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Abstract

This paper addresses the problem of simultaneous track-
ing of multiple targets in a video. We first apply object de-
tectors to every video frame. Pairs of detection responses
from every two consecutive frames are then used to build a
graph of tracklets. The graph helps transitively link the best
matching tracklets that do not violate hard and soft contex-
tual constraints between the resulting tracks. We prove that
this data association problem can be formulated as finding
the maximum-weight independent set (MWIS) of the graph.
We present a new, polynomial-time MWIS algorithm, and
prove that it converges to an optimum. Similarity and con-
textual constraints between object detections, used for data
association, are learned online from object appearance and
motion properties. Long-term occlusions are addressed by
iteratively repeating MWIS to hierarchically merge smaller
tracks into longer ones. Our results demonstrate advan-
tages of simultaneously accounting for soft and hard con-
textual constraints in multitarget tracking. We outperform
the state of the art on the benchmark datasets.

1. Introduction

This paper addresses the problem of simultaneous track-
ing of multiple targets in a complex scene, captured by a
non-static camera. Targets are occurrences of known ob-
ject classes, such as cars, pedestrians, and bicycles. Ev-
ery target is characterized by time-varying appearance and
motion properties. Targets are also characterized by their
spatiotemporal interactions, such as pedestrians moving in
the same or opposite direction, and domain-specific con-
straints, such as pedestrians tend to move similarly but usu-
ally try to keep distance from one another. We refer to these
interactions and constraints as context. Given a similarity
(or distance) function in terms of target appearance, mo-
tion, and contextual properties, tracking can be formulated
as matching similar object occurrences across video frames.
Our goal is to:

1. Learn online the statistical intrinsic and contextual
properties of objects to specify their similarity, and
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2. Match similar object occurrences in consecutive
frames by simultaneously accounting for their hard
and soft contextual constraints.

We address a setting in which the number of targets, their
class membership, and their layouts in the video may be
arbitrary, and no training examples of these are available.

1.1. Relationships to Prior Work

Multitarget tracking is challenging, because the uncer-
tainty about targets may arise from a multitude of sources,
including: similarity of targets from the same class, com-
plex target interactions, occlusions over relatively long
time, and dynamic, cluttered backgrounds. Tracking-by-
detection approaches have demonstrated impressive results
in addressing these challenges [16, 8, 13, 22, 1, 10, 23, 3, 4].
They first apply an object detector to generate target hy-
potheses in each frame, and then transitively link the detec-
tions so as to maintain their unique identities. The transitive
linking is difficult in the face of (potentially numerous) false
positives and missing detections. This is usually addressed
by learning an affinity model between detections in terms
of their intrinsic properties (e.g., color, posture, speed, di-
rection) [13, 1, 23, 11, 14], as well as spatiotemporal con-
text [15], supporting evidence from neighboring tracks [9],
and estimates of an occluder map [10] and 3D scene layout
[4]. Given affinities between detections, the aforementioned
work formulates tracking as the data association problem.
This is typically posed as bipartite matching, with the con-
straint that the matching be one-to-one, and solved by either
the greedy Hungarian algorithm, or more sophisticated net-
work flow algorithms [24].

Beyond the one-to-one constraint, various relationships
between objects give rise to other soft and hard constraints
which can be used for tracking. This motivates us to ex-
tend prior work by incorporating additional contextual con-
straints in data association. We show that this extension
naturally lends itself to the maximum weight independent
set (MWIS) problem. For this more general formulation of
multitarget tracking, we present a new MWIS algorithm.

Tracking-by-detection approaches may poorly perform
in the presence of long-term occlusions, i.e., long gaps in
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a sequence of object detections. This can be addressed by
fusing particle filtering with detector confidences for more
accurate maintaining of tracking hypotheses [3]. Alterna-
tively, the long gaps can be overcome by a hierarchical asso-
ciation of detections [10]. Brute-force strategies have been
proposed to handle errors in the track linking by augment-
ing the initial set of tracks with their merges and splits [19].

We address the long gaps by iteratively linking smaller
similar tracks into larger ones, and splitting long unviable
tracks, while respecting their soft and hard contextual con-
straints, until convergence. Unlike [10], we conduct both
merging and splitting of tracks, and thus allow corrections
of any errors made in the previous iterations.
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Figure 1. Our approach: Object detections are used to build a
graph of detection pairs, called tracklets. Tracking is formulated
as finding the maximum-weight independent set (MWIS) of the
graph, and solved by our new MWIS algorithm. Similarity be-
tween detections and contextual constraints between the tracks are
learned online. Long-term occlusions are addressed by iteratively

applying MWIS to merge smaller tracks into longer ones.

1.2. Overview of Our Approach

Fig. 1 illustrates the following steps of our approach.

Step 1: We apply detectors of a set of object classes to
all video frames. Each detection is characterized by a de-
scriptor that records the following properties of the corre-
sponding bounding box: location, size, and the histograms
of color, intensity gradients, and optical flow.

Step 2: The best matching detections are transitively
linked across video into distinct tracks, whose total num-
ber is unknown a priori. This is done under the hard con-
straint that no two tracks may share the same detection,
to prevent implausible video interpretations. In addition,
the linking is informed by spatiotemporal relationships be-
tween the tracks, which provide for soft constraints. To
this end, we build a graph, where nodes represent can-
didate matches from every two consecutive frames, re-
ferred to as tracklets; node weights encode the similarity
of the corresponding matches; and edges connect nodes
whose corresponding tracklets violate the hard constraints.
Given this attributed graph, data association is formulated
as the maximum-weight independent set (MWIS) problem.
MWIS is the heaviest subset of non-adjacent nodes of an
attributed graph. Conveniently, MWIS of the entire graph is
equivalent to a union of the MWIS solutions of independent
subgraphs. This allows us to conduct multitarget tracking
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online. We present a new MWIS algorithm that is guaran-
teed to converge to an optimum.

Step 3: Intrinsic target properties and pairwise context,
used in Step 2, are learned online, as the tracks keep accu-
mulating statistical evidence of the targets. The relative sig-
nificance of these properties for each track is learned so as
to minimize the Mahalanobis distances of detections within
the same track, and maximize the Mahalanobis distances
between detections from distinct tracks.

Step 4: To address long-term occlusions, we iterate
Step 2 and Step 3 to merge or split tracks so as to increase
the total weight of the MWIS, until convergence.

1.3. Contributions

We formulate multitarget tracking as the MWIS prob-
lem. MWIS allows concurrent and direct reasoning about
soft and hard contextual constraints, whereas prior work
typically relaxes hard constraints to the continuous domain
for tractability (e.g., [24]). Importantly, the MWIS formu-
lation provides a principled way of partitioning the entire
graph of candidate tracklets into independent subgraphs,
which simplifies our data association problem to a number
of smaller MWIS problems for each subgraph.

MWIS has also been used for tracking in [20], with many
differences. They build a graph where each node represents
an entire track hypothesis, whereas our nodes are track-
lets. Our graph gets broken down into smaller indepen-
dent subgraphs, which is not the case in [20]. They refor-
mulate MWIS as a semi-definite program, and use a rank-
constrained approximation to solve it, whereas we directly
solve the exact MWIS formulation. Global optimal trajec-
tory association has also been formulated as the min-cost
flow problem in [24].

MWIS is a well-researched combinatorial optimization
problem, known to be NP-hard, and hard to approximate.
Numerous heuristic approaches exist. For example, iterated
tabu search [17] uses a trial-and-error, greedy search in the
space of possible solutions, with an optimistic complexity
estimate of O(n?®). MWIS is often reformulated as the max-
imum weight clique (MWC) problem that uses a dual graph
of the original [18]. However, important hard constraints
captured by edges of the original graph may be lost in this
conversion.

We derive a new MWIS algorithm that iteratively refines
the solution using a first-order dynamic. Also, we prove its
convergence to a maximum, with complexity O(n?), where
n is the number of nodes in a graph.

The remainder of the paper presents details of each step
of our approach, starting from Step 1.

2. Object Detection

Given a video, we use a state-of-the-art detector to iden-
tify occurrences of target object classes in every frame.
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We consider the following alternatives: (i) Implicit Shape
Model (ISM) [12], (ii)) HOG detector [5], and (iii) De-
formable part-based model [7]. The same detectors have
been used with success in prior work (e.g., [3, 4]).

Each detected bounding box, z, is characterized by a de-
scriptor, z, whose elements include: (a) location and size
of the bounding box, and (b) a PCA projected vector at 5%
reconstruction error of the following features: (b.i)) HOG
descriptor of size 81x 1, (b.ii)) HSV color histogram of size
2563, and (b.iii) two 10-bin histograms of optical flow
along x and y directions within the box.

Given two detections z and z’, and their descriptors z
and z’, similarity between them is defined as:

w = exp(—(z — 2/)TM(z — 2/)), (1)
where M is a distance metric matrix. M is initialized to the
identity matrix, and then learned online (Sec. 4.1).

3. Data Association is the MWIS Problem

This section presents our Step 2. We first formalize data
association, and then cast it as the MWIS problem. We also
specify a new MWIS algorithm.

Let Z®) = {z§t),zét),...} denote the set of object
detections at time ¢, and Z = Ut:LMTZ(t) be the set
of all detections. A track is an ordered set of detections

T = {28,201, such that vt, [T N 28| < 1.

Def. 1. Data association is defined as the problem of finding
a subset of all detections whose time sequences form a set
of non-overlapping tracks, ¥ = {T, : Te N T, = 0, k #
I, k,1=1,2,...}, ¥ C Z, such that each Ty, € ¥ is a set
of all detections of a unique target.

The data association problem can be formalized by con-
structing a graph, G = (V, E, w), illustrated in Fig. 2a. V is
the set of nodes representing pairs of object detections from
every two consecutive frames, called tracklets, V' = {i(t) :
Z'(t):(zt(lt)’Z(Et-‘rl)),zgt)ez(t)’Z(Et-‘rl)ez(tJrl)’t:l, LT,
with cardinality |V|=n. E is the set of undirected edges
connecting only those tracklets i) €V and j(¥) €V that hap-
pen at the same time t—t+1, and share the same detection,
E = {G®, ;) : iOnj®O£p, i®O£5O =1 .. T},
Finally, w : V—R™ associates positive weights w; with ev-
ery node ¢ € V, defined as similarity by Eq. (1). Note that

tracklets from different time instances, e.g., i=( zt(zt) , Z£t+1))
and j=(z{""V 2U*?) may share detection 2", and

still remain unconnected in the graph. Thus, by construc-
tion, G consists of a number of independent subgraphs,
G={GY:t=1,..T}.

Below, we prove that the data association problem is
equivalent to finding the MWIS of G. It is easy to show that
a track, 7, can equivalently be defined as an ordered set of
tracklets, 7 = {i("1), () .}, such that V¢, |[T N G| <
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Figure 2. The graph: (a) Nodes in G are tracklets that are con-
nected by edges if they happen at the same time t—t+1, and share
the same detection (denoted with integers); this partitions G into
independent subgraphs. (b) A track (bold rectangle) consists of a
time sequence of tracklets (the dashed track is forbidden).

1, and if two consecutive tracklets i) and j(**1) belong to
T then i must end, and j*+1) must start with the same
detection (for maintaining track identity), as illustrated in
Fig. 2b. In addition, it is straightforward to show that any
two non-overlapping tracks 7 N7; = (), can be formed only
from independent tracklets, Vi € Ti,Vj € T, (4,)) # E.
This allows us to state the following proposition.

Proposition 1. The data association problem can be spec-
ified as finding a subset of all independent tracklets in G
whose time sequences form a set of non-overlapping tracks,
¥, and whose total weight, ), _s, w;, is maximum.

Proof. We use contraposition. Suppose that the MWIS of
G, denoted as f], consists of tracklets whose time sequences
do not satisfy Def. 1. By definition of independent set, the
tracks in % must be non-overlapping. Then, from Def. 1,
there must exist a detection z in the video that does not be-
long to any track in > By construction of G, it follows that
there is a tracklet ¢ that contains z, such that ¢ is indepen-
dent of all tracklets in 3. Since tracklet weights are positive,
> U {i} is an independent set with larger total weight than
¥, which contradicts the initial assumption that 3 is MWIS.
]

Since the MWIS of G is equal to a union of the MWIS
of each independent subgraph G*), t = 1,...,T, we first
separately solve the MWIS of each G(*), denoted as X(*).
Then, following the above definitions, we link tracklets into
distinct tracks, such that a track, 7, may contain only one
tracklet from each ©), ¢t = 1,...T, and T may contain
two consecutive tracklets i(t) € $(1) and j(t+1) ¢ B+
only if i) ends and j(**1) starts with the same object de-
tection. In the following, we present a formulation of the
MWIS problem, and specify a new MWIS algorithm.

3.1. The MWIS problem

A subset of V' can be represented by an indicator vector
x = (z;) € {0,1}", where x; = 1 means that node  is in
the subset, and x; = 0 otherwise. Then, MWIS, denoted as
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x*, is specified by the following integer program:

x* = argmax, w'x,

st. Vie V,z; € {0,1}, and V(i,j) € E,z;-z; =0,

2
where w = (w;) is the vector of node weights defined in
(1). Note that instead of the quadratic constraints V(i, j)
z; - x; = 01in (2), one could use the linear constraints
V(i,7), zi + x; < 1. However, since (2) is typically solved
by a relaxation to the continuous domain, the relaxed lin-
ear constraints would be much weaker than the quadratic
ones. For example, with x;=0.5 and x,;=0.5, we have
0.54+0.5 < 1, which still satisfies the linear constraint,
whereas 0.5-0.5 # 0. The independence constraint in (2)
can be directly incorporated in the objective function, which
results in the following equivalent formulation:

" = argmaxg 3 ey Witi [ ey, ,5)en(l — 7)),

st. VieV, z; € {0,1}. )

In (3), the sum does not increase for solutions in which both
x; and x; are set to 1, and their corresponding nodes are
connected in the graph, (¢, j) € E. The objective of (3) can
be more conveniently written using the adjacency matrix of
G, B = (B;;), with elements B;; = 1if (¢,j) € E, and
B;; = 0 otherwise, as follows

x* = argmaxy ) ;o Wi [ [ (1 — a;)Bi,

st. VieV, x; € {0,1} @)

Eq. (4) gives the exact discrete formulation of the MWIS
problem. As common in combinatorial optimization, we
relax this discrete formulation to the continuous domain.
Specifically, we introduce an auxiliary, real-valued vector,
y = (y;) € R", and replace the constraint Vi€V, z,€{0,1}
with the sigmoid function z; = o(y;) = (1 + e vi)~1,
where we use § = 10 for the sharper sigmoid. Thus, from
(4), we obtain the following continuous formulation:

y* = argmax, 3 ey wio(yi) [[ey (1= o(:))B9, (5)

where the final solution is obtained from the sigmoid func-
tion Vi€V, a2} = (1+e*5y:)*1. Next, we present our new
MWIS algorithm.

3.2. The Algorithm

Our MWIS algorithm iteratively seeks an optimal solu-
tion of (5), y* € R™. At each iteration, 7, a current solution
is updated using the first-order dynamic:

Yy =y 4 Ar gD, (6)
where ("~1 = Ly~ For every element of y,
our goal is to estimate y;, such that the final solution,

y*, is the maximizer of the objective function of (5).
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The objective of (5) can be specified as Zl w;h;, where
hi=c(y;) Hjev(l—a(yi))Bij. Thus, it is straightforward
to show that the first order dynamic in (6) maximizes
> wihg iff Y7 w;h; > 0, in every iteration 7. From this
condition and the definition of h;, we obtain:

g = (1= o(ys))wihi — > Bio(yjwih;, (D
which is used in (6) to obtain the next iterative solution,
until convergence. Our algorithm is summarized in Alg. 1.

Algorithm 1: MWIS algorithm
Input: graph G
Output: MWIS of G

Initialize randomly y(©) with y(O)

e {-1,1}
Compute Vi € V, h;=0(y;) Hjev(lfg(yi))Bij;
Compute 9 as in Eq. (7);
while |||, > 0 do

AT < LineSearch(y) ;

YT+ y(™ 4 Arg(D)

Vi € V., T =0 () ey oy )P

Update 7tV as in Eq. (7) ;
end
Y=y
returnVi € V, 2} = o(y})

N-T-HEE N B A7 I~ S SR

=
>

(r+1),

=
—

Theoretical analysis of our algorithm is deferred to Ap-
pendix, where we present a proof that Alg. 1 converges to a
maximum. From (7), it is easy to show that the complexity
of Alg. 1is O(n?).

4. Learning Soft Constraints

This section presents our Step 3. As explained in Sec. 3,
we conduct multitarget tracking by separately solving the
MWIS of each independent subgraph of G, and then link
tracklets of the resulting MWIS’s into distinct tracks. This
procedure can be done online, since every independent sub-
graph, by construction of GG, corresponds only to a pair of
consecutive frames. Thus, after solving the MWIS of inde-
pendent subgraph G'*), we link tracks estimated from pre-
vious frames to tracklets of the MWIS of G(), and thus
progressively keep building longer tracks. It is reasonable
to expect that the accumulated evidence of statistical ap-
pearance, motion, and contextual properties of the targets
will help in associating new object detections to the existing
tracks. Since data association is controlled by the distance
metric, M, and pairwise contextual constraints, B, we seek
to learn these parameters from previously tracked instances,
as explained in the sequel.
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4.1. Distance Metric Learning

From (1), similarity between two object detections (or
the weight associated with a tracklet) is defined as a func-
tion of the Mahalanobis distance, parameterized by matrix
M. We use the well-known large margin nearest neighbor
framework to compute M [21]. M is learned to make de-
tections within the same track become closer to each other
in the feature space than detections from different tracks.
This is formalized as:

M* = argmings [Zi,jETk (zi — 2;)™M(z; — z;)
- Zi'en,j'gn (zir — 2j)"M(zy — 2j)],
®)
where the sums are limited to go over k nearest neighbors
(k = 10). To solve Eq. 8, we use the fast algorithm of [21].

4.2. Pairwise Spatiotemporal Context

We relax the adjacency matrix of GG, B, from binary to
real values, B;; € [0, 1], to account for pairwise spatiotem-
poral relationships between the tracks. Most importantly,
from (4), the relaxation of B does not affect the hard con-
straints, i.e., the solution of (4) remains MWIS, but intro-
duces additional soft constraints. To this end, we make the
assumption that all pairs of objects in the scene have cor-
related motions. As we demonstrate in our experiments,
this additional contextual information improves multitarget
tracking. Below, we explain how to relax B.

We consider two cases. Let i) and j® be a pair of
tracklets that are connected by an edge in the graph G'(*),
(i®,®) € E®. Then, we keep B,; = 1, as before, to
prevent illegal tracks in the MWIS solution. In the second
case, i) and j(* are not connected in G, and thus could
be included in the MWIS solution. We reason that both i(*)
and j*) should not be members of the MWIS if there is no
previous statistical evidence of co-existence of tracks 7;(”
and 7}(t) that are constructed by time ¢, and that end at i®

and j(*), respectively. Intuitively, if 7;(t) and 7;-(t) are corre-
lated up to frame ¢, they are likely to remain correlated from
t to t + 1 if their respective end-tracklets i*) and j(*) are a
good solution. This correlation is estimated, as follows. Let

'ugt) denote the displacement from ¢ to ¢ 4- 1 of the moving

object corresponding to tracklet i(*), and, similarly, 'uj(.t) de-
note the displacement of the moving object corresponding
to tracklet j (t), We estimate the 10-bin histogram, H;;, of

the 60) — Z(v?, o)

v
) Yj
’7;@) and 7}(t) in the video, and compute B;; as

BijZ{

Note that if 'ugt) and 'uj(-t) do not follow a similar motion

) values during the co-occurrence of

1 ,if (1M, 5®) € E,

ey )
1_HU(9§§>) . if (10, j®) ¢ B,

pattern, as estimated by time ¢, then H,; (01(;)) will be close
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to 0. Then, B;; will be close to 1, which practically pre-
vents i and j*) to be in the MWIS solution together.
Conversely, if there is a strong statistical evidence across ¢
frames that 'ugt) and v§t) are correlated, then H;; (91(;)) will
be close to 1. Then, B;; will be close to 0, which allows
both i) and J ®) to be in the MWIS solution. In this way,

we compute B;; for all pairs of tracklets of G @,

5. Handling Long-Term Occlusions

This section presents our Step 4. We extend our method
to iteratively find good tracks under long-term occlusions.
From the initial set of tracks, obtained by the MWIS algo-
rithm, we first form a new graph, where nodes represent
pairs of tracks; weights of nodes represent the average sim-
ilarity between detections of the two corresponding tracks,
given by (1); and edges connect two nodes if the corre-
sponding four tracks share a detection. Then, we find the
MWIS of the new graph. The resulting MWIS contains
longer mergers of the input smaller tracks. In the next it-
eration, we again construct a new graph from all the tracks
present in the previous MWIS solutions, and find the MWIS
of that graph. We also update M and B in each iteration,
as explained in Sec. 4. The iterations are stopped when the
MWIS result does not change.

6. Results

We use five challenging datasets for quantitative evalu-
ation: ETHZ Central [13], TUD Crossing [1], i-Lids AB
[10], UBC Hockey [16], and ETHZ Soccer [3]. Videos in
these datasets are taken with both static and moving cam-
eras. Targets are seen from varying viewpoints, and under
occlusion. Targets also perform different types of move-
ments. In addition, we have compiled our own street-scene
dataset of 10 videos, each 2min long, for our qualitative
evaluation. Our dataset presents a wide range challenges:
cluttered background, occlusion, non static camera, and
change of scale. It also complements the above bench-
marks, because it provides scenes with objects of different
classes, such as bicycles, cars and pedestrians, co-occurring
and interacting in the videos. This dataset is available on
our website.

We use CLEAR MOT [2, 3] metrics for evaluation.
CLEAR MOT consists of: precision—intersection over
union of bounding boxes, and accuracy—composed of false
negative rate, false positive rate, and number of ID switches.

The steps of our approach are evaluated by starting from
a default variant, and then varying one module at a time.
The default variant uses the part-based object detector of
[7], and LMNN approach of [21] for distance metric learn-
ing. Evaluation is conducted on the aforementioned five
datasets, and average results are reported in Table 1. Specif-
ically, we run the following four types of experiments.
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Dataset Prec. Accur. l;;*xel;e I;zt:e S“I/Ii?ch "E?r?e Dataset Prec. Accur. ];?;: ];;2:? szlli)tch
Default  69.0%  81.12% 15.5% 1.88% 1.2 445 Central 720% 74.2% 21.7% 0.7 % 0
Exp l.a 67.2% 79.2% 18.23% 1.71% 1.5 41.1s Central[3] 70.0% 72.9% 26.8% 0.3% 0
Exp 1.b 66.4% 78.54% 19.45% 2.04% 1.5 39.2s Central[13] 66.0% 33.8% 51.3% 14.7% 5
Exp2.a 64.1% 76.35% 22.8% 4.21% 34 32.8s Hockey 60.0% 79.7% 19.5% 1.1% 0
Exp2.b 67.9% 79.7% 17.71% 2.65% 1.5 40.6 s Hockey[3] 57.0% 76.5% 22.3% 1.2% 0
Exp3a  682%  80.3% 182% 1.95% 12 I78s Hockey[16]  51.0%  67.8%  31.3% 0.0% 11
Exp3.b 67.9% 79.7% 19.6% 2.15% 1.5 56.2's i-Lids 70.0% 78.6% 19.4% 1.5% 1
Exp3.c 66.4% 78.24% 20.45% 2.65% 2.1 445 s i-Lids[3] 66.0% 76.0% 22.0% 2.0% 2
Exp 4 54.0% 68.27% 26.4% 6.78% 10.8 346 i-Lids[10] - 68.4% 29.0% 13.7% -
i-Lids[22] - 55.3% 37.0% 22.8% -
Table 1. Average CLEAR MOT [2] results on 5 datasets for evalu- Crossing 73.0% 85.9% 10.8% 12% 2
ating the steps of our approach. Crossing[3]  71.0%  843%  14.1% 1.4% 2
Soccer 70.0% 87.2% 6.1% 4.9% 3
Soccer[3] 67.0% 85.7% 7.9% 6.2% 4

Exp 1: We test the influence of input object detection on
performance, by replacing the default part-based detector
[7] with the ISM detector [12] (Exp 1.a), and with the HOG
detector [5] (Exp 1.b). Table 1 shows the tradeoff between
speed and accuracy, where the part-based detector [7] takes
longer times, but leads to better tracking performance, on
average. Exp 2: We evaluate different methods to com-
pute the distance between detected bounding boxes. In ad-
dition to the default LMNN approach [21], we also use the
simple Euclidean metric where the distance matrix is equal
to the identity matrix (Exp 2.a), and also the linear case
where the distance matrix is diagonal (Exp 2.b). As can
be seen, without distance learning in the case of Exp 2.a,
our approach runs faster, but performance significantly de-
creases, as compared to the default variant. Exp 3: Our
MWIS algorithm is compared to the maximum weighted
clique (MWC) approach of [18] (Exp 3.a), and the iterated
tabu search (ITS) of [17] (Exp 3.b). As can be seen, all
three methods provide similar average performances. How-
ever, our approach is faster. This is because MWC trans-
forms our sparse original graph into highly connected com-
plement graph, which increases complexity. Also, ITS tries
to maximize the objective function while eliminating one
constraint at a time, whereas we simultaneously consider
all constraints, and thus the convergence rate of ITS. For
Exp 3.c, we only use the binary version of matrix B. From
Table 1, accounting for context improves our tracking re-
sults. Exp 4: We test the influence of our Step 4, i.e.,
merging smaller into large tracks to overcome long-term oc-
clusions. Table 1(Exp 4) shows that ID switches decrease
dramatically. This demonstrates that most tracks have been
merged correctly, and that the system has recovered from
occlusions and missed detections.

We use the following three competing approaches and
datasets for comparison: (i) Coupled detection and tra-
jectory estimation of [13] on ETH Central with provided
ground-truth trajectories; (ii) Boosted particle filter of [16]
on UBC Hockey; and (iii) Hierarchical data association of
[10] on i-Lids. For comparison, we employ the same object
detectors as the competing approaches. Specifically, ISM
object detector [12] is used for ETH Central, TUD cross-
ing, and UBC Hockey, and the HOG detector [5] is applied
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Table 2. CLEAR MOT [2] results on 5 datasets. Our results are in
the top row for each dataset (in bold).

to i-Lids and Soccer. The detectors are implemented in
their generic, publicly available, pre-trained versions, i.e.,
they are not specifically trained for any test sequence, un-
like [16]. We use only 2D visual cues, and do not assume
any prior knowledge about the video contents, such as, e.g.,
ground plane, camera calibration, or entry/exit zones, used
in [13, 10]. The comparison results are reported in Table 6.
As can be seen, our multitarget tracking has high precision
and accuracy. Errors occur when a target person is: (i) very
close to other targets in the ETH Central, TUD Crossing
sequences; (ii) sitting in the ETH Central videos; or (iii)
partially out of the field of view in the i-Lids videos. ID
switches in i-Lids happen mainly when a target person is
occluded for a long time (e.g., by a pillar), and a new track
is initialized for the person’s reappearance. For sports se-
quences, ID switches are more often, because players in the
videos have very similar appearance and motion properties.
From Table 6, we outperform the competing approaches on
all datasets.

For qualitative evaluation, we use three datasets: TUD
Crossing, ETH moving vehicle [6], and our own dataset.
Also, in all qualitative evaluations described below, we ap-
ply the part-based object detector of [7]. Fig. 3 shows our
results at different steps of our approach, on a sequence
from TUD Crossing. The top row shows object detection
responses. The middle row shows our tracking results be-
fore Step 4. The bottom row presents the tracking results
after our Step 4. As can be seen, after Steps 1-3, many
tracks are cut short, due to missed detections, or occlusion
from the blue person crossing in the opposite direction. The
bottom row shows that we recover from these errors after
Step 4. Next, Fig. 4 shows in the top row a sequence from
the ETH moving vehicle dataset and object detection re-
sponses, and in the bottom row our final results. As can
be seen, our approach performs well under camera motion,
and addresses well relatively large scale changes of pedes-
trians. Finally, Fig. 5 shows our tracking results on a se-
quence from our street-scene dataset. We apply the part-
based detector of [7] to detect pedestrians, bicycles and cars
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Frame 1 Frame 24 Frame 50 Frame 70 Frame 98 Frame 12
Figure 3. Qualitative results on a TUD Crossing sequence that contains the occluswn from the blue pedestrlan (occluder detected in the

red box) crossing in the opposite direction from the crowd. The top row shows responses of the part-based object detector of [7]. The
middle row shows our tracking results before Step 4, and the bottom row, after Step 4. We see that Step 4 corrects tracking errors due to
the long-term occlusion.

Frame 224 Frame 230 Frame 243 Frame 263 Frame 278 Frame 286
Figure 4. Qualitative results on a sequence from the ETH moving vehicle dataset. The top row shows object detection responses of [7], and

the bottom row shows that we can handle occlusion, moving camera and change of scale.

. Frame 1165 Frame 1173 Frame 1177 . Frame 1187 Frame 1210
Figure 5. Qualitative results on a sequence of our dataset. Car, bike and pedestrian detections are put in the same bag of detections. We are

able to track different objects simultaneously under occlusion.

in the same video. All detection responses of cars, bikes, 7. Conclusion
and pedestrians are put in the same bag of detections. Fig. 5
shows that despite occlusion, our system is still able to track

; s i o ’ We have presented a tracking-by-detection approach,
different objects simultaneously. Our qualitative evaluation

. . . ) where associating object detections with tracks is formu-
on 10 videos demonstrates that capturing spatiotemporal in- lated as finding the MWIS of a graph of tracklets. A new
teractions between objects of different classes helps track- MWIS algorithm, and its theoretical analysis have been pre-
ing each object. sented. The MWIS formulation is capable of explicitly en-
coding both soft and hard spatiotemporal interactions be-
tween objects in a unified manner. Our main contributions
include: generalizing bipartite one-to-one matching, used
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in prior work for multitarget tracking, to a more powerful
framework, that of MWIS; and accounting for long-term
motion correlations among the tracks. We outperform com-
peting approaches on challenging benchmarks, in terms of
the CLEAR MOT metrics.

Appendix

This section presents a theoretical analysis of Alg. 1.

Theorem 1 The objective function of Eq. (5) does not decrease
under the dynamic defined by Eq. (7).

Proof : We prove that when ; is computed as in Eq. (7), we have
>, wih; > 0. Define x; = o(y;). From the definition of h; (see

Sec. 3.2), we have h; = h; ((1 —x)Yi — 2, Bijijj). It fol-

lows Zl wihi: ZZ wlﬁhz ((1—3}1')91'— Zj Bijz'/jl‘j) :uTAy,
where u; = w;h;, and the auxiliary matrix A has the following
elements: A;;=1—uz;, if 1=3, else, A;;=—x;, if (i,j)€FE, and
A;=0, otherwise. Thus, by computing y=A"u, as in Eq. (7),
we obtain ), wih; = uTAAT™u > 0. O

Corollary 1 Strict inequality i w,hl > 0 cannot be achieved,
since AAT is not positive definite.

Proof : We prove that AAT is not positive definite. The MWIS
contains at least one node, e.g., x; = 1. It follows, Vj € V,
(i,7) € E, x; = 0. Then, all the elements of ith row of A are
zero, i.e., A does not have the full rank. Consequently, at least one
of the eigenvalues of AAT is zero. [

Theorem 2 Alg. I converges to a local maximum.

Proof : Since Vi, x; = o(y;) : R — [0, 1], it follows Vi, h; :
R — [0, 1]. Consequently, >, w;h; < w"1 where 1 is the vector
of 1’s. Since 3, w;h; always increases (see Th.1) and 3°, w;h;
is upper bounded, Alg. 1 converges. The algorithm stops when the

gradient Hy<f>

=0, i.e., in a local maximum. [J
2
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