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Abstract

This paper is about detecting and segmenting inter-
related events which occur in challenging videos with mo-
tion blur, occlusions, dynamic backgrounds, and missing
observations. We argue that holistic reasoning about time
intervals of events, and their temporal constraints is critical
in such domains to overcome the noise inherent to low-level
video representations. For this purpose, our first contribu-
tion is the formulation of probabilistic event logic (PEL)
for representing temporal constraints among events. A PEL
knowledge base consists of confidence-weighted formulas
from a temporal event logic, and specifies a joint distribu-
tion over the occurrence time intervals of all events. Our
second contribution is a MAP inference algorithm for PEL
that addresses the scalability issue of reasoning about an
enormous number of time intervals and their constraints in
a typical video. Specifically, our algorithm leverages the
spanning-interval data structure for compactly represent-
ing and manipulating entire sets of time intervals without
enumerating them. Our experiments on interpreting basket-
ball videos show that PEL inference is able to jointly detect
events and identify their time intervals, based on noisy input
from primitive-event detectors.

1. Introduction

We study modeling and recognition of multiple video
events that are inter-related in various ways. Such events
arise in many applications, including sports video, where
several players perform coordinated actions, like running,
catching, and passing to achieve a goal. Recognizing such
events under occlusion and amidst dynamic, cluttered back-
ground is challenging. We address these uncertainties by:
(I) Jointly modeling events in terms of time intervals that
they occupy in the video, and their spatiotemporal relation-
ships; and (II) Resorting to domain knowledge that can pro-
vide useful soft and hard constraints among the events, and
thus help reduce ambiguities in recognition.

Given a video, we use domain knowledge and observa-
tions to: (1) recognize every event occurrence, (2) localize
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the time intervals that they occupy; and (3) explain their
recognition in terms of the identified spatiotemporal rela-
tionships and semantic constraints from domain knowledge.

To address (1)-(3), we introduce probabilistic event
logic (PEL). PEL uses weighted logic formulas to repre-
sent arbitrary probabilistic constraints among time inter-
vals. This generalizes much prior work that constrains time
points, rather than intervals. PEL’s logic-based nature fa-
cilitates injection of human prior knowledge. Further, PEL
avoids the brittleness of pure logic by associating weights
with formulas that represent the cost of formula violations.
Thus, a video interpretation that violates a formula becomes
less probable, but not impossible, as in pure logic.

To address the scalability issue of reasoning about all
time intervals of a video, we develop a new MAP inference
algorithm for PEL. PEL inference leverages the spanning-
interval data structure for compactly representing and effi-
ciently manipulating entire sets of time intervals. Accord-
ingly, our algorithm’s time and space complexity does not
necessarily grow with the length of a video, but rather with
the much smaller number of spanning intervals.

Motivation. It is worth considering how the state-of-the-art
methods — specifically, graphical-modeling based meth-
ods, such as MRFs or CRFs, suited for holistic reasoning
about events and their temporal context — could be used
to realize our goals (1)—(3). They would, first, need to
partition the video into atomic time intervals (e.g., by us-
ing spatiotemporal segmentation, or scanning windows of
primitive-event detectors), and, then, associate random vari-
ables with each of the quadratically many pairs of time in-
tervals. The variables would serve to encode observations
(e.g., noisy primitive event detections) and hidden informa-
tion (e.g., more abstract events) about those intervals, as
well as relationships between the intervals. Standard in-
ference mechanisms, such as belief propagation or MCMC,
could then be used to assign values to the variables, yielding
a holistic video interpretation in terms of (1)—(3). Unfortu-
nately, such a hypothetical approach is intractable for real-
istic videos, due to an enormous number of variables and
constraints that a graphical model would contain. Another
issue is that it would produce poor event localization results.
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Figure 1. An overview of our approach in the context of 2-on-2 basketball games: We use a tracker to obtain spatiotemporal tubes of the
four players, the ball, and the rim. Then, we apply a scanning-window detector to each tube to localize the time intervals of primitive
events. These noisy detections are combined with the PEL knowledge base (KB). A MAP inference is applied to produce a holistic video
interpretation, which specifies the occurrence intervals of all observable and hidden events.

This would be particularly pronounced for more abstract
events. Suppose, for example, a basketball player is just
standing during the game, and the goal is to identify when
the player is on offense. The event on offense may happen
arbitrarily at any subinterval of standing, because it is re-
lated to the activities of the other players. Since there is no
low-level segmenter, or primitive-event detector that would
be able to identify this subinterval, the localization error of
the event on offense would inherently be large. One could
try to heuristically partition the video into even smaller time
intervals than those initially provided; however, this would
lead to the aforementioned tractability issues. Alternatively,
one could begin with a small set of (e.g., most salient) in-
tervals, and then incrementally add intervals to the model
during inference. While such an approach is potentially vi-
able, we offer a more direct approach that avoids pre- and
post-processing of the intervals altogether, and gains effi-
ciency by reasoning about entire blocks of intervals.

Overview. Fig. 1 shows an overview of our approach.
PEL inference begins with noisy detectors that attempt to
localize time intervals occupied by primitive events. These
detections are combined with the PEL domain knowledge,
including hard and soft constraints, to produce a MAP video
interpretation in terms of the occurrence intervals for all ob-
servable and hidden events of interest.

2. Prior Work and Our Contributions

Spatiotemporal constraints among a set of events can be
represented by: dynamic Bayesian networks [21]; context-
free grammars [8, 11, 7]; AND-OR grammars [3, 6]; and
conditional random fields [14, 13]. These approaches typ-
ically encode only pairwise event constraints. Our novelty
is in formulating a distributed system of event definitions in
terms of pairwise and higher-order probabilistic constraints,
which jointly define each event. Also, these approaches typ-
ically take time points as primitives of their models. Specif-
ically, they usually partition the video into time instances,
and make the assumption that the Markovian independence
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holds between these time instances. Thus, they do not ex-
plicitly model event intervals, but derive them from a set
of points in time. This is in light of the well-established
understanding that many types of events are fundamentally
interval-based, and are not accurately modeled in terms of
time points [1]. By contrast, our PEL allows for explicit
modeling of intervals. It specifies probabilistic constraints
on properties of, and relationships among time intervals that
must be satisfied by a complex system of interrelated events.

A set of inter-related events can also be modeled by com-
bining atemporal logics with grammars and graphical mod-
els [12, 15, 17, 18, 16, 20], such as, e.g., Markov Logic
Networks [20] and penalty logic [4]. However, they do not
address the aforementioned limitations, because their first-
order objects are time points, instead of continuous inter-
vals. Direct extensions of these approaches to an interval-
based notion of time encounters tractability issues.

The advantages of representing events by an interval-
based logic have been demonstrated in [19, 5]. However,
interval-based logic has been used exclusively to specify
events in terms of subevents, and does not have a probabilis-
tic mechanism for addressing uncertainty. Our PEL gener-
alizes this work by: (i) allowing arbitrary constraints among
constituent and non-constituent events, and (ii) defining a
probabilistic semantics, and conducting a probabilistic in-
ference over weighted logic formulas.

3. Syntax and Semantics of PEL

We first review pure event logic, and then extend to PEL.

3.1. Event Logic

Event logic (EL) was introduced by Siskind [19] for
defining interval-based events. Its syntax defines: event
symbols, interpretations, and formulas, as explained below.

Event Symbols. An event symbol is a character string
that gives a name to an event of interest. Event symbols may
have arguments, e.g., Running(P1) is the event that player
P1 is running. PEL distinguishes between observable (de-
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tected) events, and hidden events, similar to observed and
hidden variables in generative models. Event symbols for
observable events will have a prefix of “D-", for “detected”,
e.g., D-Shooting(P2). Each observable event, also called
primitive event, has a corresponding hidden event, e.g.,
Shooting(P2). Not all hidden events have the correspond-
ing observed events, e.g., the event on Offense(P3). We
wish to infer all hidden events from (noisy) detected events.

Interpretations. Truth values are assigned to event oc-
currences, which have the form E@QI, for event symbol
E and time interval I = [a,b], where a and b are pos-
itive integers such that a < b. Asserting that FQJ is
true means that an instance of E occurred precisely over
interval I. An interpretation over a set of event sym-
bols, is a set of event occurrences involving those symbols
that contains all of the true event occurrences, and no oth-
ers. We will denote an interpretation by (X,Y’), where
X is the set of observable event occurrences, and Y is
the set of hidden event occurrences. In our basketball do-
main, X will be composed of detected event occurrences,
e.g. D-Dribbling(P3)@[10, 30], and Y will be composed
of hidden event occurrences, such as Defense(P3)@[20, 30]
which we must infer based on the noisy information in X.
There can be exponentially many valid interpretations for
any given X, and our goal is to infer the best one.

Formulas. EL uses formulas to specify constraints on
interpretations in terms of static and dynamic properties of
time intervals, by relating the intervals via the seven Allen
relations [1]: co-occur (=), strictly before (<), meet (m),
overlap (o), start (s), finish (f), and during (d). For example,
the interval [2, 3] is before [5, 6], meets [4, 5], overlaps [3, 4],
starts [2, 4], finishes [1, 3], and is during [1, 4]. We also use
inverses of relations, e.g., “mi” is inverse meets. We recur-
sively define EL formulas as follows. A formula is either an
event symbol £ (a primitive formula), or one of the com-
pound expressions —@, ¢V @', ¢ A, ¢, or &, where ¢ and
¢’ are formulas, and r is one of the Allen relations (we will
commonly use the shorthand ¢ — ¢’ for =¢ V ¢').

The semantics of formulas are specified by defining
when a given formula ¢ is satisfied (true) along an interval
I of an interpretation (X,Y), denoted by (X,Y) = ¢QI.
The = relation can be defined recursively as follows: for
a primitive formula E, EQI is satisfied if it is in (X,Y);
—¢QIJ is satisfied if p@I is not satisfied; ¢ V ¢’ QI is sat-
isfied if either ¢@QI or ¢'@QI are satisfied; ¢ A, ¢’ @I is
satisfied if ¢ and ¢’ are true along some intervals I; and
I that are related by r and span [I; and finally {,.¢@I is
true if ¢ is true along an interval I’ that is related to I by
r. Later, it will be useful to consider the set of all inter-
vals in which ¢ is true in (X,Y"), which we will denote at
SAT((X,Y),¢) = {I | (X.Y) | 6@I}.

Intuitively, by combining —, V, and primitive events it is
possible to specify arbitrary constraints that must hold over
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an interval 1. For example, the formula Dribbling(p) —
HasBall(p) is true of intervals where if p is dribbling
then they are also identified as having the ball. The
A, operator allows for specifying temporal constraints be-
tween intervals. For example, the formula PassTo(p, ¢) —
(Pass(p) A, BallMoving A,,, Catch(q)), is true of an inter-
val if when the passing event occurs there is a meeting se-
quence of events starting with the pass, the ball moving,
and ending with a catch. This specifies a necessary condi-
tion for PassTo. Finally, the ¢, operator allows for spec-
ifying constraints on intervals related to a given interval
I. For example, the formula, [HasBall(p) AJumping(p)] —
Omi["HasBall(p)VJumping(p)] encodes that a player can-
not jump with the ball and then land with the ball.

Note that by including a formula in an EL KB, we in-
dicate that any valid interpretation must satisfy the formula
along all of its intervals, otherwise the interpretation is ruled
out as invalid. This can be quite brittle, since even the small-
est violation of a constraint renders an interpretation invalid.
Below, we explain how PEL addresses this limitation.

3.2. Probabilistic Event Logic

A PEL knowledge base (KB) is a set of weighted event-
logic formulas: ¥ = {(¢1, w1), - .., (¢n, wy)}, Where w; is
a non-negative numeric weight associated with formula ¢;,
representing a cost of violating ¢; over an interval, relative
to all other formulas in KB. Note that formulas with large
weights relative to others will behave as hard constraints. 3
assigns a score, S, to any interpretation (X,Y)

S((X7Y)7E) = Zi ws - |SAT((X7 Y)7¢i)|’ (1)

where |SAT((X,Y),¢)| is the number of intervals in
(X,Y) satisfied by ¢.

Given S, we specify the posterior of the hidden part of
interpretations as Pr(Y | X, X)xexp (S((X,Y), X)). Since
S can be viewed as a weighted sum of features of (X,Y)
(one feature per formula), this model is a log-linear prob-
ability model, analogous to CRF. Our model can be used
to answer arbitrary probabilistic queries about the hid-
den events in an interpretation. We here focus on solv-
ing the MAP inference problem for PEL, i.e., computing
MAP(X,Y) = argmaxy S((X,Y),X).

Given a PEL KB and a MAP inference procedure, we
compute an interpretation for a video, V', as follows. First,
we run a set of event detectors on V, as described in Sec. 6.
This produces a set of observed event occurrences X =
{D-E,QI,...,D-E;QI;} where the detector asserts that
observable events D-FE; occurred at each interval I;. For
example, in basketball, the detector might produce event
occurrence D-Catching(P1)@[1,10]. Note that it is not nec-
essarily the case that, in reality, the player 1 catches the ball
in interval [1,10]. Rather, this provides evidence, and the
actual act of catching must be inferred.
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4. PEL Inference

We consider efficiently computing S((X,Y),¥) and
MAP inference. This could be solved by compiling a PEL
KB into an equivalent graphical model (e.g., as is done
for Markov Logic Networks), and applying existing infer-
ence algorithms. However, such compilations would re-
quire introducing a distinct variable for every event occur-
rence FQJ, where [ is any subinterval of a video’s time
interval [1, 7], resulting in O(T?) variables. Instead, we
develop a new inference algorithm, directly for PEL.

Spanning Intervals. We avoid enumerating over the
O(T?) time intervals via the use of spanning intervals (SI).
SIs were introduced by Siskind [19], but have not yet been
exploited for probabilistic inference, which is a key contri-
bution of our work. An SI is denoted by [[a, b], [c, d]], where
a, b, ¢, d are non-negative integers, and is used to represent
the set of intervals that begin somewhere in [a, b], and end
somewhere in [c, d]. That is, [[a, b], [c, d]] represents the set
{lp,q] | p € [a,b],q € [e,d],p < q}. Note that the SI of a
temporally disjoint set of intervals is a union of Sls.

We use an SI to compactly represent the set of all event
occurrences where the corresponding event formula is sat-
isfied. Specifically, given an SI, S, we write EQS to denote
the set of all event occurrences, EQI, where I € S. In this
way, we can compactly represent interpretations by specify-
ing all event occurrences in terms of SIs, which can provide
quadratic space savings.

Our inference performs set operations over Sls to iden-
tify time intervals where the event formulas of the PEL KB
are true. Computing set operations over Sls is very efficient.
For example, the intersection of two SIs is easily computed
in O(l) time as: [[al,blL [Cl,dl]] n [[ag,bg], [Cg,dg]] =
[[max(ay, az), min(by, ba)], [max(c1, cz), min(dy, ds)]]-
Importantly, the complexity of these operations does not
depend on the temporal extent of the intervals, but rather
only on the much smaller number of Sls.

Computing Scores.  Equation (1) shows that to
efficiently compute S we must efficiently compute
ISAT((X,Y),)|. To this end, we compute an SI repre-
sentation of SAT((X,Y"), ¢), and then find the number of
its intervals |[SAT((X,Y), ®)|. In particular, we compute
SAT((X,Y), ¢) by recursion, as follows. If ¢ is a primitive
formula E, then SAT returns the SIs associated with E in
(X,Y). For SAT of —¢, we compute SlIs for ¢, and then
apply the ST complement operator. The SAT of ¢ V ¢’ is
the union of the SIs of ¢ and ¢’. For SAT of {,.¢, we first
compute the SIs for ¢, and then apply the SI operator for
the appropriate Allen relation r. For example, if ¢ is sat-
isfied along S = [[a,b],[c,d]] and r = m (i.e. “meets”),
then we would get [[1,7T],[a — 1,b — 1]], giving the set of
all intervals that meet an interval in S. The complexity of
SAT depends on the size of the SI representation of (X,Y)
and ¢. In the worst case, the SI representation can grow
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exponentially large in the nesting depth of ¢. In practice,
we observe that the SI representations remain vanishingly
small compared to O(T?).

MAP Inference. To conduct inference, for convenience,
we compile a PEL KB to an equivalent PEL conjunctive
normal form (PEL-CNF), where the equivalence holds with
respect to the MAP inference result. To this end, we re-
write the weighed formulas of a PEL KB as clauses, i.e.,
disjunctions of literals: E, O,.E, E A, E’, and their nega-
tions. The following definition and theorem formally state
that this compilation can be done efficiently.

Definition. Given a set of event symbols £, two PEL KBs
3 and X’ are MAP equivalent with respect to £ iff for all
sets of observed events X, MAP(X,Y) and MAP(X,>)
agree on all occurrences of event symbols from €.
Theorem. Given any PEL KB ¥ over event symbols &, there
is a MAP equivalent PEL-CNF KB X' with respect to &,
which can be computed in time linear in the size of 3.
Proof:(Sketch) For any EL formula ¢ one can create a
new event symbol E; and set of clauses Cy such that if
the clauses are all satisfied then ¢@QI is true iff F,QI is
true. This tool allows replacing non-clausal structure with
weighted clauses, where the C; clauses are assigned “large
enough” weights to act as hard constraints.[

MAP for PEL is NP-hard since it can easily encode 3-
SAT. Thus, we consider an approximate MAP approach
based on stochastic local search (SLS). Our PEL-SLS (Fig-
ure 2) algorithm takes as input a PEL-CNF KB, 3, obser-
vations, X, and a noise parameter, p. The output is a set of
hidden event occurrences, Y, such that the interpretation,
(X,Y), is high scoring, ideally the MAP solution. Start-
ing with an empty set Yj the algorithm produces a sequence
Y1, Y5, ... for a desired number of iterations, and returns the
highest scoring Y;. On each iteration, Y is produced from
Y., as follows. First, the algorithm computes the set of for-
mulas in 3 that are violated somewhere in the current inter-
pretation (X,Y;), and randomly selects one such formula
¢. Next the algorithm selects a random SI, S, over which
¢ is violated in (X,Y;). The key idea is to then identify
changes to Y; so that ¢ is satisfied along all intervals in S.
This is accomplished by the MOVES function (see below)
which returns a set of such alterations to Y;. Usually Y;
is set to the move that achieves the highest score, but with
probability p, it is a random move to avoid local maxima.

It remains to describe the MOVES function. The moves
for oV ¢' is MOVE(¢, S, (X,Y;)) UMOVE(¢', S, (X, Y;))
since any valid move for ¢ or ¢’ will satisfy the disjunction.
Since clauses are just disjunctions of literals, it remains to
define moves for each possible form of literal. A primitive
literal F, produces a single move that adds £QS to Y;, not-
ing that SI set operations are used to combine E@QS with the
occurrences of E already in Y;. The literal - E also yields
a single move that uses SI operations to delete EQS from
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PEL-SLS
/I PEL-CNF KB: ¥ = {(¢1,w1), . ..
// Observations: X
// Noise Parameter: 0 < p < 1
Yo + 0;i=0;
repeat for desired iterations,
® = {65 | SAT((X,Y:),~¢;) # 0,5 = 1,....,n}
¢ + RandomElement(®)
S < RandomElement (SAT((X, Y;), =¢))
Y={y® . vk} =MOVES(s,S, (X,Y;))
if flip(1-p) then Y; 1 < argmaxycy S((X,Y), %)
else Y; 11 < RandomElement()))
i i+1

) (¢n7w7l)}

return Highest scoring Y;

Figure 2. PEL Stochastic Local Search

Y;. The moves for the literal {,.FE correspond to adding
EQS’ to Y; for some SI, S/, such that for each I € S there
is an r-related I’ € S’. There are typically many possi-
ble choices for S/, and the choice of which one to select is
largely heuristic, while guaranteeing completeness via ap-
propriate randomization. As an example, consider 1 = m
and S = [[a, b], [¢, d]]. One choice for S’ is all possible in-
tervals that meet an interval in S, i.e. [[1,7],[a — 1,0 — 1]].
Our implemented system generates a number of possibili-
ties, and returns one randomly as the move. Handling the
other literals follows a similar pattern, and is not covered
here for space reasons. All of our MOVE operators work
directly on Sls avoiding the O(T?) enumeration problem.

5. Learning PEL Formula Weights

This section presents an algorithm for learning the
weights of a set of EL formulas {¢1, ..., ¢, } using a train-
ing set of interpretations D = {(X;,Y;)}. Each training
example is derived from a video, where the X; are the ob-
served event occurrences based on detectors, and the Y; are
the ground truth hidden event occurrences, provided by a
human labeler. The goal is to learn weights, resulting in a
PEL knowledge base ¥ = {(¢1,w1), ..., (¢n,wn)}, such
that MAP(X;, ) is (approximately) equal to Y;, Vi.

We use the PEL-SLS algorithm to approximate the MAP
inference during learning. Specifically, we use a variant of
Collins’ generalized Perceptron algorithm [2]. The main
requirement of the algorithm is that the scoring function
which evaluates examples (i.e., interpretations) be repre-
sentable as a linear combination of n features. From (1),
this requirement can be met by defining a feature, f;, for
each formula as f;((X,Y)) = [SAT((X,Y), ¢;)|. Start-
ing with all zero weights, the algorithm iterates through
the training interpretations, and for each (X;,Y;) uses the
current weights to compute the current MAP estimate Y,
based on X;. If Y = Y then there is no weight update,
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otherwise the weights are adjusted to reduce the score of
(X;,Y), and to increase the score of the correct interpre-
tation (X;,Y;). In particular, for each weight w; the up-
dateis w; < w; +a- (f;((X;,Y3)) — f;((X3,Y))), where
0 < a < 1is a learning rate. Unlike Collin’s algorithm,
if the update produces a negative weight, we set it to zero.
This variant of the Perceptron algorithm preserves the main
convergence property of the original algorithm [4].

6. Detection of Primitive Events

This section describes the tracker and detector we use for
detecting primitive events and their time intervals.

Tracking: Given a video of a 2-on-2 basketball game,
the goal of tracking is to extract spatiotemporal tubes of
the four players, the ball, and the rim. This is challenging,
because the uncertainty about the targets may arise from
a multitude of sources, including: changes in the players’
scales, occlusions over relatively long time intervals, and
dynamic, cluttered backgrounds. The state of the art poorly
performs in the face of these challenges [22]. Therefore, we
have implemented a semi-supervised tracking system based
on the template matching approach of [9]. Tracking of [9] is
interactively corrected by the user. First, the user delineates
a bounding box around the target. Then, the target is auto-
matically tracked by convolving the target’s template with
every video frame. The convolution output is expected to
be highest at places where the object occurs. The template
is updated at each frame by the best match found in the pre-
vious frame. On average, the user has to correct about 10
frames per minute of the video. The user edits include re-
positioning of the bounding box to the right location, and
correcting the ID label of the bounding box.

Detection of Primitive Events: We scan each extracted
tube with windows of different lengths (30:30:300 frames,
shifted by 5 frames), to detect primitive events and local-
ize their time intervals. We use the popular Bag-of-Words
detector [10]. Specifically, from a tube’s window, we ex-
tract 2D+t Harris corners [10], and describe them by the his-
togram of gradients (HoG) and the histogram of flow (HoF).
Then, we map these descriptors to a codebook of visual
words, and classify the resulting histogram of codewords
by a linear SVM. The codebook is obtained by K-means
clustering of all descriptors from the training set (K=300).

7. Results

For evaluation, we use two datasets. The first is our
dataset of actual (not staged) 2-on-2 basketball games (see
Fig. 5). The basketball dataset is suitable for evaluating de-
tection and localization of multiple events characterized by
rich spatiotemporal constraints. The videos show a real-
world setting with the following challenges: camera mo-
tion, changes in the player’s scale, motion blur of fast ac-
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Events Number of Intervals Number of Frames
Groundtruth Detection Groundtruth Detection
train test results train test results

Dribbling 50 24 18 6067 2773 2177
Jumping 86 46 33 3053 1393 976
Shooting 39 20 16 1029 494 264

Passing 72 36 38 2153 1032 1104

Catching 64 30 20 672 334 228
Bouncing 85 38 34 10380 | 3788 3396
NearRim 46 24 28 5067 2468 2618
BallTrajectory 62 41 27 2412 1280 842
Defense 244 108 114 17342 5346 5989
Offense 300 116 104 12123 4834 4332
HasBall 289 109 71 2604 1280 842

Table 1. The total number of frames and time intervals occupied
by the 8 primitive events and 3 higher-level events in our basket-
ball dataset. The top 5 primitive events and 3 higher-level events
are performed by the 4 players. The remaining bottom 3 primitive
events are associated with the ball. Note that all 4 players and the
ball cannot be seen all the time. Also, the event defense can be as-
sociated with the players who do not perform any of the primitive
events from the list (e.g., when they simply stand). The detection
results are obtained by PEL inference on the test sequences.

tions, frequent inter-player occlusions, varying illumina-
tion. The four players, ball, and rim are tracked and labeled
in the training and test sets with 8 primitive events, and 3
higher-level (hidden) event, listed in Tab. 1. Frames that do
not contain the events from Tab. 1 have been removed from
the videos. We plan to extend annotations of our basketball
dataset and make them public.

The second dataset contains 50 YouTube videos for each
of 16 classes of Olympic sports [13]. Each event is per-
formed only by a single subject, and represents only a se-
quence of primitive actions in a meet relationship (e.g.,
long-jump consists of standing still, followed by running,
Jjumping, landing, and standing up).

PEL formulas are specified based on our domain knowl-
edge of basketball and Olympic sports. The formula
weights are learned on training examples. We use the fol-
lowing evaluation metrics: (a) segmentation accuracy as the
ratio of intersection and union of inferred and ground-truth
time intervals of events, (b) detection error, where true posi-
tives are detected events with segmentation accuracy greater
than 50%, and (c) accuracy defined as the total number of
true positives and true negatives divided by the total number
of event instances.

Testing on synthetic data. We design a controlled set-
ting for evaluating different aspects of PEL inference. The
ground-truth annotations of the 8 primitive events occur-
ring in the test set of the basketball dataset are corrupted
by four different types of noise. Then, these noisy annota-
tions are input to PEL inference, as if they were obtained
by running realistic detectors of the primitive events. In
Fig. 3a, we start from the ground-truth time intervals, and
randomly add an increasing number of new intervals of bo-
gus primitive events (false positives). In Fig. 3b, we start
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from the ground-truth time intervals, and randomly remove
an increasing number of them (false negatives). In Fig. 3c,
we randomly change the duration of ground-truth intervals,
but do not change their labels. Note that Figs. 3a-c simu-
late realistic noise in tracking, where some tracks might be
wrongly split (or merged) into subtracks (or larger tracks),
some parts of the tracks might be missing, and the track
ID’s might be wrongly switched. As can be seen, PEL in-
ference gracefully degrades as tracking noise increases, due
to the joint reasoning over multiple constraints in the PEL
KB. This suggests that we can handle imperfect tracking. In
this paper, we use a semi-supervised tracker to focus on a
number of other contributions. We do not completely ignore
the vision problem, as we work with noisy detectors and in-
tervals. The experiment in Fig 3d differs from the previous
cases, since we use as input to PEL inference real responses
of the detector of Sec. 6, but we gradually remove an in-
creasing number of Type 2 and Type 3 PEL formulas from
the PEL KB (see Appendix). Fig 3d shows that the PEL
interpretation score decreases, since it depends on the num-
ber, and type of formulas in the KB. As can be seen, PEL in-
ference gracefully degrades as domain knowledge becomes
scarce.

Quantitative results — Basketball: Tab. 1 presents the de-
tection results obtained by PEL inference on the basketball
test sequences. Fig 4 shows two confusion matrices—one
contains results of the primitive detector, and the other con-
tains detection results after PEL inference. We can see that
PEL inference improves the detector’s noisy results.
Quantitative results — Olympic sports: Table 7 compares
our average video classification accuracy with that of [13].
We treat the Olympic sports classes as higher-level, hid-
den events in the PEL KB. We specify as primitive events,
simple short-term actions, such as walk, Run, jump, bend,
throw, stand-up, etc. Since the events are performed by a
single athlete, we do not use the tracker, but directly apply
the detector, described in Sec. 6, to detect these primitive
events. The detector is trained on 10 short sequences for
each primitive event taken from the dataset. The formulas
in the PEL KB corresponding to the 16 higher-level events
(e.g., long jump) are specified as a meet sequence of the
primitives events. Table 7 shows that we outperform the
state of the art [13].

8. Conclusion

We have formulated probabilistic event logic (PEL),
which uses weighted event-logic formulas to represent arbi-
trary probabilistic constraints among events in terms of time
intervals. An efficient MAP inference for PEL has been pre-
sented for detecting and localizing all event occurrences in
anew video. The inference algorithm directly operates over
special data structures, called spanning intervals. The com-
plexity of these operations does not depend on the extent of
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Figure 5. An example sequence from our basketball dataset: (top two rows) Only a subset of results of the tracker and primitive-event
detector—each player’s ID is marked with unique color, and detected primitive events are denoted with their name’s first letter. (bottom
two rows) Only a subset of results of PEL inference. PEL resolves ambiguities about exact occurrence and duration of each event, and
improves event detection over the primitive detector, due to holistic reasoning about soft and hard constraints over time intervals in the

PEL knowledge.
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Figure 3. PEL inference under a controlled amount of noise (hori-
zontal axis) on the basketball test videos: (a) increasing the num-
ber of false positives, (b) increasing the number of false negatives,
(c) noise in durations of the event intervals, (d) removing formulas
from the PEL KB. For (a), (b) and (c) the input set of observations
for PEL inference is the set of ground truth event intervals cor-
rupted by noise. For (d) the input to PEL inference are primitive-
event detections from the real detector of Sec. 6. (best viewed in
color)

(d) Percentage of Missing Formulas

time intervals, which are hypotheses of event occurrences
during the inference, but rather only on the much smaller
number of spanning intervals. We have presented success-
ful detection and localization of inter-related events in bas-
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Figure 4. Confusion matrices on our basketball dataset. (left) Re-
sults of the primitive-event detector. (right) PEL inference. PEL

reduces errors of the primitive-event detector.

ketball videos with severe occlusions and dynamic back-
grounds. We compare favorably with the state of the art on
the benchmark Olympic sports videos. PEL efficiently rea-
sons about many events and their time intervals, and thus is
highly scalable.

Appendix

Table 3 lists a subset PEL formulas that we use in our experi-
ments for the basketball domain.
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Sport class Our [13] [10]
high-jump 70.1% | 68.9% | 52.4%
long-jump 753% | 74.8% | 66.8%
triple-jump 66.4% 52.3% 36.1%
pole-vault 85.5% 82.0% | 47.8%
gymnastics-vault 87.9% 86.1% 88.6%
shot-put 65.4% | 62.1% | 56.2%
snatch 70.8% | 69.2% | 41.8%
clean-jerk 85.6% 84.1% 83.2%
javelin-throw 783% | 74.6% | 61.1%
hammer-throw 78.9% 77.5% 65.1%
discus-throw 60.4% 58.5% 37.4%
diving-platform 91.5% 87.2% 91.5%
diving-springboard 81.8% 77.2% 80.7%
basketball-layup 80.2% 77.9% 75.8%
bowling 758% | 72.7% | 66.7%
tennis-serve 62.4% 49.1% 39.6%
Average classification accuracy 76.0% 71.1% 62.0%

Table 2. Average video classification accuracy on the Olympic
Sports Dataset [13]. We define primitive events, such as “Walk”,
“Run”, “Jump”, “Bend”, “Throw”, etc., and specify the formulas
of the 16 sports classes as a meet sequence of the primitives events.

Type 1:

D-Dribbling(x) — Dribbling(x)
D-Jumping(x) — Jumping(x)
D-Shooting(x) — Shooting(x)

D-Passing(x) — Passing(x)

D-Catching(x) — Catching(x)

D-Bouncing(x) — Bouncing(x)

D-BallTrajectory(x) — BallTrajectory(x)
D-NearRim(x) — NearRim(x)
ExactlyOne(Defense(x),Offense(x))
Shooting(x) — Offense(x)

HasBall(x) — ExactlyOne(Dribble(x),Shooting(x),Passing(x))
(Dribble(x) Vv Shooting(x) V Passing(x)) — HasBall(x)
HasBall(x) — —BallTrajectory
Dribbling(x) <+ Bouncing

Type 2 of the form (E1 A ...Ey,) — Or(E1 V ...Ey) forr € {m,mi, fi, f}:

Shooting(x) — ¢4 (Shooting(x) V BallTrajectory)
Passing(x) — Om: (Passing(x) V BallTrajectory)
Catching(x) — Om,i (Catching(x) V HasBall(x))
Catching(x) — O, (Catching(x) V —HasBall(x))

(HasBall(x) A Jumping(x)) — Oy (Jumping(x) V ShootBall(x))
(HassBall(x) A Jumping(x)) — Qi (Jumping(x) V —~HasBall(x))
HasBall(x) = ¢ #4(Om(HasBall(x)) V O f;( Passing(x) V Shooting(x)))

Type 3 of the form (E1; ...; Ey) — Or(E V (B ..
Shooting(x) — 4 (Shooting(x) V (BallTrajectory ; NearRim))
(BallTrajectory ; NearRim) — O, (BallTrajectory V Shooting(x))

(BallTrajectory ; Catching(x)) — O, (BallTrajectory V Passing(x))

;3 Ey)) forr € {m, mi}:

Table 3. Different types of PEL formulas we use for the basketball
domain. The user learning curve for entering PEL formulas in the
system is similar to other languages for expressing knowledge.
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