd, and then discuss

i kl
learningX;; and P;;'.

The connectivity probabilities(:j) are set to be uniform oveéls candidate parents
Vje{0, Vi1, wherey(i0) is the probability that is a root. This allows DTSBNs
to form arbitrary structures adapted to the given imageference. In other words,
the uniform’s do not favor any particular component-subcomponentgire of
objects in the image by DTSBNSs. Next, the parameters of a &ausnixture den-
sity # can be learned by the EM algorithm on a given set of traininages [31].

Parameterg;; and Pi’;.l, on the other hand, require a more involved learning pro-
cedure, since they characterize nodes at higher levelgevthe ground truth is
not readily available. These parameters can be learnedioimty images, by using
standard maximum likelihood (ML) optimization. Usuallg, ML optimization, it

is assumed that folV independently generated training images with observables
{Y™}, n=1, ..., N, corresponding configurations of latent variables — in asec
{(Z™, X", R™)} — are given. However, for multiscale generative models,en-g
eral, neither the true image-class labels for nodes at higlels nor their dynamic
connections are given. Therefore, “true” configurati¢ng™, X™, R’*)} must be
estimated.

This is achieved through an iterative learning procedutegre in steg it is first
assume tha® (t)={~(ij), X;;(t), P} (t), 0} is given}? and then conduct inference
for each training image=1, ..., N

(2", X", R") = arg min E{C((Z, X, R),(Z", X", R"))[Y",R’,0(1)}, (26)
as explained in Section 3. Once the estimgtgg”, X", R™)}, n=1, ..., N, are

found, ML optimization is applied to compuét+1). Here, the iterations are run
until | P} (t+1) — PF(t)|/ P} (t) < 0.01.

3 Note that parameterg(ij) andd are fixed to already learned values.
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In particular, for the estimatetf; andr;" parameters of each training imaggthe
ML solution to¥,;, V¢, V(i, j) € Vex V“l is given by

N
Z_j ) (7 =) —77), (27)

(i, ])evfxvHl
z .—1

where the off-diagonal elements are set to zero, sinpes assumed to be a diago-
nal matrix. In order not to overfit the model, note that Ihgecovarlances are equal
for all nodesi at the same level.

Further, to learn conditional probability tablé¥!, the following variational log-
likelihood is defined:

kl A / / Q(Zv X7 R/)
2(v|PH) 2 / dR ZQ (Z,X,R) 1o 5B X Y IPE)
:—KL(QHP) +log P(Y|R°, P£') +log P(R") , (28)

whereK L(Q|| P) is given by Eq. (9). Since for any and P distributionsiK L(Q|| P) >
0, it follows that the log-likelihoodog P(Y'|R°, P¥') is lower bounded by? (Y| i)
minus the additive constahig P(R’). Consequently, maximizing’(Y'| P}}') with
respect taP’ increases the lower boundlieg P(Y|R°, P}'). Thus, for a given set

of training images: = 1, ..., N, optimaIP,.’j.l can be computed as

P’“l = arg max L (Y| PEY
g Pkl Z ( ‘ iJ ) (29)
subjectto > .cn P ij =1.

Substituting into Eq. (28) for all the terms, then finding’(Y'| ') /0P}, and fi-

17 !

nally accounting for the Lagrange multiplier, yields théusion to Eq. 29y¥(¢, j) €
VEx{0, VLY, Yk, leM:

P“ocz > eEHeyTmi", (30)

n=1 (i,j eVt x {0,V ¢+1}

wheren in the superscript of (ij), U, andm denotes that these variational pa-
rameters are optimized for thheth image by usmg the inference algorithmin Fig. 3.

The learning of DTSBN parameters is summarized in Fig. 4.

15



Learning Algorithm

(1) t = 0; initialize ©(0)={~(ij), £;;(0), PL(0), 0};
(2) REPEAT
1) t=t+1;
(2.2) Estimate fon = 1,..., N:
(2, X7, ") = arg in B{CC)|Y", B, 6(1-1)},
by using the inference ’algorithm in Fig. 3;
(2.3) ComputeZ;;(t) given by Eq. (27);
(2.4) ComputeP/’(t) given by Eq. (30);
(3) UNTIL |PE(t)—Pf (t—1)|/ Pl (t—1) < 0.01

Fig. 4. Algorithm for learning the DTSBN parameters.

5 Experiments and Discussion

This Section reports the performance of DTSBNSs in supetvssttings. Since im-
age segmentation is an integral part of our object-recmgngystems, we also
briefly review the segmentation performance of DTSBNs, restteely discussed
in[13].

Experiments are conducted on 360 color images of 3iife<256, examples of
which are shown in Figs. 5, 7, and 11. This dataset is the antpdeversion of
Dataset IV in [13]. Images in the dataset contain partiatigloded objects from
a set of 23 classes, where 21 classes are items (e.g., takss,bmans, etc.) that
are similar in appearance, as depicted in Fig. 6, and theingmga2 classes are
two types of background. Here, the image classes are clgretlected to test if
DTSBNs are expressive enough to capture very small vansiioappearances of
some classes (e.g., two different “Fluke” voltage-meagpinstruments), challeng-
ing even for a human eye, as well as to encode large diffeseano®ng some other
classes (e.g., complexly shaped robetsbooks). Moreover, the dataset is care-
fully designed to contain complex scenes with occlusionsena the most “rec-
ognizable” parts of the objects in the scene are hidden. istamce, in Fig. 11,
two “Fluke” voltage-measuring instruments, then, two bhwoks, and two cans,
occlude each other, such that a careful analysis of thablgiparts is required for
successful recognition. Ground truth for each image isrdeteed through hand-
labeling of pixels. The dataset is divided into training @est sets by random se-
lection of images, such that 2/3 are used for training (iearning® parameters)
and 1/3 for testing (i.e., image segmentation and classdita

In our experiments, observablg&sinclude both color and texture cues. Texture is
computed as the difference-of-Gaussian function coneblvith the image:

D(x,y,k,0) 2 (G(x,y, ko)—G(z,y,0))xI(x,y), (31)
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G(z,y,0) 2 exp(—(2* +y?)/20%) /2702, (32)

wherez andy represent pixel coordinates, ai¢r, y) is the intensity imageD
provides a close approximation to the scale-normalizeddcam of Gaussian,
o?V2@, which has been shown to produce the most stable image ésaticross
scales when compared to a range of other possible imagedoacsuch as the gra-
dient or the Hessian [35D(x, y, k, o) is computed for three variance scale factors
k=+v/2,2,v/8 ando = 2 pixels. Color is represented by the generalized RGB color
spacer=R/(R+G+B), andg=G/(R+G+B), which effectively normalizes vari-
ations in brightness. Eaechandg color value is normalized over the image to have
zero mean and unit variance. Thus, fhis are 5-dimensional vectors.

5.1 Image Segmentation

The image-segmentation results presented in Fig. 5, asawéhe results in [13],
demonstrate that DTSBNSs, inferred with SVA, are able toexdty assign one sub-
tree per “object” in an image. Here, a cluster of pixels dedogg from a root
corresponds to the whole object, and clusters descending lifgher level nodes
underneath the root correspond to object parts. Note frgmngiihat DTSBNs pre-
serve tree structure for objects across images subjecamslation, rotation and
scaling. Moreover, note that the marked regions of pixekh whe same parent
at level 4 for the largest-object scale correspond to thensgof pixels with the
same parent at level 3 for the medium-object scale; singjltré level-4 clustering
for the medium-object scale corresponds to the level-3etung) for the smallest-
object scale. In other words, as the object transitionaigjinescales, the tree struc-
ture changes by eliminating the lowest-level layer, wHile higher-level structure
remains intact.

As discussed in [13], the estimated positions of roots in Figre very close to the
center of mass of whole objects. Moreover, the estimateilips of higher-level
nodes (e.g., nodes at levells3 and/=4) are very close to the center of mass of
object-parts they represent. This can be measured by carggbe error of node
positionsr = [r® )] as a distance from the actual center of mass (CM) of hand-
labeled "meaningful” object parts;,, = \/(r(X>—r(CMX>)2+(r(y>—r(CMW)?. Forthe
dataset used in this paper, the averaged errdy,js=11.4, which represents only
4% of the image size. Therefore, our claim that nodes at diffidevels of DTSBN
structure represent object-parts at various scales iostgupby experimental evi-
dence that the nodes segment the image into “meaningfutbjb-components
and position themselves at the center of mass of these stdh-pa
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Fig. 5. DTSBN-based image segmentation: invariance atrasslation, rotation and scal-
ing. (top row)256 x 256 images; (middle row) pixel clusters with the same parenga|l
3; (bottom row) pixel clusters with the same parent at leygoints mark the position of
parent nodes.

Fig. 6. 21 image classes in our dataset.

5.2 Image Classification

We first compare classification performance of DTSBNS, lediry SVA, with that
of the following statistical models: (1) MRFs presentedli]| (2) DRFs proposed
in [18], and (3) TSBNs discussed in [21, 22]. These modelggpeesentatives of
descriptive, discriminative and fixed-structure gengeatodels, respectively.

For MRFs, it is assumed that the label fig?d.X ) is a homogeneous and isotropic
MRF, given by the generalized Ising model with only pairwigazero potentials
[17]. The likelihoodsP(y;|x;) are assumed conditionally independent given the
labels. Thus, the posterior energy function is given by
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U(XY)=evolog Py i) +Xicvo X jen; Va(i, 75), (33)

) If i — Lj

—Burr , fx; # Ty .

where\; denotes the neighborhood of P(y;|z;) is a G-component mixture of
Gaussians given by Eq. (5), aim@is the interaction parameter. Details on learning
the model parameters as well as on inference for a given iceybe found in [17].
Next, the posterior energy function of the DRF is given by

UXY)= > Az, Y)+ 3 > Lijlwi, 5. Y) (35)

ieVvo i€VO jeEN;

Whel’eAZ-: lOg O'(.TZWTyZ) andfwzﬁDRF(lexj+(1—K)(2U(xliVTy2)—1)) are
the unary and pairwise potentials, respectively. Sinceatieve formulation deals
only with binary classification (i.ex; € {—1,1}), when estimating parameters
{W,V, Bprr, K} for a given object, that object is treated as a positive examp
while all other objects are treated as negative examplew(against all” strategy).
For details on how to learn the model parameters, and howndumi inference
for a given image, see [18]. Finally, TSBNs or quad-treesd&fined to have the
same number of nodds and levels. as DTSBNSs. In our experiments, learning
of TSBN parameters and inference are performed with theigthgas discussed in
depth in [22].

After inference of MRF, DRF, TSBN, and DTSBN on a given imafye, each
model, pixel labeling is conducted through MAP classificatiFig. 7 illustrates an
example of pixel labeling for one image in our dataset. Stheeground truth for
each test image is available, it is possible to estimate piat-labeling error and
object-recognition error. Here, a hand-labeled imageored said to be correctly
recognized as an object if the majority of MAP-classifiedgbiabels in the region
are equal to the true labeling of that object. For estimatimegobject-recognition
error, the following instances are counted as error: (1)gmgrtwo distinct objects
into one, and (2) swapping the identity of objects. The dbjecognition error over
all objects in 120 test images is summarized in Fig. 8. The lvaFig. 8 represent
the overall recognition error, while the black portion otkedar indicates the ratio
of swapped-identity errors. For instance, for DTSBNs therall recognition error
is 9.6%, of which 37% of instances were caused by swappedigerrors. Fig. 9
shows average pixel-labeling error.

For the two-class recognition problem, ROf@deiver operating characterisiic
curves are another method of visualizing performance. &ajpwo-class example
is shown in Fig. 7, where pixels labeled as “toy-snail” arasidered true positives,
while pixels labeled as “book” are considered true negati¥ég. 10 plots ROC
curves for MRF, DRF, TSBN and DTSBN based decision boundafiem Fig. 10,
note that the DTSBN-based image classification is the masirate, since its ROC
curve is the closest to the left-hand and top borders of th€ B@ace, as compared
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Fig. 7. MAP pixel labeling using different statistical mdsle
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to the ROC curves of the other models.

From the results reported in Figs. 8 and 9, as well as form Hig.note that
DTSBNs outperform the other three models. However, ret¢mgnperformance
of all the models suffers substantially when an image castacclusions. While
for some applications the literature reports vision systenth impressively small
classification errors (e.g., 2.5% hand-written digit radagn error [36]), in the
case of complex scenes this error is much higher [1-5]. Taesextent, our results
could have been improved with more discriminative imagéuiies and/or more
sophisticated classification algorithms than majoriteridowever, none of these
will alleviate the fundamental problem of “traditional’aegnition approaches: the
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Fig. 10. ROC curves for the image in Fig. 7a with DTSBNs, TSBDRFs and MRFs.

lack of explicit analysis of visible object parts. Thus, gaor classification perfor-
mance of MRF, DRF, and TSBN, reported in Figs. 8 and 9, can teegreted as
follows. Accounting for only pairwise potentials betweeatjacent nodes in MRF
and DRF is not sufficient to analyze complex configurationsiapécts in the scene.
Also, the analysis of fixed-size pixel neighborhoods atoasiscales in TSBN
leads to “blocky” estimates, and consequently to poor flaason performance.
Therefore, we hypothesize that the main reason why DTSBRsediorm the other
models is their capability to represent object details abus scales, which in turn
provides for explicit analysis of visible object parts. lihmer wordsrecognition of
object partsis critical and should condition recognition of the objestaawhole,
in the face of the occlusion problem. Thus, instead of apglynore sophisticated
image-feature-extraction tools and better classificaioocedures than majority
vote, a more radical change to our recognition strategytiediiced below.

5.3 Object-part Recognition Strategy

Recall from Section 5.1 that DTSBNSs are capable of captwsingctures at various
scales, such that DTSBN root nodes represent the centerssfondistinct objects,
while children nodes down the subtrees represent objets.p®s such, DTSBNs
provide a natural and seamless framework for identifyingdadate image regions
as object parts, requiring no additional training for swiénitification. This conve-
nient property of DTSBNSs leads us to an object-part recaymsdtrategy, where, in
contrast to the whole-object recognition strategy, preskim the previous section,
recognition is conducted in two stages. Thus, after infegesf DTSBN structure
for a given image, recognition now begins by treating clefdnodes of roots as
new roots, each of which segments the image into smalleomsgiorresponding
to object parts. Then, labels are assigned to all pixelsateatescendants of these
new roots, through MAP classification. Majority voting f@is to identify the se-
lected image regions under the new roots. Note that themiezatof subtrees under
children nodes, here, is exactly the same as subtrees urelsydts in the whole-
object recognition strategy. Hence, the pixel majorityevitentifies the selected
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Fig. 11. Comparison of two recognition strategies: (topallemging images of size
256 x 256 containing objects that are very similar in appearancegdie) classification
using the whole-object recognition strategy; (bottom)sifcation using the part-object
recognition strategy; each recognized object in the imagearked with a different color.

image regions as object parts. Finally, in the second sthgaraecognition strat-
egy, another round of majority voting is conducted at thegiogl roots over the
labels of identified object parts that descend from a unigogé Therefore, in the
second stage, object-part majority voting leads to ultematognition of an object
as a whole. The block-diagram of the object-part recogmisimategy is shown in
Fig. 2.

Fig. 11 presents classification results using the wholeatlgnd object-part recog-
nition strategies on three images from our dataset conigiobjects that are very
similarin appearance. In the leftmost example, both sirasdail to make a distinc-
tion between the two different “Fluke” voltage-measuringtruments (see Fig. 6),
since the part that differentiates one object most from lesrois occluded, mak-
ing it a difficult case for recognition even for a human intetpr. In the other two

images, note that the object-part recognition strategyasensuccessful than the
whole-object approach. The recognition error averaged alVebjects in 120 test

images is only 5.8%, an improvement of nearly 40% over thented error of 9.6%

in the previous section.

These results support our hypothesis that for successtogrétion of partially
occluded objects it is critical to analyze visible objectails at various scales.
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6 Conclusions

This paper addresses the problem of detecting and recagmartially occluded
objects in complex scenes. We have shown that a careful isalf/ visible fine-
scale object details can be critical for recognition accyria such scenes, lead-
ing to the development of two object-recognition strategiZlT SBNs facilitate the
analysis of multiple sub-parts of multiple objects in an geaand, as such, offer
an intuitively appealing framework for recognition in oeded scenes.

The proposed generative model DTSBN can be viewed as a spas&of the DT
model introduced in [13]. Unlike the DT, the DTSBN is apphtain supervised
settings, since its single-layer observables are not alibte change in inference
along with dynamic changes of model structure. The diffeean observable infor-
mation between DTs and DTSBNSs renders a direct compariswveba DTSBNs
and DTs beyond the scope of this paper. However, it is wortingohat image seg-
mentation performance of the DT with observables presdgtairthe lowest level
is surprisingly just slightly worse than the performanceéhaf DT with multi-layer
observables present at all model levels, as reported in [13]

For inference of DTSBNs we have used our SVA algorithm, walhxes poorly
justified independence assumptions of Storkey and Willifi2§ and converges
to larger likelihoods an order of magnitude faster than ceting algorithms [13].
For learning the parameters of the joint prior distributadrthe DTSBN, we have
derived the training algorithm based on standard maximuaiitiood (ML) opti-
mization.

Experiments within the proposed framework have illustiéite capability of DTSBNs
to capture important component-subcomponent structniesages. For both DTSBN-
based recognition strategies (whole-object and objed);@ar results demonstrate
better performance of the DTSBN generative framework caegpwith represen-
tatives of descriptive, discriminative, and fixed-struetstatistical models. Fur-
thermore, the object-part recognition strategy, whichliekly represents object
components at various scales, decreases recognitionagrradditional 40% over
the same dataset, when compared to the “traditional” whbjeet approach.

The results presented in this paper support our hypothesisar successful recog-
nition of partially occluded objects it is critical to anaby visible object details at
various scales. Ultimately, what allows us to overcome tmeutational complex-
ity issues for such an approach to recognition is the prapgsmerative-model
framework. Both the computationally efficient SVA inferenalgorithm and the
object-part recognition strategy arise from the causatkishaproperty of DTSBNs.

Consequently, we anticipate our future research efforismfwove upon available
recognition approaches by utilizing the causality of theagative-model paradigm.
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