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Abstract sumption that surfaces in the scene are planar, and dizereti
surface orientations into a pre-specified number of classes
Joint reasoning about objects and 3D scene layout has (e.g., buildings may face only left, right, or front). Sedon
shown great promise in scene interpretation. One visual they typically estimate surface orientation classes teo lo
cue that has been overlooked is texture arising from a spa-cally (e.g., per each superpixel), without accounting ffer t
tial repetition of objects in the scene (e.g., windows of a long-rage spatial relations among image parts. This may
building). Such texture provides scene-specific condgain easily lead to implausible 3D layouts.
among objects, and thus facilitates scene interpretatie. One visual cue that has been overlooked, and that could
present an approach to: (1) detecting distinct textures of address the aforementioned shortcomings of prior work, is
objects in a scene, (2) reconstructing the 3D shape of de-texture arising from a spatial repetition of objects in the
tected texture surfaces, and (3) combining object detestio scene. In general, textures of recurring objects are ubig-
and shape-from-texture toward a globally consistent sceneuitous. For example, windows on a building facade jointly
interpretation. Inference is formulated within the reirde- give the percept of window texture, and a sequence of cars
ment learning framework as a sequential interpretation of parked along a street gives rise to car texture, as illustrat
image regions, starting from confident regions to guide the in Fig 1. In a cafeteria scene, tables and chairs, and people
interpretation of other regions. Our algorithm finds an op- standing in a line comprise many distinct textures. Also, in
timal policy that maps states of detected objects and recon-natural scenes, one can easily find textures correspormling t
structed surfaces to actions which ought to be taken in thoseflocks of birds, herds of animals, or tree lines.
states, including detecting new objects and identifying ne | this paper, we focus on scenes where thickness and
textures, so as to minimize a Iong-term loss. Tests againsiyepth differences of spatially repeating 3D objects arelmuc
ground truth obtained from stereo images demonstrate thatgmalier than their distance from the camera. Thus, these
we can coarsely reconstruct a 3D model of the scene from agpyiects can be interpreted as texture elements lying on a
single image, without learning the layout of common scene g rface’s tangent plane at a point. Given distinct textures
surfaces, as done in prior work. We also show that reason- s objects in an image, we estimate the 3D shape of their
ing about texture of objects improves object detection. surfaces via shape-from-texture. We use the estimated 3D
scene model to help detect and localize all object occur-
) rences, and thus enable potential identification of new tex-
1. Introduction tures in the scene. We iterate these steps until obtaining a
Scene interpretation is a long-standing, basic problem inCoherentscene irjterpretation in Which.t.he world is not com-
computer vision. Recent work demonstrates that a synergis0Sed of blocks in discrete, pre-specified depth and orien-
tic treatment of diverse image-understanding tasks, éhclu ation arrangements, as in existing work, but rather of more
ing object recognition, image segmentation, and 3D-scenere_a|'5t'c 3D shqpes, as |I_Iustrated in Fig 1. We achieve this
reconstruction, may overcome many errors induced by ad-Without supervised learning of 3D scene layouts.
dressing them in isolation [10, 2, 9, 7, 20, 6, 16]. These Recent work [2] also uses object detections to estimate
approaches typically fuse object detections with supedvis  their supporting surfaces. However, they make the restric-
priors of spatial layouts of common scene surfaces (e ., th tive assumptions that the supporting surfaces are plamar, a
sky is on the top, and the ground is planar and horizontal) . parallel. Also, they have access to training examples of ob-
While holistic scene intrepretation shows great promise, ject poses seen from all viewpoints. We relax their assump-
the treatment of the 3D scene layout in existing work has tions, and do not use 3D models of objects.
certain shorcomings. First, they make the restrictive as- Our evaluation on street scenes demonstrates that rea-
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soning about texture of objects facilitates holistic scene  identify one texture at a time by tracking instances of the
terpretation. This is because texture provides scendfgpec same object class, similar to [15, 8, 17]. To this end, we
constraints among objects, which we use to relax the afore-use an RL-based labeler that sequentially visits object de-
mentioned restrictive assumptions of prior work. Our key tections, and labels them as being a part of texture or non-
contributions include a new approach to scene interpreta-texture. These decisions are informed by Gestalt grouping
tion, based on shape-from-texture, and an efficient sequencues. After detecting a texture, all of its texture elements

tial inference procedure for texture detection. are removed from the pool of object detections, and the RL-
based labeling is run again. This is iterated until all remai
2. Overview ing object detections are labeled as non-texture.

Step 3: The identified textures are used for shape-from-
: ) texture [18, 19]. Intuitively, texture elements may be &ain
tect and_ Iocgllge all occurrences of target object class.es;(,;“N(,;ly from the camera, causing foreshortening, and lie at
(2) Identify distinct textures whose texture elements are i different distances from the camera, resulting in a change

_stanc_e_s of these classes; (3) Reconstrugt a 3D model of th%f scale. We relate the relative locations and sizes of &part
identified texture surfaces, and appropriately place the de ¢ 5 etected texture element to their canonical values by
tected objects in the reconstructed 3D scene. an affine homography. The affine homography determines
To address the abovg prqblem, we need to accour?t fOrthe surface normal at that surface point. We apply diffu-
Iong-rgnge spatial relations in t.he image. The graphical- sion to the estimated set of surface normals, and thus recon-
modeling framevx_/ork, common in rglated work (e_.g., CRF struct the 3D texture surfaces. The surfaces corresponding
[6]), seems unsuitable here. Spemﬁc_ally, a graphical hode to image parts classified as non-texture are reconstructed
would need to encode higher-order cliques, and thus face SeEJy defusing the normals of points along the boundaries that

rious tractapll|ty 'Ss“l,JeS in Iear_nmg and mferelnse. ladie the non-texture image regions share with the textured ones.
we use a simpler “interpretation by synthesis” approach, This ultimately gives a 3D model of the scene.

where im_age regit_)ns are sgquentia_tlly explaiqed, starting Step 4: We repeat Steps 2-3 until the resulting scene
from confident regions to guide the interpretation of other interpretation reaches equilibrium.

regions._ This is simila_r 0 [71. They p_ick in each iteration The remainder of the paper presents details of each step
four regions that maximize a heuristic score of _the Scene ut oy approach, starting from Step 2.
interpretation. By contrast, we seek to learn this scoring
function using reinforcement learning (RL) [14]. RL is par-
ticularly well-suited in our case, because it finds an optima
policy that mapstatesof an environment (detected objects Given responses of the object detector (Step 1), we iden-
and reconstructed surfaces)dotionsthat anagentought tify elements of a texture as a sequential assignment of bi-
to take in those states (detecting new objects and identify-nary labels to every object detection. The label is O for non-
ing new textures), so as to minimize a long-term loss. texture, and 1 for part of texture. L& =(X1,..., X,)eX

The main steps of our approach are shown in Fig. 1. andY=(y1,...,yn)€) denote a sequence of descriptor

Step 1: Given an image, we detect objects of interest us- vectorsX,; associated with detections, and the correspond-
ing the state-of-the-art, latent-SVM detector of [5]. ThRee d  ing sequence of their labels € {0, 1}, which are obtained
tector represents an object class by six models, correspondin stepst = 1,...,n. Our goal is to learn the structured
ing to six distinct object poses, as illustrated in Fig. 2r Fo predictionf : X — ) on available training images, and
each pose, the respective model encodes the canonical 2Dsej to identify distinct textures in a new image.
locations and scales of 8 object parts. We associate with We formulate the sequential labeling of objects (SL)
each object pose the expected value of its surface normalwithin one of the latest RL frameworks, called SEARN
N. When an object is detected, we take the following de- [13]. SEARN integrates search and learning for solving
tector outputs: confidence, bounding box, relative locetio complex structured prediction problems. It transforms RL
and scales of 8 object parts, and the model responsible fointo a classification problem, and shows that good classi-
detection (i.e., 3D pose). For every object detection, a dif fication performance entails good RL performance. It has
ference between the detected and canonical locations antbeen extensively evaluated in [13], and it compares fa-
scales of object parts relative to the bounding box is used tovorably to other techniques for structured prediction. In
estimate the amount of their spatial deformations. SEARN, at every time step, a current state of the envi-

Step 2: For texture detection, we use the model of tex- ronment is represented by a vector of observable features.
ture as a marked point process [15, 8, 17, 18, 19]. A surfaceThis vector is input to a classifier to predict the right actio
is textured by statistically marking its points, and placin  Thus, learning the optimal policy within SEARN amounts
statistically similar objects (i.e., texture elementsjragse to learning a classifier over state feature vectors, so as to
points. Given candidate object detections from Step 1, weminimize a loss. Below, we first review SEARN, and show

The Problem: Given an image, our goal is to: (1) De-

3. ldentifying Image Textures
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Figure 1. Overview of our approach. (1) Detections of thenaSVM detector [5] for cars, windows, trees, etc. (2) Mdsthe correct

bounding boxes are selected by SL, which uses both the 2Dhen@D structure, when available. (3) A surface normal isvestid

for each object, and all regions in the corresponding baxghbox are assigned that particular normal (colored regidhen a diffusion
process interpolates the normals in the zone of influendesobbjects, represented by the white regions. (4) The iokatgd normals. (5)
The surface reconstruction. Our system correctly estisrig the ground is slanted and that the building is frootafa This cannot be
handled by existing approaches, that typically assumethieaground surface is flat.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

N=[0,0,1] N=0,0,1] N=[,0, ] N=[-2,0, %2 N=0,0,1] N=[0,0,1]

Figure 2. The latent-SVM detector of [5]. An example for tleesc The detector consists of 6 models encoding 6 car posesavionical
surface normal$v. Each model consists of 8 object parts. We use fewer modethdmther object classes (e.g., only 1 for the trees).

how it is trained to fit our particular vision problem. reaches the maximum allowed number of iteratidhsthe
SEARN applies classifierf (e.g. SVM, or Decision  output is the last policyf (") from which 21 is removed,

Tree) to a sequence of data sampl&s; X, to infer their  i.e., the outputigh®, ... AT} and their associated sam-

labelsY €. It requires that the ordering of instancesXn pling probabilities{ag), cey aEFT)}. Performance bounds

be well-defined. SEARN uses an iterative batch-learning. of SEARN are presented in [13].

Specifically, in each iteration, the results of classification, We accommodate SEARN for our problem by specify-

f7: XY (), are compared with the ground-truth labels, ing: (i) Object descriptors that define data samp&s(ii)
Y. This induces losd.(Y ("), Y'), which is then used to  Ranking functionR, which provides an ordering o’; and
learn a new classifigr("*1). In the next iteration, SEARN  jii) Loss function L for the iterative learning of policy'.

appliesf("*1) to X, wheref("*1) is defined as: These specifications are presented in the sequel. They to-
ether define SL, summarized in Alg. 1.
JO = BRCH 1 (11— )7, w ’
A Descriptor of Object Detections. Our key idea is to
whereg € (0, 1] is the interpolation constant. This inter- compute{ X} online, from the cues of image parts that
polation amounts to a probabilistic sampling of the itera- have already been epraineX.i(t) is a descriptor that con-

tively learned classifiers), b, ... h("+1)_ The classi-  sists of intrinsic object properties, and its pairwise &pat
fier sampling is governed by the multinomial distribution, relations with those objects that have been labeled as tex-
where, from (1), the probability of selecting classifigt) ture in the previous steps. The intrinsic object properties,

in iterationT is aﬁk) =B -3k k=1,...,7. After 7 1;, include: (a) the detector confidence; (b) the model of
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the object pose that was used for detection; (c) 2D loca-[ Algorithm 1: Learning SL

tion and scale of the object¢;, s;), normalized w.r.t. the Input  : Set of training image€ = {I1,I5...};
image; and (d) 2D location and scale of the object parts, Candidate object§V'(I1), V(I2), ... };
normalized w.r.t. the object’s bounding box. The pair- Ground-truth label§ Y (11), Y (I2),.. . };

. iess® include: | f the boundi Loss-sensitive classifigr, and initial h(1);
wise propertlesqbij » INCluge: (e) overlap or the bounding Loss functionZ; Interpolation constant = 0.1;

boxes,Z?Dz? ; () displacementc; — ¢;]; (g) scale ratio%; o LMaXim:jlm T_Um'f(’% of iterations’
LG . ) . J utput : Learne OlIC
and (h) spatial relation between the bounding bdxeand P policyf

1 Initialize: Viiy) = V;
b; whose value can be far, near, above, below, on-top, or| , ler 'i 'ieL.L'.".’TdO
next-to, as in [4]. Note thaqbz(.;) can provide evidence of 3 Initialize the set of descriptor sequenci¥s= 0;
perceptual grouping of objects into texture. Whether the| ¢ | forall f€Zdo .
' I bieth be inferred b 5 V=V);n=|VI)];Y =Y{U);
grouping actually occurs at objetthas to be inferred by 6 fort—=1,... ndo
SL. Thus, at a given stepof sequential labeling, we have | , for i € VY do
Xi(t) = [¢u [(pz(:)v] - 1a 2]] 8 ComputeXZ.m;
. . o — () . H .
Ranking Function R. At every stept, SEARN uses a rank- 1§ end Computey; = f17(X;) as in (1):
ing function to label the next object, such that its labeling 4 o , o
. . . . 11 Selecti from V,” with max confidence iny;;
reduces uncertainty about the other objects in the im&ge. 1 Add y; 1o Y (7):
is specified as the confidence of classifief®. At ¢, de- s V) _ ) \'{i},
scriptorin(t) of all unlabeled objects are updated based on | 14 end N N '
the current state, and then classifiela.selectstt) with 15 Estimate los<L (Y ("), ¥);
the highest confidence in classification. 16 ; Add the estimated descriptor sequereto X'
17 en
Loss Function L. L is defined as the overlap error between |1s Learn a new classifigi("t1) «— h(X; L);
bounding boxe# of objects that are labeled as texture and |19 Interpolate: f(T+1) = gr(T+1) 4 (1 — g) f(7)

the ground truth bounding boxésWe pair bounding boxes |20 end _
b; andb, with the largest overlapL is a sum of the overlap |21 Returnf(™) without h(1).

ermors,L(Y,Y) = 1 — >3, b,

4. Reconstructing 3D Scene L ayout 1,...,8} of n texture elements by standard linear diffusion.
The accuracy of this reconstruction depends on the num-

Deformations of texture elements from the known per of estimated normals and their layout. The diffusion
canonical pose can be used to estimate the underlying 3Dyyer the entire image, however, yields an over-smoothed 3D
shape of the texture surface. To this end, we assume thafgdel. We address this by estimating the spatial support of
objects labeled as texture elements have planar parts, Theryetected textures, and then conducting the diffusion only
we estimate the 3D pose of each part using an affine hoyjthin each region of support. Specifically, we segment the
mography. Since parts are smaller than objects, and muchmage with the state-of-the-art segmenter of [1]. All résul
srnaller_than surfaces, the reconstructed texture suréaees ing segments that overlap with the objects of a specific tex-
piecewise planar. ture are taken to form the spatial support of that texture. We

For all parts of an object labeled as texture, we relate thejinearly diffuse the estimated normals of object parts imith
detected part locations and scales with those of the canonithe region of support of each texture. Figs. 1, 4 and 6 show
cal object pose through an affine homography.tigbethe  examples of the needle plot obtained by this method.

homography of object from its canonical pose_to Its pose The spatial support of non-texture surfaces is defined by
n th_e Image. We use the part ce_:nters to specify an OVerde'the remaining segments that have not be assigned to any
termined linear system of equations to calculfewith 6 textures. Non-texture surfaces are reconstructed by sleffu
degree; of freedom. After fmdm@.i’ we compute the nor- ing, within the corresponding non-texture spatial support
mal ofi asN; = H;N, wherel is the known canonical the normals of points along the boundaries that the non-

_nofrmtil from the :i[e?:]-SXM detelcto; .Ofd[_S]_éSGT F{;g-ﬁt% ; texture regions share with the textured ones. This ultitpate
is further mapped to the 8 normals of individual object parts ;o< 5 3p model of the scene.

Nk, k = 1,...,8, using the 8 homographies, known from
the latent-SVM detector, between the reference canonicalClosing the loop. After the initial reconstruction of the 3D

object pose and the planes of each object part. scene in Steps 1-3 of our approach, we continue repeating
The 3D texture surfaces can be reconstructed from theStep 2 and Step 3 until the resulting scene interpretation
set of estimated surface normdld;;, : ¢ = 1,....,n;k = reaches equilibrium.
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5. Results mals of the ground regions to reconstruct a 3D shape of the
ground. In this way, we relax the common assumption of
rior work that the ground is planar and horizontal. The
remaining non-texture surfaces are reconstructed by defus

ing the normals of points along the boundaries that the non-

. . . Mexture image regions share with the textured ones. For bet-
ber of these textures in each image is not known. ter visualization of the resulting 3D model of the scene, we

Datgsets. W]? use rt]wc:_dst?l\s/letsafor eval;?t|or).hF|r:st,kwe place the detected cars, pedestrians, and trees in frams of t
que(rjy,meellg_es “’!“J eta ? ebaltaseF[ ] wit 'thel €Y" reconstructed building surfaces, at some ad hoc disténce
word “building+window+car’. LabelMe images with 1ess ;, 4,4 girection of the objects’ normals.

than 3 cars, or less than 3 windows are removed. This gives o ,
Qualitative results. Fig. 4 shows our scene reconstruc-

a dataset of 316 images, where 166 images are used for. | les f he LabelMe d A
training, and the remaining 150 for testing. Note that our Eon resu FS Or? examples from t ebl abeilvie atgset_.l sfcc:]m
dataset of 316 LabelMe images is larger than the geometric- e seen, In the top row, we are able 1o extract detalls of the

context dataset (GCD) [11] used as the benchmark by exist-cUMvy facade, circled in red, and enlarged in Fig. S(left). |

ing holistic approaches to scene interpretation. The GCDthe bottom row, we accurately reconstruct the uphill street
has only 16 images with object repetition, and thus is not as a horizontal surface, circled in red, and enlarged in
poor for evaluating our structure-from-texture method. Of Fig. 5(right). These two results contrast much prior work

course, this is a limitation of the benchmark GCD, and doestha_lt typically allows only planar bui_lding surfaces, and re
not mean that scenes with spatially recurring objects areStricts the ground surface to be horizontal (e.g., [7]).
rare. Second, we use the stereo images of the Leuven Mov- Fig. 6 compares our surface layout estimates to that of
ing Vehicle Sequence [3]. From this sequence, we removethe state-of-the-art approach, presented in [7], on a few
images that do not show at least 3 instances of cars or winimages from the benchmark GCD. Note that it is diffi-
dows. This gives a dataset of 72 images, all of which are cult to make this qualitative comparison exactly “apples-
used for testing. to-apples”. Nevertheless, we believe that Fig. 6 shows im-
Training setup. Randomly selected 166 images of the Portant insights. While [7] does not use object detectors
LabelMe dataset are used for training the sequential labele as we do, they employ a battery of other detectors that we
SL. For each image, we first detect candidate boundingdo not use. For example, they take as input responses of
boxes, using the detector of [5]. Bounding boxes that com- the surface-layout detector of [12], the sky and ground de-
prise distinct textures in the image are labeled with 1, and tectors, as well as the light-medium-heavy density detecto
the remaining boxes are labeled with 0. We train a total of In [7], image regions are assigned one of the following la-
10, C4.5 decision-tree classifiers, pruned with confidencebels: ground, and vertical facing-left, facing-right, rfitel,
factorC' = 0.25, on these labeled bounding boxes, as sum- Porous, or solid. For fair comparison, we discretize our re-
marized in Alg. 1. sults into one of these classes, as follows. Each car and
Testing setup. Given a test image, we run the car, win- pedestrian region detected by our approach is automaticall
dow, tree, and pedestrian detectors of [5] with a low detec- labeled as vertical solid. Similarly, tree regions detdcte
tion thresholdr = —3, so as to achieve high recall. Next, DYy our approach are labeled as vertical porous. For each
we use SL to detect all textures of objects present, one af€maining region, we average its surface normals, and la-
a time, until no object detection can be labeled as belong-Pel the region as ground or vertical based on the resulting
ing to texture. The surface normals of parts of all identified average normal. For each vertical region, we compute the
texture elements are estimated via an affine homography ofnglea between the average normal and the z-axis (i.e.,
their known canonical poses. 3D shapes of the texture surthe estimated viewing direction) to determine the region’s
faces are reconstructed by linear diffusion of these sarfac Sub-class: frontal, facing-left or facing-right. The tapw
normals, within the spatial support of each texture, where Of Fig. 6 shows that [7] merges two buildings with oppo-
the support is estimated using the segmenter of [1] with Site orientations as facing-left (cyan), whereas we ctlyrec
parameter?, = 10, as described in Sec. 4. We assume Cclassify the building on the left as facing-right (magenta)
that the identified distinct textures of windows correspond We also correctly label the cars and pedestrians regions as
to distinct building surfaces in the scene. Also, we assumesolid, and the pavement regions as ground, in the bottom
that cars, pedestrians, and trees are supported by thedyrounow of Fig. 6.
Hence, image regions located below the detected bounding Quantitativeresults. We evaluate SL on the task of ob-
boxes of cars, pedestrians, and trees are defined as grounjdct detection. We use the VOC challenge evaluation crite-
regions. Surface normals of the ground regions are specifiedia: precision and recall are obtained for bounding boxes of
as perpendicular to the estimated surface normals of carsthe detected objects, average precision (AP) is computed
pedestrians, and trees. We linearly diffuse these surfaice n  over the entire test set. Tab. 1 shows that SL improves

For evaluation, we use street scenes that abound wit
various textures. In particular, we are interested in tegu
of cars lined-up along the streets, windows on building fa-
cades, and pedestrians and trees on the sidewalks. The nu
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gie(tf)"d 0C5a7r4 V\(’)i”floé"’ oTrsezel opsegdé 0A5"26 compute surface normals at each pixel, and take these nor-
512 082 o053 T 068 o088 06727 mals as_ground truth. The ground-truth normals are com-
[4] 0824 | 0617 | 0680 | 0881 | 0807 pared with our reconstructed normals, obtained using only
SL 0.871 0.793 0.719 0.897 0.820 one of the two stereo images. We define the reconstruction
+0018 | 40012 | £0014 | +£0.021 | +0.011 error as the average Euclidean distance between ground-

Table 1. LabelMe dataset: Average Precision (AP) of ouraliele  rth and reconstructed normals. On the 72 images of the
for cars, windows, trees and pedestrians. SL improves te st ) o\ en sequence, we obtain an average reconstruction error
of the art detector of [5] when we use a low detection threghol of 43.7% + 2.4%. In Fig. 3(left), we analyze the influence
7 = —3 (1), and when we use the learned detection threshold (2)'01‘ thé numbér o'f Corre(':tly det;ected objects on the recon-
SL also outperforms the CRF method of [4]. :

P 4l struction error. As expected, the error decreases as the num

Viethod 0] ours ber of objects increases, since the accuracy of the estimate

Surface layout| 64.5% | 72.1% +2.7% normals is directly proportional to the number of objects.
Table 2. LabelMe dataset: Surface layout classificatiomaoy In Fig. 3(right), we analyze the influence of the detector’s
over the vertical subclasses: frontal, facing-right arminig-left. threshold on the reconstruction error. For low thresholds,
Our approach outperfoms the state of the art technique. the error does not change much, but it quickly increases as

the threshold gets larger than -2. This indicates that our ap
proach requires an object detector with high recall.

SL is data-driven and typically selects to label textures in
the ordering cars-windows-trees-pedestrians. We evahiat
variant of our approach where we force SL to have the fol-
lowing two orderings cars-windows-pedestrians-trees and
windows-cars-pedestrians-trees. These forced orderings
0 S S S S [ N S S S S — give worse 3D reconstruction performance3od%+0.05%

#of objects petector hreshold and5.9%+0.08% resp. Other combinations produce worse
Figure 3. Leuven dataset: 3D reconstruction error as gitumct results. By the nature of our images, there are more cars
of (left) the number of correctly detected objects and @ighe 54 \\indows than there are pedestrians or trees, which ex-
object detector’s thresholed . L
plains why the reconstruction is better when one of these
two classes comes first in the ordering. Indeed, the more

by 30.6% the average precision of the low-precision-high- objects of a particular class are detgcted in th(_a scene, the
recall detector of [5] used with the detection threshold set MOre accurate the reconstruction of its supporting surface
tor — —3. We also see that using the information about see Fig. 3(left). The estimate of the ground surface is-criti

3D spatial layout improves by 9.3% the precision of [5] in cal for pruning false alarms, which is why the combination
its standard form, i.e., whenis learned in training cars-windows works better than the combination windows-

We also compare the average precision of SL with that cars.t Wf_ have m?d SL W'Lh SV(VM;ISZ?;'HS’ but tg? re-
of the CRF-based method of [4]. This is a fair comparison, construction error increased Byr% +4/0 compared to

since [4] also uses the object detector of [5]. Tab. 1 showsSLIW'trll demst,lc;n tre(_erclas_smesri. 166 LabelMe i
that SL outperforms [4] for all object classes. This could be mpiementation. training on abeivie Images

because we incorporate 3D layout information in our object _takes 18 hours on a 2.66Ghz, 3.4GB RAM PC. On a test

detection that is richer than the 2D spatial constraintsl use 'mage, the Matlab |mplem§ntat|on of SL ta!<es on average
in [4]. two minutes to label all objects, and to assign a normal to

every pixel. The 3D surface reconstruction is real-time.

1

°

Reconstruction error

Reconstruction error
o

For surface layout estimation, we compare against the
state of the art approach of [10]. We are not able to com-
pare with [7], since their code requires inputs from detecto
that are currently not public. We evaluate our surface clas- We have presented an approach to scene interpretation
sification results over regions labeled as vertical, whieee t  that exploits shape-from-texture to yield a 3D model of the
classification is done as described above for the results prescene, and reduce the noise inherent in low-level object de-
sented in Fig. 6. Table 2 shows that our classification accu-tectors. Our approach does not use supervised learning of
racy is significantly larger than that of [10] on the LabelMe 3D scene layouts. It relaxes the assumptions of prior work
images. that supporting surfaces of objects are planar, horizpntal

We also use 72 stereo pairs of images from the Leuvenand parallel, and that vertical surfaces are planar with a fi-
dataset to quantitatively evaluate our 3D reconstruction.  nite set of discrete orientations. Our results demonstrate
particular, we reconstruct a 3D model of the scene using thethat our scene interpretation informed by texture is more
standard stereo approach of [22]. From this 3D model, wein tune with the particular geometry and semantic content

6. Conclusion
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Figure 4. LabelMe dataset: Our scene reconstruction ges#itom left to right: the objects selected by our sequettlatler SL, the
needle plot of the diffused surface normals, the reconstdusurfaces with texture mapping, the surfaces viewed flf@rtop(top row)

and viewed from the left (bottom row). Fig. 5 presents thenzed-in details of the circled regions. Both examples shawwre correctly

reconstruct building surfaces at a 90 degrees angle. Thewgdemonstrates our capability to reconstruct detaile@facade (red circle),
in constrast with previous work that assumes planar swsfatkee bottom row shows that we correctly reconstruct théllugtheet going

behind the scene (red circle), whereas [7] considers thengrto be a flat plane.

of the scene than alternative interpretations such asKbkloc [11] D. Hoiem, A. A. Efros, and M. Hebert. Geometric context
world” or “image pop-up”. While our evaluation focuses on

street scenes, our appraoch can handle any scenes in whidi?2]

instances of object classes spatially repeat.
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Curves in facad

Figure 5. LabelMe dataset: Zoomed-in details of the circtgdons in Fig. 4. The two left images correspond to the faazd-ig. 4(top)
viewed from the top. The two right images correspond to trmugd surface of Fig. 4(bottom) viewed from the left. We cotise

reconstruct the curved parts of the facade, as well as thi# sphet.

S ! THWHE -

Figure 6. Comparison of our scene reconstruction resuttsoge of [7] on example images from the Geometric Contexts#at From left
to right: the detected objects after SL, our computed sarfammals, the regions after discretization of our normatis surface layout
labels, the regions labeled by [7]. The color-coding of tgels is the same as in [7]. Top row shows that [7] merges ¢ building

with a part of the left building, whereas we succeed in sepayduildings with different orientations. Bottom row sh®that we are able

to correctly label the ground and car regions. We do not détecsky region, because we do not use a sky detector.
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