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Abstract Motivated by the success of these approaches, we rep-

resent the scene as a fully connected CRF grounded onto

This paper addresses the problem of assigning objectsuperpixels, and formulate scene labeling as assignment of
class labels to image pixels. Following recent holistic-for class labels to superpixels in CRF inference. Following a
mulations, we cast scene labeling as inference of a condi-well-established line of researchd, 12, 17, 34, 11], we
tional random field (CRF) grounded onto superpixels. The cast CRF inference as quadratic program (QP). In compar-
CRF inference is specified as quadratic program (QP) with ison with existing liner programming counterparts, QP in-
mutual exclusion (mutex) constraints on class label assign volves computing comparatively less variables, provides a
ments. The QP is solved using a beam search (BS), which iseparable constraint set in optimization, and allows for a
well-suited for scene labeling, because it explicitly aous differentiable large-margin parameter estimation.
for spatial extents of objects; conforms to inconsistency  Our key contribution is a beam search algorithm (BS)
constraints from domain knowledge; and has low computa- for QP-based CRF inference. BS is well-suited for scene
tional costs. BS gradually builds a search tree whose nodeslabeling, because it:
correspond to candidate scene labelings. Successor nodes 1. Accounts explicitly for spatial extents of objects;
are repeatedly generated from a select set of their parent 5 gg|yes QP entirely in the discrete domain conforming
nodes until convergence. We prove that our BS efficiently to useful domain constraints:
maximizes the QP obJect_|ve prRF inference. Effectiveness 3 pges not require common convexification and relax-
of our BS for scene labeling is evaluated on the benchmark ation of QP, and ultimate discretization of the contin-
MSRC, Stanford Backgroud, PASCAL VOC 2009 and 2010 uos solution:

datasets. 4. Has low computational costs, allowing for a large num-
ber of CRF nodes, and a full-node connectivity, as of-
. ten needed for modeling long-range dependencies be-
1. Introduction tween objects in the scene.

This paper addresses the problem of scene labeling, BS starts from an initial labeling of superpixels corre-
where the goal is to label each image pixel with a class labelsponding to the initial state, as illustrated in FigThen, it
from a set of classes. The classes of interest include @bjectgradually builds a search tree, where tree nodes correspond
and scene surfaces (e.g., grass, sky). Real-world image$o search states, i.e., candidate scene labelings. The tree
present significant challenges for scene labeling, sinee ob depth is incremented as new successor states are generated
jects may appear at different scales, under occlusion,;and i from a subset of states at the current depth. The search con-
a wide range of spatial configurations in the scene. tinues until convergence, when no “better” successors can

Prior work has demonstrated that holistic reasoning be generated. BS is defined by the following three func-
about occurrences of all classes, their co-occurrences, antions: Successor — for stochastic exploration of the search
spatial layouts offers a viable framework for scene lalgglin  space by randomly generating successor states, given par-
(e.g., B1, 30,32, 8,9, 28, 13, 18, 34, 15, 29)). These ap-  ent states; Heuristic — for selecting a seti®f'best” cur-
proaches typically model the scene by a conditional randomrent states for exploration, whekgis the input beam-search
field (CRF) grounded onto superpixels (or image patches).width parameter; and Score — for selecting the “best” state
In this way, they adopt common recognition strategies: a) as the solution.
Smoothness — neighboring image regions may be occupied The Successor function explicitly accounts for spatial
by the same object, and b) Context — neighboring image re-extents of objects byointly flipping the class labels of a
gions may be occupied by frequently co-occurring objects. connected componenf superpixels when generating new



forcing constraints in CRF inference, the feature weights
should be sufficiently large so as to penalize scene lakeling
that violate the constraints. However, since the weights ca
not be infinite, in some cases CRF inference may overrule
the constraints, yielding non-sensical results.

We address this problem by keeping separate domain
constraints from the other potential functions of CRF aimed
at encoding smoothness and context. We cast CRF infer-

Xpp ence as a QP with quadratic constraints. Specifically, we
use the smoothness and contextual potential functiongof th
CRF to express the QP objective, and separately use mutual-

//fiﬂ\ ,«//7\\ . . . .
S | & \ () exclusion constraints of the domain to express the quadrati
\Xt.1}) \& constraints of the QP.
o g

. . . CRF inference as QP typically requires convexification
Figure 1. BS: States in the search tree correspond to caadida QP typ y red

: . . of the QP objective to allow using standard convex op-
scene labelings. The tree is gradually expanded by gengrstiic- T laorith 619 C ificati b
cessor states from a subsetBfbest states (black) estimated by tlml_zat|on algorithms _2 » 12 onvex !catlon can be
the Heuristic function. The Score function selects theroptileaf avoided, e.g., by using message-passing,[or grad-

state (red) as the solution of CRF inference. ual progression between linear programming and Q. [
However, these approaches are not suitable for our fully

o S connected CRF, since their complexity depends on the num-
states. The Heuristic function is effu_:l_ently com_put_ed as a per of CRF edges. Existing semidefinite programming ap-
difference between the CRF’s conditional |Og-||ke|Ih00dS proximations of QP are also inappropriate’ because the ma-

of the parent and successor states. It is efficient becausgix of our QP’s quadratic objective cannot be assumed as
it takes into account only (a few) changes in superpixel 1a- peing (“close to”) positive semidefinite.

beling between the states, instead of all superpixelslligina

) - 'y Importantly, most QP solvers relax the optimization con-
the Score function efficiently evaluates the CRF conditiona

straints to the continuous domain. This would be unsuit-

log-likelihood of leaf stgtes, andl selects the state with th able, because domain constraints may be violated under
largest Score as an optimal solution. Note that, by construc . ntinuous relaxation. In contrast, our BS does not use con-

tion, the leaves are guaranteed to have the largest Scere vajjn ous relaxation, but directly solves QP in the discrete d
ues among all states in the search tree, and thus it sufficeg5in, strictly enforcing domain constraints.

to look for the solution only among the leaf states.

We present effectiveness of our BS for scene labeling on
the MSRC p¢], Stanford Backgroudd] , PASCAL VOC
2009 and 20107] datasets.

In the sequel, Se points out our contributions rela-

Our approachis related to Swendsen-Wang (SW)qut [
which iterates Metropolis-Hastings reversible jumps. lEac
jump randomly cuts graph edges and flips the labels of a
connected group of nodes for a faster exploration of the
search space than other MCMC algorithms. However, SW

t(I:VIR?I;t(? |?r|or work; Se;S;gir:rfnulatelstCRg;SSEmcés%e(;_|fles evaluates CRF in each visited state, which is expensive for
Inference as QP; ormulates bs, Se@ defines large graphs as ours. Also, in practice, SW iterations are

the CRF potentials, ano! describes hO.W o leam the poten'often interrupted before convergence, due to long running
tials and mutex constraints from training data; and Sec.

times. In contrast, our BS is efficiently guided by a heutisti
presents our results. function to select “good” candidate solutions, and guaran-
2. Prior Work and Our Contributions teedto converge fast to a local ”?a*‘”‘“m- .
Search-based structure prediction methods are gaining
This section reviews related work and points out our con- momentum in computer visiori ), 5, 14, 24], but they have
tributions in terms of: i) Enforcing hard constraints in CRF never been used for scene labeling. Their key limitation is
inference; ii) Directly solving QP in the discrete domain; the requirement to approximate the loss function, and thus
and iii) Low complexity of our BS. guide the search. Inspired by HC-Searel, [2], we in-
Accounting for domain constraints between objects in stead use a rank-based search strategy that makes search
the scene is important, because they can help resolve comdecisions by comparing relative values of the search states
peting hypothesis in inference. In this paper, we focus on assigned by the Heuristic function. As iz, 2], we use the
the mutual-exclusion (mutex) constraints that prohibit ce Heuristic function to guide the beam search, and the Score
tain label assignments (e.g., the sky cannot occur belowfunction to identify the solution. The key difference istha
grass). CRF represents domain constraints Vettures we derive the Heuristic and Score from the original (CRF-
which are weighted to form potential functions. For en- based) optimization objective, whereas these two funstion



are learned separately in a distributed learning architect
of [25, 7].

3. The CRF Model

Images are partitioned into superpixels, which are use
to ground our CRF of the scene. In particular, superpixels
are organized in a graptiy = (V, E). V is a set of nodes,
i=1,...,n,|V| = n, corresponding to superpixel’.is a
set of edgesi, j) € E that capture dependencies between
pairs of superpixel$ andj. In this paper, we consider a

fully connected graph, where edges connect all node pairs

E=V xV,|E|=n?

The CRF associates an indicator random variakle
with every nodei € V. EachX; takes values from a set
of object class labeld, = {1,2,...,k}, where|L| = k.
When X, = i’ € L then CRF assigns class lakéto su-
perpixeli. The set of all random variables is denoted as
X = {X, :i € V}. The conditional log-likelihood of the
CRF is specified as

log P(X|G) = ¢:i(X;
eV
+ Z ¢ij(Xi = i/,Xj =jl) — IOgZ,
(i))EE
1)

where{i’,j'} € L, andZ is the partition function. The
unary potentiab; (X; = ') is defined as a log-likelihood
of X; having label’ € L. The pairwise potentiap;; (X; =
¢ j') represents a joint log-likelihood ak; and
X, having labelg’ andj’, respectively. In the following,
we will use shorthand notatios;;; = ¢;(X; = i’), and
Giirjy = ¢i;(X;=i',X;=j'). Sec.6 specifies the unary
and pairwise potentials.

We formulate our scene labeling problem as finding the
MAP assignmenX = arg maxy P(X|G). In the following
section, we explain how to conduct this inference.

")

4. CRF Inference as QP

The quadratic objective of2] can be compactly ex-
pressed ag " ®x, where® is an(n-k)x (n-k) affinity ma-
trix whose elements are the unary and pairwise potentials.
The off-diagonal elements df are defined a® /), (;;:) =

dgbil-/jj/, and the main diagonal elementsdfare defined as

(i), (ii") = Piir -

As mentioned in Sectionkand2, our next goal is to in-
corporate domain constraints in QP, which are expected to
improve the quality of solutions by eliminating illegal con
figurations from consideration. In this paper, we focus on
the mutual-exclusion (mutex) constraints that prohibit ce
tain non-sensical label assignments. For example, suppose
that a QP solver considers a hypothesis that a superpixels
andj get assigned candidate class labéls- “grass” and
j' = “sky”, wherei is located at the top of the image, ajd
at the bottom. As common-sense knowledge rules out that
grass can occur above the sky in natural scenegéfs as-
signed label’ = “grass”, i.e.,z;;; = 1, thenj must not
be assigned labgl = “sky”, i.e., the QP solver must set
xj; = 0. This type of reasoning can be formalized as the
equality constraintz;; - x;; = 0. Intuitively, this equality
constraint strictly enforces that only one of the two labels
are allowed for the two superpixels.

Following the approach of[1], all mutex constraints can
be compactly represented as

x' Mx=0, 3)
wherel is an(n-k)x (n-k) binary constraint matrix. When
its elements are set to on&/;;) (;;-) = 1, then the corre-
sponding label assignments are prohibitgd- 1 - z;;; = 0.
Conversely, whenV/(;;y (;;7 = 0 then superpixels and
j may be assigned any arbitrary class labels frbjrbe-
cause the quadratic equality constraint still remainssati
fied, z; - 0 - ;7 = 0. Note that) is typically sparse.
Sec.6 specifiesM for each image.

Further, it is convenient to merge the set of linear con-
straints of the problem in2j — namely that for ali € V,
> ier Ti = 1 — with the quadratic equality constraints

This section formulates the MAP assignment problem asin (3). For every superpixel we set all the corresponding

QP. We begin by deriving the quadratic objective of QP, and
then extend that formulation to include domain constraints

It is convenient to expreseg P(X|G), given by (@),
in terms of binary random variables;; € {0,1} over
superpixel-label pairs. WheN; = i’ we haver;,; = 1,
and whenX; # i’ we havez;; = 0. A column vec-
tor of all (n - k) binary random variables is denoted as
x = [...z4 ...]7. Thus, the MAP assignment problem
can be posed as

>

max. Z (bii’xii/ —+
(i,4)E€Esi 5’ €L

ieVii’el
st foralli eV, aw =1, x €0, I
i’eL

(bii’jj’zii/xjj’

(@)

elements of matrix\/ to one, M1y, ;) = 1, if i" # j.
This prohibits illegal assignments of multiple distinct la
bels to a single superpixel, since for aliwe will have
L - 1- Lijr = O, if i/ 75 j/.

By using the affinity matrixp, and the constraint matrix
M, from (2), we finally derive the following QP:

max. | dx

4
x' Mz =0, *)

s.t. xe {01},

Note that ¢) does not relax the original problem i2)(
While the constraints ind) and @) are not equivalent, the
objective and constraints off make the problem of4]
equivalent to that of4). The constraints in) enforce that



every superpixel is assigned exactly one label. The con-
straints in &) only enforce that every superpixel is not as-
signed multiple labels. But the objective af) (will not be
maximum if a superixel is unlabeled.

In the following section, we specify our new algorithm

for solving the QP problem irdj. Figure 2.Consider a state: with the shown labeling. After randomly
cutting the edges we have a set of subgraphs which are paettiby red
curves. We randomly select@C' with labels y- in a random subgraph.

5. Beam Search Updated labels are randomly chosen as the label of neigithof (y’ in
this case) which leads to a new state Note that CRF edges are due to

Given an image and its superpixels the search Startslsss pairwise potential, so subgraph boundaries does pbt Dhject class
’ oundary.

from their initial labeling xq, and gradually builds the
search tree with new states At every tree depth, BS con-
siders at mosB best states for further exploration, based C'C. Then, the mutex constraints fef can be expressed as
on Heuristic values of these states. Exploration consists o - ) . . .
stochastically sampling successor states from the selecte ' Mz’ = (x +6) M(x+6) =26 Mz +6 Md =0,
parent states, which increments the current tree depth. The (5)
sequential tree expansion stops when no successor stat@ecause itis already guaranteed that the parent statiesatis
gives a positive Heuristic value. Below, we formally define Mutex constraintsg " Mz = 0. Complexity of verifying
the elements of our search framework. (5) is low, because thé'C' would typically consist of only
State-space: The state-space is defined @s= {x : a feV.V nodes, _an(M Is sparse. Th_is step _gu_arantees that
z € {0, 1}%’ 2T Mz = 0}. The states correspond to the final solution found by BS strictly satisfies all mutex

candidate scene labelings respecting mutex constraints constraints. The stochastic generation of successorsstate
9 P 9 " helps avoid local optima.

Successor function, I' : & — z/, generates new states Heuristic function, H(x', x), evaluates new states
a' from z. I' modifies a given state by jointly ghar}g|n/g given their parenk, and guides the expansion of the search
the labels of a group of superpixels i resulting inx tree by selecting at mosB best successors af. Ide-

which strictly satisfies mutex constraints. Thiisdefines: ally, new states should be evaluated using the QP objective,

i) How to select a set of superpixels to be re-labeled; and z'T dz', stated in 4). This would ensure that BS is guided

ii) How to determine their new labels, as explained below. {gward an optimal solution of the QP. However, computing

Fig. Zillustrates an example of generating a new state.  the quadratic objective for large CRFs as ours at every can-
For choosing a set of superpixels, we first probabilisti- didate state would be prohibitively expensive. To address

cally cut edges iy whose pairwise potentials are below a complexity issues, we again use the difference vettoe-

random threshold. Specifically, edgesj) € E are char-  tweenz’ andx to express the QP objective as

acterized by pairwise potentias; ;;, where:; andj are _— . . .

assigned labeld and;j’ in statex. A threshold is randomly z Oz’ =z Px+25 Pxr+4 PO (6)

selected in the range between the minimum and maximum , _

values of¢;;;;» to cut all edges with pairwise potentials Fgr all new states’, we note t_hat(ﬁ) has the same first term,

less than the threshold. This partitioisinto a set of dis- ¢ ®#. Fortunately, evaluating the other two terms @) (

connected subgraphs. We then randomly select one of thds not computationally expensive, because they account for

subgraphs, and then, within the subgraph, again randomI)Pnly a fgvy nodes in th€’C. This motivates our definition
select a connected compone@if) of superpixels that are  °f Heuristic as

neighbors and have the same label. To respect spatial ex-
tents of objects, we jointly re-label all superpixels in tee
lectedC'C’ to the label of one of the neighboring connected A more global heuristic function might better evaluate can-
components in the selected subgraph. This encourages spafidate states, but at the price of increasing computational
tial smoothness, and removes holes within objects in thecomplexity relative to ours.
resulting scene labeling. The Strategy for selectingB best successors is to keep
The successor state is accepted if mutex constraints generatinge’ = TI'(x) until we obtain B new states that
are satisfiede’" Mz’ = 0. We efficiently compute this  satisfy mutex constraintand yield a positive Heuristic,
quadratic as follows. Re-labeling of nodes in the selectedH(x’, ) > 0. As we prove below, the latter requirement
CC does not change the entise but only a part of this  ensures that successors must monotonically increase the QP
vector. Let us denote this difference@s= =’ — x, which objective. BS stops when no successor can satisfy both of
is non-zero for only a few indices of nodes that belong to the the two requirements after a sufficiently long running time.

H(x' z) =20 Pz + 5 D6. (7)



Scorefunction, S(x;), is efficiently computed in at most Pairwise Potential is defined as a sum of color-

B? leaf states by summing already available Heuristic val- smoothness and distance potentials, ;;; = ¢§§'jj, +
uesH(z',x) along the path{zo, ..., a, ... a;}, thatcon- %5 as in B4. The color pairwise potential between
nects the leak; with the rootx (i.e., initial state): two superpixels and; is computed as’ff/'jj/ = g(Ii—1I;),
. if /' = j/, else0, whereg is a negative log-Gaussian with
S(x) = z] o + ZH(th’mt). (8) identity covariancg mgtrix, gnd‘i,Ij are the color .his.-
Pt tograms of superpixelsandj. The distance potential is
defined asp®s,;, = g(si—s;), if i’ = j/, else0, where

Again, note that the first term i8] has to be computed only g, s; are the iocations of superpixals;.
once for all the leaves. The final scene labeling solution is

Mutex estimation. For specifying the mutex matrix/,
chosen among the leaves®&S = arg max,, S(x;).

we make the assumption that the training dataset is suffi-

Itis straightforward to show that maximizing scaén ciently large. We use the frequency of co-occurrence of ob-
(8) amounts to optimizing the QP objective specifieddp (- joct classes in particular spatial layouts, estimatedctire

Thus, BS monotonically increases the QP objective subjecty oy training data. Specifically, we define an augmented

to mutex constraints, given byl), where the solution is ape| set{(object, object, configuratiol) For configura-
found when scoring all the leaves = argmaxa, S(ml)Q' tion labels we use four qualitative spatial relations: tlef
Fr(_)m ®). ourcomplexny|@_(n_-_k:)+B~l~_O((n-k)+n ) “right”, “above”, “below”. For every pair of superpixels
The fl_rst term comes from the initial labeling ofsuperpix- (i,7) in training data we identify their configuration label,
els withk labels. The second term comes from subsequent; o “estimate one of the four spatial relations, relative t
generating and evaluatirigstates at search levels. Select- Then, we count the number of times the true class laels
ing aC'C for generating a new state requifégn®) COMpU- 54 i of every pair of superpixelé, j) occur in the four

tations forn* edges in the CRF, and complexity of verifying - c,nfigurations. When a new image is encountered, every
that a candidate state satisfies the mutex constraints and hapair of its superpixel§i, ) is first assigned one of the four

positive heuristic ig)(n x k). Note that the complexity of configuration labels, and then all corresponding elemehnts o
BS grows linearly with the label set. It is worth noting that .\ ~+rix 17 are set to either oné{ (i1, (i) = 1, if the pair of

BS can be_ea_s_|ly parallelized. Th|s_paraIIeI implementatio object classe&’, ;') has never been observed in the spatial
provides significant speedup resulting average ConNve&JeNC ¢ nsiguration of superpixels, 5) in training; or set to zero,
time less than a second per image on an Intel i7 mach|neM(ii,)7(jj,) — 0, otherwise.

with 8 GB memory.

6. CRF Potentialsand M utex Matrix 7. Results

This section first describes the superpixels segmentation Datasets. We evaluate BS on four benchmark datasets:
method, then specifies the unary and pairwise potentials othe MSRC dataset’[], the Stanford Background dataset
our CRF. After that, it describes how to compute the poten- (SBD) [¢] and the PASCAL VOC 2009 and 201C][
tials and finally specifies how to estimate the mutex matrix datasets. The MSRC dataset consists of 591 images of 21
M. object classes. We duplicate the evaluation setug @ftp

Superpixel segmentation. For a fair comparison with  have the standard split of training and test images. The SBD
the state of the art, we use the same method for extractingdataset has 715 images having seven background classes

superpixels as that used in related watk,[9, 13, 34, 15] — and one generic foreground class. We follow the five fold

namely, the low-level segmentation algorithm &f. | cross validation experiment setup c_ﬂ].[ T_he PASCAL
Unary Potential is defined as a sum of texture, colorand VOC 2009 and 2010 datasets consist of images of 20 ob-

location potentialsg;i: = ¢ + ¢§i°,' + qs'g,C. P is speci- ject classes. Here we train on training images and test on

fied as confidence of a boosted classifier, where each weakalidation images as done i(] and [15. Accuracy is
classifier is a decision stamp based on a multi-class legisti measured as the standard VOC meastire [

regression of texture features. For texture features afyeve For training, we compute the ground-truth label of a su-
superpixeli, we use the response of 17-dimensional filter perpixel as the majority ground-truth class labels of its pi
bank of Gaussian and Laplacians-of-Gaussian filters, as irels. For testing, we compute the label assignment accuracy
[2€]. ¢9'is computed as the negative Log-Mixture of Gaus- at the pixel level. As convergence time of BS and final so-
sian of thel6 x 3 color histogram of superpixelfor class lution depend on the initial state, we initialize the sedah

i'. ¢'% is defined as the negative log-prior (i.e., frequency) a structured prediction of logistic regression. We use top
of the clasg’ appearing at the normalized locationiofVe 50 ranked logistic regression predictions as multipldanhit
use the piecewise training approagh][to learn each ofthe  states, and then run BS for each, and finally select the best
potentials separately. solution. Note that these multiple searches can be paral-



lelized for efficiency.

In each step of BS when the search tree-depth is incre
mented, we choose at mastbest candidates fro2\3 suc-
cessor states of a parent state. Overall, the acceptarce ra
of new states has a large standard deviation over the searchigure 3.Comparison with QPWOM with BS on an image from MSRC
steps, since while generating new states, we discard thosgataset_. Infeasible labeling is done by QPWOM due to theinggautex

. . - constarints.
that do not satisfy mutex constrairtsdo not have positive
heuristic score.

Evaluation of Input Parameters. We evaluate the fol-
lowing input parameters: beam widih and number of ini-
tial states. Fig5 shows that the accuracy increases initially
asB becomes larger, but saturates after= 10. The same
effect can be noticed for varying the number of initial sates
As we increase3, BS keeps a larger number of promising
candidate sates, but after a certain limit (10 in our case),
the beam gets populated with spurious sates. This does not
affect our accuracy, but increases our running time. In our e
experiments, we usB = 10, and set the number of initial- ‘ ‘ ‘ ‘ ‘ , , mopwoM
izations of BS to 50. From figure§ 5, our running time B
has a linear-like profile with respect to both and initial Figure 4. Comparison with baselines on the MSRC dataset. Beam Search
points, when BS is parallelized over the beam. (BS) is our proposed approach, LOGCC is B4 where nodes @tais
 Basslines. We compare BS with the following four base- _UPAE0 I legst leaing and QPuOM s cur pproschaut e
lines, B1-B4. Comparison with the baselines is done on the
MSRC dataset.

B1. Swendsen-Wang cut (SW-cut): SW-cut addresses  solve the optimization * = argmax, 7 (® — vM )z
the intractable CRF inference with the Metropolis-Has$ing (y > max; >, ®;;) while relaxing the integer constraints
(MH) sampling algorithm. MH draws samples from  asa e [0,1]**. This makes the mutex as soft constraints.
the CRF’s posteriorP’(x|(), to generate new states. The The accuracy is 85.4% with running time 22 sec, which is
jumps between the states are reversible, and governed bypprox. 6% less than ours with higher running time. Com-
a proposal distributio®(xz — '). This also cuts CRF  parison to B3 shows solving the optimization in the discrete
edges for choosing a connected componéitt, and up-  domain is more efficient than the relaxed counterpart.

Qates its label to a random label. The proposal is a(;cepted B4. CC updates with logistic regression (LOGCC):

if the acceptance rate,, drawn from/the umfprm distribu-  Here instead of choosing the updated label 6f@& from

tion, U (0, 1), satisfiesy< min{1, gg:jg Z&"’;ﬂg)) }. Here,  the neighboring superpixels, we update the label ofthie
CRF posteriorP(x|G) is computed as inl), and proposal  using a multiclass logistic regression learner. Thus each
distribution is proportional to the number of edges which node of theC'C' is assigned the label having highest class
are cut during”’C' selection as in{3]. For fair comparison, likelihood measured by logistic regression classifier. We
we keep theC'C' selection method the same as ours. The notice that the performance is not improved with the addi-
accuracy of 81.5% is 10% less than ours with higher run- tional learning (Fig4).

ning time of 30-32sec (Tald). This added accuracy comes State of the art comparison: Tab. 1 shows the com-
from exploringB states in every step of the search instead parison with the state-of-art methods on the MSRC dataset,
of only one state as in SW-cut. where our accuracy 4.5% better the previous best approach

B2. QP without mutex constrains (QPWOM): In this [34] which uses QP relaxation as inference for fully con-
baseline, we exclude the hard mutex constraints while con-nected CRF model over pixels. Comparisons on the SBD
ducting the inference. We only keep the constraint that doesand PASCAL 09, 10 datasets are shown in the TabOn
not allow a superpixel to have multiple labels. This justi- the SBD, our approach is slightly worse than the two state-
fies the importance of having mutex constraints to guide the of-the approaches1p, 27]) which, unlike ours, use multi-
search (Fig4). Fig. 3 shows an example where QPWOM scale segments and higher order potentials. On PASCAL
results in an infeasible labeling: superpixels labelechwit 2009 dataset our approach achieves higher accuracy than
‘sky’ are below the superpixels with label ‘boat’. In BS the previous state-of-art approaci) by 2.9%. On PAS-
such labelings are restricted due to hard mutex constraints CAL 2010 dataset, two modified versions of the approaches

B3. QP with relaxed mutex constrains. Here we use  presented in{] and [20] achieve better performances than
a standard QP solver (IBM CPLEX Optimizer) aiming to us. These methods use object segmentation or foreground
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Figure 5. Evaluation of input parameters (B and number of initialtatar
points) on the MSRC dataset. We vary B in X axis and numberioéin
starting points in Y axis. Running times (sec) are shown fecgic B and
number of initial points

Method | MSRC | Testtime
[6] 70.0 N/A
B] 76.4 N/A
27 82.9 30-32s
[19] 86.0 0.2s
[EE] 86.5 N/A
2] 87.0 N/A
Ours 91.5 0.8s

Table 1.State-of-the-art comparison of pixel classification aacy(%)
and computation times(seconds) per image on the MSRC datase

Method | SBD ;
7] 76.4 Method | P09 Me;QOd 21120
o] | 76.9 o0 | 372 El% 2
29 74.1 7 34.1 7 40'1
[19 81.9 23] 35.7 0] 39'7
[27 82.9 Ours 40.1 o) -
Ours 81.1 urs 34.2

Table 2.State-of-the-art comparison of segmentation accuracg{¥ihe
SBD (left), PASCAL VOC 2009 (middle) and 2010 (right) datsse

[nput

GT

Figure 7. Failure case of BS on an image from the Pascal 09 dataset.
Ground Truth = GT.

segmentation as additional cues, whereas we do not use[5

such cues.

Fig. 6 presents qualitative results of our approach on
four datasets and FigZ shows a failure case of BS for an

image from the Pascal 09 dataset where the object class ‘gas

cylinder’is confused with the ‘bottle’ class and back ponti

of the person body is not detected due to the presence of

shadow in the image.

8. Conclusion

We have presented a new approach to scene labeling.
Scene labeling is posed as the MAP assignment of a fully
connected CRF, grounded onto superpixels. The MAP as-
signmentis formulated as quadratic program, and solved us-
ing our new Beam Search (BS) algorithm. BS uses the fol-
lowing three functions to build a search tree, where search
states correspond to candidate scene labelings. The Suc-
cessor function generates successor states from a subset of
parents. The Heuristic function evaluates and select$3top
states for exploration. The Score function finds the ledf tha
provably maximizes the QP objective of our CRF inference.
BS is well-suited for scene labeling, because it: solves the
QP in the discrete domain strictly conforming to useful do-
main constraints, and has low computational costs, allgwin
for alarge number of CRF nodes and full-node connectivity.

Our experimental evaluation demonstrates that BS out-
performs the state of art on some benchmark datasets (e.g.,
MSRC) and achieves competitive performance on the other
datasets (e.g., Stanford Background). Also, when we ac-
count for inconsistency constraints from domain knowl-
edge, performance is improved by 9% on the MSRC dataset
relative to a variant of our approach that ignores the con-
straints. Interestingly, initializing BS with predictisrof
class labels by logistic regression does not notably imgrov
performance over the case when BS is initialized with a ran-
dom selection of class labels. BS is computationally effi-
cient, and can also be easily parallelized.
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