
Monocular Depth Estimation Using Neural Regression Forest

Anirban Roy
Oregon State University

Corvallis, OR 97331
royani@eecs.oregonstate.edu

Sinisa Todorovic
Oregon State University

Corvallis, OR 97331
sinisa@eecs.oregonstate.edu

Abstract

This paper presents a novel deep architecture, called
neural regression forest (NRF), for depth estimation from
a single image. NRF combines random forests and convo-
lutional neural networks (CNNs). Scanning windows ex-
tracted from the image represent samples which are passed
down the trees of NRF for predicting their depth. At every
tree node, the sample is filtered with a CNN associated with
that node. Results of the convolutional filtering are passed
to left and right children nodes, i.e., corresponding CNNs,
with a Bernoulli probability, until the leaves, where depth
estimations are made. CNNs at every node are designed
to have fewer parameters than seen in recent work, but
their stacked processing along a path in the tree effectively
amounts to a deeper CNN. NRF allows for parallelizable
training of all “shallow” CNNs, and efficient enforcing of
smoothness in depth estimation results. Our evaluation on
the benchmark Make3D and NYUv2 datasets demonstrates
that NRF outperforms the state of the art, and gracefully
handles gradually decreasing training datasets.

1. Introduction
This paper address one of the basic vision problems, that

of estimating depth from a single monocular image. Our
goal is to predict the continuous depth values of every pixel.
The image may show a natural outdoor scene with contin-
uous depth values ranging from a few to 80 meters, or an
indoor cluttered living space with continuous depths rang-
ing between 0 and 10 meters, as shown in Fig. 1.

This problem is challenging, since there may be many
distinct 3D scenes depicted in the same 2D image. Also,
histograms of depths in typical outdoor and indoor scenes
are “peaky” (Fig. 1). Hence, it is very likely that a train-
ing set may under-represent or simply not have examples of
certain depth values, which could appear in test data.

To address these challenges, prior work typically uses
graphical models for enforcing smoothness and taking into
account spatial context in depth estimation [21, 22, 1, 14,

Figure 1. Depth histograms extracted from two benchmark
datasets: Make3D dataset [22] (left), and NYUv2 dataset [18]
(right). Depth values are in meters.

12]. More recent work resorts to convolutional neural net-
works (CNNs) [6, 15]. CNNs are appealing as they can
efficiently incorporate multiscale contextual cues, in a feed-
forward manner. However, one of the major bottlenecks of
using CNNs for depth estimation is that their training typ-
ically requires big data. As Fig. 1 illustrates, both indoor
and outdoor scenes may not have a sufficient number of ex-
amples of certain depth values, which makes the training of
CNNs challenging.

In this paper, we present a novel deep architecture, called
neural regression forest (NRF), for monocular depth esti-
mation. As shown in Fig. 2, NRF combines CNNs with
Regression Forest [5, 3] for predicting depths in the con-
tinuous domain via regression. Robustness is achieved by
processing a data sample with an ensemble of binary regres-
sion trees, which we call Convolutional Regression Trees
(CRTs). We fuse individual regression results of every CRT
into a final depth estimation.

Our approach scans a window x across every pixel loca-
tion, and passes x down the CRTs for predicting the depth
of the scanning-window’s center. At every node of CRT,
x is filtered with a CNN associated with that node, and
then passed to left and right children nodes (i.e., CNNs)
with a Bernoulli probability for further convolutional pro-
cessing, until x reaches leaves of the tree. The probability
that x reaches a particular leaf is equal to the product of all
Bernoulli probabilities along the data’s path from the root to
that leaf. The sample undergoes the same procedure in other
CRTs of NRF. Finally, depth estimations made in every leaf
are weighted with the corresponding path probabilities for

1

Figure 2. Neural Regression Forest. (a) A CNN is associated with
every node of a binary Convolutional Regression Tree (CRT) for
performing the convolutional processing of data samples. The
CNN’s output is passed to the left and right children nodes with
a Bernoulli probability. (b) While our CNNs process data samples
as they pass down the CRT, the related deep architecture of [11]
uses a single deep CNN to fully process the data before passing
them through a decision tree.

estimating depth d of x.
NRF has a number of advantages. First, each CRT node

solves a binary problem, instead of a multiclass or regres-
sion problem. This allows for a robust training of our
CNNs, since the left or right routing of data samples may
combine a range of depth values, and thus compensate for
some underrepresented (or missing) depth examples in the
training data. Second, training of all CNNs in CRT is paral-
lelizable. In particular, once a training sample reaches leaf
nodes, we can readily compute the regression loss for ev-
ery node of CRT, and then use these loss functions for si-
multaneously training the corresponding CNNs. Third, we
design CNNs at every node of CRT to have significantly
fewer parameters than seen in recent work. Specifically, we
use “shallow” architectures with only a few convolutional
(1-2) and fully connected levels (1-2). This, in turn, allows
for robust training on smaller datasets, as necessary in our
application domain (Fig. 1). It is note worthy that results
of convolutional filtering at a node are used as input to its
children. Hence, all CNN computations along a path from
the root to the leaf amount to processing the data sample
with a relatively deep CNN. Therefore, despite using “shal-
low” CNNs at each CRT node, we expect to have the usual
benefits of deep processing of data as in related work which
advocates the use of deeper architectures.

In our approach, we also consider more explicit ways of
addressing the small number of training examples of certain
depths. As illustrated in Fig. 3, depths in a neighborhood
of scanning window xi are often smooth. Therefore, for a
more reliable depth prediction of xi, we also consider depth
estimates of neighboring scanning windows xj . Neighbor-
hood relationships for all pairs of pixels (i, j) are efficiently

Figure 3. The window at pixel i and a window at neighboring pixel
j have similar depths, but are different in appearance. Therefore,
they could reach distinct NRF leaf nodes with different probabili-
ties. The final depth prediction for the ith pixel is made by com-
bining the Gaussian at the leaf corresponding to pixel i and also
the Gaussian at the leaf corresponding to the neighboring pixel
j. NRF allows us to effectively increase the (small) number of
training samples by considering the pairs of samples and thus im-
prove depth prediction of window xi by additionally considering
the NRF leaf reached by neighboring window xj .

estimated using the standard bi-lateral filtering [25].
A comparison with the state of the art on the Make3D

[22] and NYU v2 [18] datasets demonstrates our superior
performance in terms of relative error, root mean squared
error, and log-10 error. Also, our results show that NRF
gracefully handles gradually decreasing training datasets.

In the following, Sec. 2 reviews prior work, Sec. 3 spec-
ifies our NRF, Sec. 4 explains how we enforce smoothness
in depth predictions, Sec. 5 derives expressions for learning
CNN and CRT leaf parameters, Sec. 6 specifies details of
our CNN architecture, and Sec. 7 presents our results.

2. Related Work

The section reviews related work on monocular depth
estimation, and combining CNNs and Random Forests.

Depth Estimation. Monocular depth estimation is a
long-standing problem [21, 22, 1, 14, 12, 7, 6, 15]. A single
CNN has been used for depth estimation [6, 15]; however, at
a coarser resolution than that of the input image (e.g., 1/4 of
the original resolution [6]). Depth estimation in the contin-
uous domain has also been considered [24, 9, 27]. However,
these approaches use a pre-constructed 3D shape database
of known objects [24], or rely on class-specific object key-
points and object segmentations [9], whereas our method is
aimed at general scenes.

Random Forests [5, 2, 4, 23] have a long-track record in
computer vision. Recent work integrates decision trees with
multilayer perceptrons for scene labeling [20]. Each node of
a decision tree represents a multilayer perceptron aimed at
learning the node’s split function given hand-crafted image
features. Instead, we use a tree of CNNs to jointly learn

the feature representation and split functions for each node
in the tree. A single deep CNN has been combined with
a random forest for image classification [11]. Outputs of
the top CNN layer are considered as nodes of the decision
tree. Prediction loss is computed at each split node of the
tree and back-propagated to the network for learning CNN
parameters. In contrast, we learn a set of distinct “shallow”
CNNs in every node of the decision tree. Importantly, we do
not back-propagate the loss of depth prediction bottom-up
as in [20]. Rather, we compute distinct loss for every CNN
in the tree, and then use these losses for parallel training of
all CNNs in the tree.

3. Neural Regression Forest
We consider a regression problem, where for each scan-

ning window of the image, x ∈ X , there is a real-valued
depth d ∈ D = [0, dmax]. As the regression model, we use
NRF that consists of a set of CRTs, F = {Ti}. Each CRT
represents a weak regressor. Depth prediction is made by
averaging the predictions over the trees as

pF (d|x) =
1

|F|
∑
T ∈F

pT (d|x), (1)

where pF (·) and pT (·) denote probability distributions.
Each T consists of a set of non-leaf decision nodes (also

called split nodes), VT = {v}, and a set of leaf nodes for
prediction LT = {l}. Each v ∈ VT represents a CNN with
parameterswv . The parameters of all CNNs in T form a set
WT = {wv : v ∈ VT }. Note that CNNs are not associated
with leaf nodes. The architecture of CNNs is explained in
Sec. 6.

A split function fv(x,wv) : X → [0, 1] is defined for
each split node of T . This function is computed by
vth CNN with a single output node, which produces the
value of the split function through a sigmoid function. In-
stead of deterministic, we use a stochastic split function,
as in [11]. Specifically, fv(x,wv) returns the Bernoulli
probability of directing x to the left or right child node.
In this way, x is passed through T reaching every leaf
l ∈ LT with the corresponding probability P (l|x,WT),
where

∑
l∈LT

P (l|x,WT) = 1. Following [11], we define

P (l|x,WT) =
∏

v∈VT

fv(x;wv)L(l,v)(1− fv(x;wv)R(l,v),

(2)
where L(l, v) and R(l, v) indicate whether l belongs to the
left and right subtree of v, respectively. Note that the prod-
uct is computed by considering all the split nodes in the tree.
For split nodes v which do not lie on the path to l, we have
L(l, v) = R(l, v) = 0. Therefore, the product in (2) effec-
tively computes the probability of the sample’s path from
the root to the leaf l.

Each leaf l ∈ LT holds a Gaussian probability dis-
tribution, p(d;θl), with parameters θl = (µl, σl), over
depth values D. The set of all Gaussian parameters,
ΘT = {θl : l ∈ LT }, are computed from training samples
that reached leaf nodes of T during training.

When x reaches the leaves in T , prediction for its depth
is given by

pT (d|x) =
∑
l∈LT

p(d;θl)P (l|x,WT). (3)

4. Enforcing Smoothness in Depth Predictions
NRF allows an efficient way of enforcing smoothness in

pixel depth predictions across the image. As mentioned in
Sec. 1, and illustrated in Fig. 3, neighboring pixels in the im-
age at similar depths, i and j, may define image windows
xi and xj with significantly different appearance. When
passing xi and xj through T , the convolutional neural pro-
cessing in every split node v of T may estimate different
values of split functions fv(xi,wv) and fv(xj ,wv), result-
ing in different probabilities of xi and xj reaching a partic-
ular leaf l ∈ L.

To enforce smoothness in depth predictions, we modify
the depth likelihood of every xi given by (3). The mod-
ification is based on the depth likelihoods of neighboring
samples xj , j ∈ N(i), and appearance similarity between
xi and xj estimated by bi-lateral filtering [25]. Thus, when
xi reaches the leaves in T , we compute the modified prob-
ability distribution of depth d of xi as

p̄T (d|xi) =
∑

j∈N(i)

κijpT (d|xj), (4)

where i’s neighborhood N(i) is defined to also include i,
i ∈ N(i). κij is the weight of bi-lateral filtering, estimated
based on the Euclidean distance between the HSV color his-
tograms of windows xi and xj and the Euclidean distance
between locations of i and j in the image as

κij ∝ exp(−‖ zi − zj ‖
2

σ2
z

) exp(−‖ hi − hj ‖2

σ2
h

) (5)

where zi = (xi, yi) is the pixel location in the image, hi

is the HSV color histogram of window xi, and σz = 3 and
σh = 30 control sensitivity [25]. Note that for j = i, the
weight κii has the largest value. We normalize the weights
such that

∑
j∈N(i) κij = 1.

The effect of using bi-lateral filtering in (4) is that only
neighboring pixels of iwith high color similarity with i con-
tribute to the depth prediction of i. This means that our
bi-lateral filtering is not a post-processing step. Rather, it
is integrated with our training and inference. Note that bi-
lateral filtering can be done only once per image. Hence, the
above modification of computing p̄T (d|xi,W,Θ), given by

(4), minimally increases our complexity. We use an off-the-
shelf linear-time implementation for the bi-lateral filtering
[19]. Our results show that this modification in (4) improves
depth estimation, producing smoother depth maps.

5. Learning

Our learning of each T estimates the following parame-
ters: 1) Θ - the set of Gaussian parameters in the leaf nodes,
and 2)W - the set of CNN parameters of all the split nodes.
For simplicity, below, we drop the explicit reference to T in
our notation. This learning differs from the traditional su-
pervised setting, because there is no ground truth for direct-
ing a training sample to the left or right in the tree. Thus, we
learn (Θ,W) by maximizing the log-likelihood of the train-
ing data, as in [20, 11]. Given a training set S ⊂ X × D,
we define the empirical loss as

R(W,Θ;S) =
1

|S|
∑

(x,d)∈S

L(W,Θ;x, d) (6)

where L(W,Θ;x, d) is the negative log-likelihood of the
depth prediction for x

L(W,Θ;x, d) = − log p(d|x), (7)

where p(d|x) is given by (3).
Note that we also specify an alternative training, when

smoothing is enforced in depth estimation. For this
training, we modify the definition of the empirical loss
to R̄(W,Θ;S) specified in terms of the negative log-
likelihoods of the smoothed depth predictions

L̄(W,Θ;x, d) = − log p̄(d|x), (8)

where p̄(d|x) is given by (4).
The learning objective is defined as

(W∗,Θ∗) = arg min
W,Θ

R(W,Θ;S), (9)

and similarly for the case when we use R̄(W,Θ;S).
To solve (9), we alternate the following two steps. In the

first step, we fixW , and optimize for Θ, and in the second
step, we fix Θ and optimize forW . Learning iterations end
after convergence, or when they reach a maximum number
of iterations.

5.1. Learning CCN Parameters for the Split Nodes

In this section we describe how to learn the CNN param-
eters for the split nodes v ∈ V , wv . We compute the gradi-
ent of the log-loss of the tree, L(W,Θ;x, d) given by (7),
with respect to wv . The gradient is first computed for the
final output node of the CNN and then passed to the lower

layers of the CNN using the standard backpropagation [13].
The gradient at the final output node is computed as

∂ L(W,Θ;x, d)

∂wv
=
∂ L(W,Θ;x, d)

∂fv(x,wv)

fv(x,wv)

∂wv
, (10)

where only the first term depends on the tree, and the sec-
ond term can be computed as the standard derivative of the
sigmoid function. The first term can be computed as

∂ L(x, d)

∂fv(x)
= fv(x)

pLvr
(d|x)

pT (d|x)
+ (1− fv(x))

pLvl
(d|x)

pT (d|x)
, (11)

where L(x, d) and fv(x) are the shorthand notation for
L(W,Θ;x, d) and fv(x,wv), respectively; pT (d|x) is
given by (3), and pLvr

(d|x) and pLvl
(d|x) are analo-

gous to pT (d|x) but defined for the sub-tree rooted at
the right and left child of v, vl and vr, respectively:
pLvr

(d|x) =
∑

l∈Lvr
p(d;θl)P (l|x,W) and pLvl

(d|x) =∑
l∈Lvl

p(d;θl)P (l|x,W). Intuitively, the gradient of a
split node is computed by combining the gradients of all
the nodes in the subtree rooted at that split node. Note that
this gradient computation can be easily extended for the loss
function in (8) as the probability distribution in (4) is just a
weighted sum of the distributions defined in (3).

From (11), the gradient ∂L(W,Θ;x,d)
∂fv(x,wv) at v can be recur-

sively computed bottom-up by combining the loss gradients
from v’s children vl and vr. Thus, our gradient computation
starts at the leaf nodes, and gets propagated to the root in a
bottom up fashion. The gradient of loss at a leaf node l ∈ L
is computed as

p(d;θl)P (l|x,W)

pT (d|x)
. (12)

After computing ∂L(W,Θ;x,d)
∂fv(x,wv) at every node v, we pro-

ceed with simultaneous training of all CNNs in T .

5.2. Learning the Leaf Distribution

For each leaf, we estimate the probability of the train-
ing samples reaching that node P (l|x,W). This probabil-
ity represents a weight (i.e., relative significance) of train-
ing samples collected in the leaf. We use these weights to
fit a Gaussian distribution on the weighted depth values of
training samples that reached the leaf. Specifically, we fol-
low the [26] to empirically estimate the Gaussian parame-
ters θl = (µl, σl) for the leaf as

µl =
1∑

(xi,di)∈S
P (l|x,W)

∑
(xi,di)∈S

P (l|xi,W) · di

σl =
1∑

(xi,di)∈S
P (l|xi,W)

∑
(xi,di)∈S

P (l|xi,W)(di − µl)
2,

(13)
where S is the set of training data.

6. CNN Architecture
We observe that as data samples are passed down the

tree, the probability of data reaching a split node decreases.
Moreover, the estimated depth distribution becomes more
reliable as the data samples are becoming increasingly
sorted by passing down the tree. Thus, we expect that it
becomes easier to learn the split functions as we go down
the tree [20].

To address this observation, we adjust the complexity of
the CNN architecture along the tree height. The CNN ar-
chitecture is determined by the number of: 1) convolution
+ pooling layers, and 2) fully connected perceptron layers.
For the top one third of the tree height, we use CNNs with
2 convolution + pooling layers, and 2 fully connected per-
ceptron layers. For the lower one third of the tree height
(closer to the leaf nodes), we use CNNs with 2 convolution
+ pooling layers and 1 fully connected perceptron layer. Fi-
nally, for the bottom third of the tree height, we use CNNs
with 1 convolution + pooling layer and 1 connected percep-
tron layer. We experimentally found this architecture suit-
able for depth prediction. We present the overview of the
tree architecture in the Fig. 2. In our experiments, we use
NRF with 100 binary trees, each with height 10.

A data sample is defined as a pair of an image window
at a pixel location and its corresponding depth label. The
feature of the window is computed by CNN. In our ex-
periments, we consider two window sizes: 100 × 100 and
150×150 for the Make3D and NYUv2 datasets based on the
size and complexity of the dataset. This window around the
pixel is used to capture context around the pixel. The con-
volutional outputs of the CNN at a split node are used as the
input window of the CNNs at the children split nodes. Thus
an input window passes through a series of convolutions
along the path from root to the leaf node. Fig. 2a shows that
the input window size decreases for the CNNs at split nodes
closer to the leaves. This is due to the convolution and pool-
ing that reduce the size of the input window. This allows us
to learn multi-scale features through the CNNs in the split
nodes along the data path trough the tree. Multi-scale fea-
tures are important for depth estimation [22, 21].

Unlike [20], we provide only raw color values around
the pixel and use convolution kernels to automatically learn
the features required to compute the split function. Our tree
architecture effectively resembles a deep CNN framework
which consists of a set of small CNNs. Our architecture
is different from the neural decision forest architecture pre-
sented in [11], where a decision forest is used on top of a
single deep CNN. In this case all the split nodes correspond
to the same output layer of the CNN. We use the output of
the parent split node as the input for the CNNs at the child
split node.

We use a modified ImageNet initialization of convolu-
tion layers by sampling image patches. In our experiments,

multiple random initializations produced statistically sim-
ilar results to those reported in the Sec. 7. Note that the
training and inference of the trees can be done in parallel.
Inference takes less than 1sec per image and training takes
8-10 hours in our parallel implementation on a standard PC
with a nvidia Tesla k80 graphics card.

7. Results

Datasets. We evaluate our approach on two benchmark
datasets: the Make3D [22] and the NYUv2 [18]. These
datasets are commonly used by the state of the art ap-
proaches for evaluating the depth estimation performance.
The Make3D dataset consists of 534 images of outdoor
scenes, where 400 images are used for training and 134 im-
ages are used for testing. Depth is estimated by a laser scan-
ner and the depth ranges from 0 to 80 meters. The NYUv2
dataset consists of 1449 indoor images where the depth is
estimated by a Kinect device. On this dataset, we follow
the standard split of 795 training images and 654 test im-
ages. The depth ranges from 0 to 10 meters for this dataset.

Performance metrics. We use three standard error met-
rics which are commonly used by the state of the art meth-
ods [21, 22, 14, 6] to estimate the accuracy of monocular
depth prediction. These errors are defined for each pixel
and averaged across all the pixels in an image and all im-
ages in a dataset. Lets assume d∗ and d̂ are the ground-truth
and predicted depth for a pixel then the errors are defined as
1) relative error (rel): |d∗ − d̂|/d∗, 2) root mean squared

error (rms):
√∑

(d∗ − d̂)2, and 3) log 10 error (log 10):

| log d∗ − log d̂|.
Baselines. We propose the following baselines and the

comparisons to the baselines are presented in Tab. 1.
CNN - regression forest (CNN-RF): In this baseline, we
use a similar framework proposed by [11]. A single CNN
is learned for the forest, and its outputs are treated as the
split node for the regression trees of the forest. Thus, split
functions in every node share the same CNN parameters
through a single deep network. We consider same input
windows for the pixels as we use for out experiments.
NRF outperforms this baseline which suggests that a set
of small CNN performs better than a large network for the
small datasets.
NRF without input forwarding for CNNs (NRFw/oF):
In this baseline, for each CNN in the split node, we use
only RGB input window instead of convolutional outputs
from the parent split node. As suggested by [20], the size
of input windows for the split nodes is gradually reduced
as we go down the tree along its depth. NRF outperforms
this baseline, which suggests forwarding the convolutional
outputs as the inputs to the lower split nodes can effectively
model a better feature learning framework then considering
RGB inputs to each split node.

Make3D NYU v2
rel log10 rms rel log10 rms

CNN-RF 0.361 0.148 15.10 0.35 0.131 1.2
NRFw/oF 0.312 0.128 13.8 0.24 0.09 0.95
NRFw/oN 0.29 0.126 13.7 .22 0.088 0.936

Ours 0.26 0.119 12.40 0.187 0.078 0.744
Table 1. Comparison with the baselines on Make3D and NYUv2
datasets.

Make3D NYU v2
rel log10 rms rel log10 rms

[22] 0.370 0.187 - 0.349 - 1.214
[1] 0.362 0.168 15.8 - - -

[16] 0.338 0.134 12.60 0.335 0.127 1.06
[10] 0.361 0.148 15.10 0.35 0.131 1.2
[12] 0.364 0.148 - - - -
[14] 0.379 0.148 - - - -
[6] - - - 0.215 - 0.907

[15] 0.307 0.125 12.89 0.230 0.095 0.824
[27] - - - 0.305 0.122 1.04
Ours 0.26 0.119 12.40 0.187 0.078 0.744

Table 2. Comparison with the state of the art on Make3D and NYU v2
datasets.

NRF without the neighborhood information
(NRFw/oN): In this baseline, we predict the depth of
a pixel only based on its appearance without considering
the information of its neighboring pixels. Specifically,
we use (3) instead of (4) for the depth prediction in a
tree. In our full approach, for each pixel, we consider
10 neighboring windows for capturing the neighborhood
depth information. The results are shown in the Tab. 1.
This proves that the neighboring pixels provide important
information for depth prediction. Moreover, considering
neighboring information results in smoother depth maps
(Fig. 5 and 6).

Comparison with state of the art: A comparison with
the state of the art is presented in Tab. 2. For fair com-
parison, we follow the same experimental setup, and use
the same standard metrics as done by the state-of-the-art
methods. We achieve better performance on both datasets
in terms of standard error metrics.

Robustness against the amount of training data: To
evaluate the sensitivity of NRF against the amount of train-
ing, we simulate the behavior of our approach on both
datasets by gradually reducing the training data. Instead of
using the complete training set, we randomly sample a frac-
tion of training data for training. The plots in Fig. 4 show
that the variation of the error values (‘rel’ and ‘log 10’)
while the amount of training data is gradually reduced. Note
that both error metrics increase slowly as the amount of
training data is gradually reduced. We believe that this is
due to our ensemble architecture of the forest, and account-
ing for the smoothness of neighboring depths.

Qualitative results: We present the qualitative results on
the Make3D and the NYUv2 datasets in Fig. 5 and Fig. 6
respectively. We compare our approach with the baseline

Figure 4. Variation of ‘rel’ and ‘log 10’ errors with respect to the
amount of training data on Make3D and NYUv2 datasets.

Figure 7. A failure case for an image from the NYUv2 dataset with
highly textured regions and object clutter.

which does not consider smoothness is depths of neigh-
boring pixels. We observe that accounting for smoothness
produces more accurate depth maps. Recall that the neigh-
borhoods are estimated by bi-lateral filtering. Since the bi-
lateral filter is able to preserve edges, the resulting depth
maps tend to respect object boundaries.

Failure case: In Fig. 7, we present a case where our ap-
proach fails to produce an accurate depth map for an image
in the NYUv2 dataset. As our depth prediction is guided
by appearance, regions with high and random texture might
create confusion in our prediction. Note that the image is
highly textured and cluttered with many different objects.
This causes error as shown in Fig. 5 and Fig. 6.

8. Conclusion
We have formulated NRF for the problem of monocu-

lar depth estimation. A “shallow” CNN with maximum
two convolutional layers is associated with every node in
the regression trees of NRF. The convolutional output of a
CNN is used as input to the left and right children CNNs
in the tree, effectively allowing for deep convolutional pro-
cessing of data samples. In this way, scanning windows

Figure 5. Qualitative results on the Make3D dataset. Note that accounting for smoothness in a neighborhood results in more accurate depth
maps which better respect object boundaries.

Figure 6. Qualitative results on the NYUv2 dataset. Note that accounting for smoothness in a neighborhood results in more accurate depth
maps which better respect object boundaries.

extracted from the image are passed down the tree, until
the leaves representing weak depth estimators. We have ad-
ditionally accounted for smoothness in depths across pixel
neighborhoods, which in turn are estimated using bilateral
filtering. We have evaluated our approach on two bench-
mark datasets: Make3D and NYUv2. Both datasets provide
a relatively small and unbalanced set of training depth ex-
amples. Results demonstrate that NRF is able to robustly
address these challenges, and outperform the state of the art,
due to: (a) its ensemble architecture consisting of the forest
of trees, (b) “shallow” CNN architecture with significantly
few parameters than seen in recent work, and (c) accounting
for smoothness in depths. Also, our experiments show that
NRF’s performance gracefully downgrades when the size of
the training dataset gradually decreases.

Acknowledgment
This work was supported in part by grant NSF RI

1302700. We would like to thank Jose Roberto Alvarez and
Bennett Wilburn from Huawei Media Technologies Lab,
CA for fruitful discussions and feedback. A part of the work
was developed during Roy Anirban’s internship in Huawei
Media Technologies Lab, CA.

References
[1] D. Batra and A. Saxena. Learning the right model: Efficient

max-margin learning in laplacian CRFs. In Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on,
pages 2136–2143. IEEE, 2012. 1, 2, 6

[2] A. Bosch, A. Zisserman, and X. Munoz. Image classification
using random forests and ferns. In Computer Vision, 2007.

ICCV 2007. IEEE 11th International Conference on, pages
1–8. IEEE, 2007. 2

[3] L. Breiman. Random forests. Machine learning, 45(1):5–32,
2001. 1

[4] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Seg-
mentation and recognition using structure from motion point
clouds. In Computer Vision–ECCV 2008, pages 44–57.
Springer, 2008. 2

[5] A. Criminisi and J. Shotton. Decision forests for computer
vision and medical image analysis. Springer Science & Busi-
ness Media, 2013. 1, 2

[6] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction
from a single image using a multi-scale deep network. In
Advances in Neural Information Processing Systems, pages
2366–2374, 2014. 1, 2, 5, 6

[7] S. R. Fanello, C. Keskin, S. Izadi, P. Kohli, D. Kim,
D. Sweeney, A. Criminisi, J. Shotton, S. B. Kang, and
T. Paek. Learning to be a depth camera for close-range hu-
man capture and interaction. ACM Transactions on Graphics
(TOG), 33(4):86, 2014. 2

[8] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning
hierarchical features for scene labeling. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 35(8):1915–
1929, 2013.

[9] A. Kar, S. Tulsiani, J. Carreira, and J. Malik. Category-
specific object reconstruction from a single image. CVPR,
2015. 2

[10] K. Karsch, C. Liu, and S. B. Kang. Depth transfer: Depth
extraction from video using non-parametric sampling. Pat-
tern Analysis and Machine Intelligence, IEEE Transactions
on, 36(11):2144–2158, 2014. 6

[11] P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Bulo.
Deep neural decision forests. In ICCV, 2015. 2, 3, 4, 5

[12] M. Lam, J. R. Doppa, S. Todorovic, and T. G. Dietterich.
HC-search for structured prediction in computer vision. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4923–4932, 2015. 1, 2, 6

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 1998. 4

[14] B. Liu, S. Gould, and D. Koller. Single image depth esti-
mation from predicted semantic labels. In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on,
pages 1253–1260. IEEE, 2010. 1, 2, 5, 6

[15] F. Liu, C. Shen, and G. Lin. Deep convolutional neural fields
for depth estimation from a single image. 2015. 1, 2, 6

[16] M. Liu, M. Salzmann, and X. He. Discrete-continuous depth
estimation from a single image. In Computer Vision and Pat-
tern Recognition (CVPR), 2014 IEEE Conference on, pages
716–723. IEEE, 2014. 6

[17] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. CVPR, 2015.

[18] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor
segmentation and support inference from RGBD images. In
ECCV, 2012. 1, 2, 5

[19] F. Porikli. Constant time O(1) bilateral filtering. In Com-
puter Vision and Pattern Recognition, 2008. CVPR 2008.
IEEE Conference on, pages 1–8. IEEE, 2008. 4

[20] S. Rota Bulo and P. Kontschieder. Neural decision forests for
semantic image labelling. In Computer Vision and Pattern
Recognition (CVPR), 2014 IEEE Conference on, pages 81–
88. IEEE, 2014. 2, 3, 4, 5

[21] A. Saxena, S. H. Chung, and A. Y. Ng. Learning depth from
single monocular images. In Advances in Neural Information
Processing Systems, pages 1161–1168, 2005. 1, 2, 5

[22] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3D
scene structure from a single still image. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 31(5):824–
840, 2009. 1, 2, 5, 6

[23] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook,
M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman,
et al. Efficient human pose estimation from single depth
images. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 35(12):2821–2840, 2013. 2

[24] H. Su, Q. Huang, N. J. Mitra, Y. Li, and L. Guibas. Estimat-
ing image depth using shape collections. ACM Transactions
on Graphics (TOG), 33(4):37, 2014. 2

[25] C. Tomasi and R. Manduchi. Bilateral filtering for gray and
color images. In Computer Vision, 1998. Sixth International
Conference on, pages 839–846. IEEE, 1998. 2, 3

[26] P. Vincent, Y. Bengio, et al. Locally weighted full covariance
gaussian density estimation. Technical report, Technical re-
port 1240, 2003. 4

[27] W. Zhuo, M. Salzmann, X. He, and M. Liu. Indoor scene
structure analysis for single image depth estimation. In
CVPR, 2015. 2, 6

