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Abstract

Self- and cross-attention in Transformers provide for
high model capacity, making them viable models for ob-
ject detection. However, Transformers still lag in per-
formance behind CNN-based detectors. This is, we be-
lieve, because: (a) Cross-attention is used for both clas-
sification and bounding-box regression tasks; (b) Trans-
former’s decoder poorly initializes content queries; and (c)
Self-attention poorly accounts for certain prior knowledge
which could help improve inductive bias. These limitations
are addressed with the corresponding three contributions.
First, we propose a new Detection Split Transformer (DE-
STR) that separates estimation of cross-attention into two
independent branches — one tailored for classification and
the other for box regression. Second, we use a mini-detector
to initialize the content queries in the decoder with classi-
fication and regression embeddings of the respective heads
in the mini-detector. Third, we augment self-attention in the
decoder to additionally account for pairs of adjacent object
queries. Our experiments on the MS-COCO dataset show
that DESTR outperforms DETR and its successors.

1. Introduction

This paper addresses a basic vision problem, that of
object detection in images. Recently proposed DEtec-
tion TRansformer (DETR) [2] and its successors, such
as, e.g., Conditional DETR (C-DETR) [19] and Anchor
DETR [25], have been demonstrated as competitive per-
formers on the benchmark MS-COCO dataset [15], de-
spite using a simpler backbone network with single-scale
features than more complex state-of-the-art (SOTA) CNNs
[20,22,24,27]. This success has been ascribed to Trans-
formers’ high model capacity, since they estimate self-
attention and cross-attention, thereby explicitly capturing
relationships between parts and larger spatial contexts in the
image. However, recent findings [3, 5] suggest that Trans-
formers lack certain inductive biases possessed by CNNs
to help them constrain the hypothesis space. Therefore,

Transformers require longer training (e.g., DETR needs 500
training epochs) and larger amount of training data to com-
pensate. In this work, we identify and address three key
limitations of the mentioned family of detector Transform-
ers, and thus improve their inductive bias.

The first limitation concerns cross-attention. DETR’s de-
coder computes cross-attention between the encoder’s out-
put embedding and a set of learnable object queries, for es-
timating relationships between these queries and the entire
image context. This cross-attention is then used for both
classification and bounding-box regression of the queries.
The same holds for other Transformer detectors.

Motivated by the success of FCOS detector [24] that
splits the classification and box regression heads, as our
first contribution, we propose to split estimation of cross-
attention into two independent branches — one for classi-
fication, and the other for regression. Hence the name of
our new Detection Split Transformer (DESTR). Since the
branches will not share weights, each will likely focus on
a different set of optimal features, as desired, rather than
jointly use suboptimal features for both classification and
regression. This is illustrated in Fig. 1, where we show
cross-attention maps computed by DETR, C-DETR, and
our DESTR. As can be seen, DETR’s cross-attention ap-
pears to focus on most discriminative object parts which
may not necessarily be informative for box regression. On
the other hand, C-DETR’s cross-attention seems to primar-
ily focus on shape cues. DESTR’s classification and re-
gression cross-attention maps differ, as intended, where the
former highlights more class-characteristic regions to help
classification, and the latter has higher values on horizontal
and vertical edges in the image to guide the box prediction,
and looks more dilated to the same regions.

The second limitation concerns the poor initialization
and need for long training of content queries in the decoder.
Features of the learnable object queries in the decoder con-
sist of the content embedding (a.k.a. content query) and po-
sitional embedding (a.k.a. spatial query). DETR learns the
positional embedding so it captures a spatial distribution of
objects in training images [2]. However, the content queries



Figure 1. Cross-attention maps estimated by: (a) DETR trained with 500 training epochs,
and (b) C-DETR trained with 50 epochs. (c) DESTR’s classification cross-attention fo-
cuses on discriminative object parts. (d) DESTR’s regression cross-attention is more di-
lated to the same region comparing to (c). DESTR is trained with 50 epochs. R50 is used as
backbone for all these three models. For better visualization, the figure shows square-root
values of cross-attention. Warmer colors indicate higher cross-attention values.

are inferred for every image from scratch. This makes train-
ing difficult due to the higher dependence of cross-attention
on the content than spatial query [2, 19], especially in the
initial stages of training when the content queries are not
“strong” enough to match well the positional embedding of
the keys. To address these issues C-DETR [19]: (a) sepa-
rates the content and positional dot-products when comput-
ing cross-attention, thereby relaxing their inter-dependence;
and (b) conditions the positional embedding of each query
with the corresponding decoder output embedding of the
previous stage, and thus constrains the content to focus
more on discriminative regions within the previously pre-
dicted bounding box of the query. We adopt these modifi-
cations of C-DETR, since they enable a significant decrease
of training epochs, and further extend the framework with
the remaining two contributions.

As our second contribution, we propose to learn not only
the positional embedding, but also the content embedding,
and to do so by following our first contribution — i.e., to
learn the content as the separate classification and regres-
sion embeddings. To this end, we insert a mini-detector
after the encoder to predict a set of initial object propos-
als. Features of these object candidates, used by the mini-
detector’s classification and regression heads, can be passed
to the decoder and thus initialize the classification and re-
gression queries, instead of inferring them from scratch.
Our grounding of object queries on initial object propos-
als is expected to facilitate training. Importantly, this will
also enable DESTR to consider a flexible number of object
queries in both training and testing, rather than use a pre-
defined fixed number as in DETR and C-DETR.

Finally, as out third contribution, we seek to incorporate
certain prior knowledge in self-attention of the decoder, and
in this way better constrain the hypothesis space. We ex-
pect that object instances occur within similar surrounding
spatial contexts, which could improve estimation of self-
attention in the decoder. Therefore, instead of computing

Pair self-attention: Since

Figure 2.
the remotes occur next to the cats

and couch, we increase their atten-
tion by considering attention of pairs

((catl, remotel),(remote2, cat2)) , and

((couch, remotel),(couch, remote2)) .

the common self-attention for every query in isolation, we
compute pair self-attention for every two pairs of queries,
where each pair has been predicted to be spatially adjacent
by the previous decoder stage. That is, we condition our
pair self-attention on the corresponding decoder output of
the previous stage. The example in Fig. 2 illustrates advan-
tages of the proposed strategy. One of the remote controllers
is partially occluded, and, therefore, provides a low atten-
tion to another fully visible remote. But since both remotes
occur next to the cats and couch, we could increase their
attention by considering attention of pairs ((left cat, left re-

mote), (right remote, right cat)) and ((couch, left remote),

(couch, right remote)). We do so without increasing com-
plexity to quadratic in the number of queries.
In summary, our three main contributions include:

1. The classification and regression branches in the
decoder compute separately their respective cross-
attentions, instead of sharing the same cross-attention;

2. A mini-detector is inserted after the encoder for learn-
ing classification, regression and positional embed-
dings. Embeddings of the object queries in the decoder
are initialized with the corresponding classification, re-
gression and positional embeddings of object propos-
als predicted by the mini-detector;

3. Pair self-attention of the queries and their adjacent spa-
tial contexts is estimated in the decoder, instead of the
common self-attention for every individual query.

Our experiments demonstrate that DESTR outperforms
C-DETR and other recent Transformer detectors with a sig-
nificant margin on MS-COCO-val [15]. DESTR is also a
competitive performer relative to recent CNN-based detec-
tors; although, a direct comparison with CNNs is unfair,
since they typically use multi-scale features and more com-
plex backbone networks.

In the following, Sec. 2 reviews related work, Sec. 3
specifies DESTR, Sec. 4 presents our experimental evalu-



ation, and Sec 5 concludes the paper.

2. Related work

Object detection is a long-standing problem, and review-
ing the relevant literature is beyond our scope. We focus on
discussing the most related work.

Anchor-free approaches [7, 10-13,21,21,24,26,28,29]
have gained much interest, because of their relatively simple
architecture and superiority in performance. They replace
hand-crafted anchor boxes of anchor-based methods with
reference points. For example, CornerNet [ | 1] first predicts
most likely corner-points, and then groups them with Asso-
ciative Embedding. Alternatively, CenterNet [7] regresses
the object centers. These two strategies are advanced in
FCOS [24] that directly regresses bounding boxes to refer-
ence points and predicts their centerness on the multi-scale
feature maps from FPN [14]. In addition, FCOS uses two
separate FCN branches [17] for classification and regres-
sion, thereby explicitly learning separate features for each
of the two tasks.

Inspired by FCOS, we disentangle the content embed-
ding of DETR and C-DETR into the classification embed-
ding and separate regression embedding, by the means of
splitting estimation of cross-attention into the classification
and regression branches which do not share parameters. In
addition, we use one-scale FCOS as the mini-detector.

Transformer-based detectors [2, 8, 19,23, 25,30] cast
object detection as a direct set prediction problem. In com-
parison with the aforementioned anchor-free CNNs, Trans-
former detectors have a more streamlined architecture and
do not require heuristic post-processing, such as, e.g., non-
maximum suppression (NMS). However, DETR [2] re-
quires very long training time. A number of DETR vari-
ants [8,19,23,25,30] have addressed this issue. For exam-
ple, Deformable DETR [30] replaces the global dense at-
tention with deformable one, so that it only needs to attend
to a small set of sampling points from multi-scale image
features. However, Deformable DETR requires additional
learning of offsets for point sampling. TSP-FCOS or TSP-
RCNN [23] removes cross-attention from the decoder, and
uses instead the detection head of FCOS or R-CNN. This,
however, results in a hybrid architecture that is not well
streamlined. Anchor DETR [25] encodes anchor points as
the object queries, but they require a predefined set of an-
chors. SMCA [&] initially predicts the centers and scales of
candidate objects for generating a Gaussian-weighted spa-
tial map of object locations, which is then used to constrain
estimation of cross-attention to focus more on high values in
the spatial map. We find their constraint too strong, because
the initial object proposals may not be accurately detected,
and also cross-attention usually requires larger spatial ex-
tents for reasoning (see Fig. 1).

C-DETR [19] takes another direction toward reducing

training time. For each query, it learns a conditional posi-
tional embedding from the corresponding previous decoder
output embedding. This motivates us to additionally condi-
tion the content embedding on features of object proposals
which have predicted by the mini-detector, instead of in-
ferring the content embedding from scratch as in C-DETR.
Thus, unlike C-DETR, we enable learning of both con-
tent and positional embeddings, and use the decoder as a
context-guided refinement module.

The literature also presents other Transformer-based de-
tectors, such as ViT [6] and SWIN [16] which make contri-
butions in the encoder part, aimed at effectively enhancing
the feature embedding with the entire image content. In
contrast, our three contributions are related to the decoder.

3. Specification of DESTR

Fig. 3 shows an overview of our DESTR. The encoder
remains the same as in DETR. A mini-detector, equipped
with a classification branch and box regression branch, is
inserted between the encoder and decoder for initial predic-
tion of object candidates. The output classification, regres-
sion, and positional embeddings of the mini-detector are
passed to the detector to initialize the corresponding three
types of embeddings of the object queries. Note that the
object proposals do not serve as anchors, and they are not
used for any specific constraints in the decoder. Their fea-
tures are only used for initialization of the object queries,
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Figure 3. An overview of DESTR. DETR is extended with a mini-
detector (the cyan block) whose learned embeddings of the clas-
sification (cls) and box regression (reg) branches are passed to
the decoder for initializing the object queries. The decoder splits
cross-attention for classification (cls) and regression (reg). As in
C-DETR, the positional embedding (pos) is conditioned on the de-
coder’s previous output. The stop gradient (SG) is applied before
the mini-detector’s output is passed to the decoder. All compo-
nents of DESTR are trained end-to-end.



which are then further refined in the decoder. The decoder
splits computation of cross-attention into the classification
and regression branches. As in C-DETR, the positional em-
bedding is conditioned on the output embedding of the de-
coder’s regression branch from the previous stage.

In the following, we specify the mini-detector and cer-
tain modules in the decoder that represent our contributions.
Since the remaining components of DESTR are the same as
in DETR and C-DETR, their description is omitted.

3.1. The Mini-detector

The mini-detector is aimed at initial object detection
which will be further refined by the decoder. Therefore,
to keep model complexity in check, the mini-detector has a
relatively simple architecture — much simpler than existing
detectors (e.g., FCOS).

As input, the mini-detector takes enhanced features of
the encoder’s last layer, F' € REXWXC where H , W de-
note the feature map size, and C'is the number of channels.
As in FCOS [24], the mini-detector predicts an object for
every cell feature f(; ;) of F at location (i, j). The object
prediction consists of classification c(; ;) and regression of
the bounding box center (b, b, ), height by,, and width b,
b jy = [bex, bey, buw, by, defined as

FENS(FCN" (£ 1)),
FEN"(FCN"%(f(; ;))) + [s(;.;, 0, 0])),
S(i,j) = FCNP*(p(; ), P(,j) = sinusoidal([i , j]),

C(;,5) = sigmoid

(
b(; jy = sigmoid(

)]
where FCN® and FCN™¢ denote two separate four-layer
fully convolutional networks followed by a classification
head and box head, respectively; s denotes unnormalized
2D coordinates of the reference point for each cell, esti-
mated by another four-layer FCN which embeds the posi-
tional encoding of each cell p € P, P € REXWxC,

As in [2], the predicted objects are supervised with a
set-based loss that forces the one-to-one correspondence
between the predictions § = {y, = (c,,b,) : n =
1,..., N} and the ground-truth set of objects y via bipar-
tite matching. After the bipartite matching, each matched
prediction is supervised with the standard loss defined as
a linear combination of a negative log-likelihood for class
prediction and a box loss, as in [2]. As shown in Fig. 3,
to avoid over-fitting, we apply the stop-gradient operation
before the mini-detector’s output is passed to the decoder.

Since the mini-detector makes predictions at every cell
location (4, j) of I, we select a subset of K predictions with
the highest classification scores as the initial object propos-
als. Embeddings of these K proposals are passed to the
decoder to initialize the corresponding K object queries as

e, = cat(FCN"(f,,), FCN™&(f,,)) € R,

. . 2
pn = sinusoidal([b, cz, bn.cy]) € R,

where the content embedding e,, concatenates the classi-
fication and regression embeddings of the nth object pro-
posal, and the positional embedding p,, projects the pre-
dicted box center of the nth object proposal onto the 256-
dimensional sinusoidal embedding space.

3.2. Our Decoder

Fig. 4 shows differences between our decoder and C-
DETR’s decoder. As can be seen, the first difference is
that we divide the content embedding in C-DETR into
the classification and regression embeddings of the object
queries. Second, we initialize these embeddings with the
corresponding output of the mini-detector, whereas the con-
tent embedding in C-DETR is initially set to zero. Third,
we split cross-attention for classification and regression, so
each cross-attention could focus better on features relevant
for the respective task. Finally, fourth, instead of estimat-
ing the common self-attention for each individual query, we
estimate pair self-attention.

In the following, we specify our pair self-attention and
split cross-attention.

3.2.1 Pair Self-attention

As in DETR, for every object query a, we first compute
query qq, key kg, and value v,. The query and key are
defined as a sum of the linearly projected content embed-
ding e, and positional embedding p,, whereas the value is
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Figure 4. The four differences between C-DETR’s decoder (left)
and our decoder (right): (1) we divide the content embedding into
the classification (cls) and regression (reg) embeddings; (2) the
queries are initialized with the corresponding output of the mini-
detector (mini-det); (3) cross-attention is split into two branches;
(4) we extend self-attention to pair self-attention.



a linear projection of e,. Then, we estimate self-attention
between every two object queries ¢ and b as

Ai(a,b) = q, ks, 3)

and the self-attention output embedding of every query a as

Z softmax (A\l/(;%b)> V. 4

bequeries

o1(a) =

We extend A4 (a,b) and consequently o1 (a) to incorporate
reasoning about immediate spatial vicinity of each query a.
This is motivated by our observation that adjacent pairs of
object queries may provide more important cues for mu-
tually enhancing each other’s features than other spatially
distant pairs of queries in the image. This is illustrated in
Fig. 5. While the main diagonal elements A; (a, a) have the
highest values, non-negligible self-attentions are also esti-
mated for spatially adjacent queries, such as A1 (a, b) for the
left remote controller a and the left cat b in the image. We
believe that these self-attentions A;(a,b) between closest
neighbors support extracting informative features for each
individual query. Furthermore, consider the left remote a
and the right remote d that belong to the same class but
have A1 (d, a) > A1 (a, d). We find that this case often hap-
pens for partially occluded instances of the same class. As
both remotes are next to the cats, we expect that estimating
self-attention of adjacent pairs of queries As((a,b), (d,¢)),
called pair self-attention, would help improve learning of
the “remote” representation (and thus increase A;(a,d)).
For every target query a, we consider only a pair (a, a’),
for efficiency, where a’ is the supporting closest query, o’ =

~b. cat
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Figure 5. The individual self-attention (bottom left) and pair self-
attention maps (bottom middle and right) estimated for five object
queries in the image. The pink and purple indicate the target
pair of objects projected into the query and key representation, re-
spectively. The un-colored are support objects of the targets. Pair
self-attention without enforcing spatial ordering of (target, sup-
port) pairs (bottom middle) gives poor results, because the posi-
tional embeddings of the queries may mismatch. This is corrected
by enforcing the spatial ordering (bottom right).

argmax ¢ -, IoU(b(a), b(a’)), and b(a) is the bounding
box of a predicted in the previous decoder output (or ini-
tially by the mini-detector). Since the queries are character-
ized by the positional embedding, it is important to consider
their ordering in the pair. We rank the object queries by the
L1 distance between their box center in b and the top-left
corner of the image, L1(b), and specify a flip-operator 7 as

a )
Ta = ,
a )

and similarly wa’=a when L1(b(a))<L1(b(a')), o.w.
ma'=a’. For query pairs, we define pair self-attention as

Li(b() < L1(b(a)). g,
L1(b(a")) < L1(b(a)),

Az (a,b) = cat(dra, Arar) | cat(Knp, Kep),

6
= qTTrakﬂb + qza’kﬂb’v ©
where cat(-) denotes concatenation. From (6), we see that
it is critical to account for the right spatial ordering of the
pairs, otherwise their respective positional embeddings may
be mismatched, as illustrated in Fig. 5.
For every query a, we estimate its output pair self-
attention embedding as

As(a,b)
Z softmax (\2/@) V. (7

bequeries

09 (a) =

Finally, the individual and pair self-attention outputs are
combined after the Add&Norm module as:

0, = A-norm(e, + o01(a)) + (1 — \) - norm(e, + 02(a)),

(®)
where A is a hyper-parameter, norm(-) denotes the layer
normalization [1], and o, € R2C,

3.2.2 Split Cross-attention

As shown in Fig. 4, for every query a, the output of our
self-attention o, € R2 is split into top and bottom halves.
The top half represents a classification embedding, whereas
the bottom half is a regression embedding, according to the
concatenation in (2). These C-dimensional classification
and regression embeddings are input separately to the clas-
sification and regression branches, where they get linearly
projected into the classification query g% and the regres-
sion query qq°, respectively. The two branches also receive
the conditional positional embedding, and share its linear
projection into the positional query q5>°.

Following C-DETR, we wuse the concatenations
cat(q®, q5™) and cat(qs*,qh”) to represent the object
query, and in this way keep the roles of content and
position separate in cross-attention. In each branch, these
query concatenations are matched with concatenations

cat(k,,, k5") of the key projection of the image embedding



f,, obtained from the encoder and the key projection of
positional embedding s,, obtained from the mini-detector
as in (1) to compute the following cross-attention outputs:

cls POs

t DY T cat(k,,, kB>
OZIS = Z softmax ( cat(dy", d )2760(3 (kn, )) Vi,

I:g gOS T k kl;LOS
ot = Z softmax (cat(q ! )22at( ik )> Vi,
)]

where v,, denotes the value projection of the image em-
bedding f,,. In addition to Fig. 1, the supplemental mate-
rial presents additional visualizations of the classification
cross-attention and regression cross-attention that demon-
strate advantages of having them separate, as in (9).

0% and o ¢ are passed to the next decoder stage to serve

a

as the classification and regression embeddings for the next
decoder’s self-attention. As in C-DETR, we also use the
positional embedding of the predicted object center as input
to the next decoder stage. In the final decoder stage, o'
and 0, ® are passed through the standard residual link, nor-
malization, and FFN before reaching the classification head
and box regression head, respectively. The two heads make
the respective set of predictions, which are supervised, as
in DETR, using a set-based loss over one-to-one correspon-
dences between the predictions and ground truth.

4. Results

Dataset. For evaluation, we use the MS-COCO 2017
detection dataset [15], and the standard setting: training is
performed on 118K training images, and evaluation on 5K
images of the val set and 41K images of the test-dev set.

Architecture. Similar to DETR and C-DETR, DESTR
has 6 encoder layers, 6 decoder layers, and 8 multi-heads
for attention. The mini-detector consists of 3 4-layer FCNs
aimed at embedding features from the last encoder layer.
The same classification head and bounding box head are
used in the mini-detector and all of the decoder layers.

Implementation details. We follow the same training
protocol as DETR and C-DETR. The backbone networks
are pretrained with ImageNet available on TORCHVISION,
and the transformer parameters are initialized with Xavier
init [9]. All variants of DESTR are trained with AdamW
[18] on an 8-Nvidia-V100s machine. The learning rates
for the backbone networks, the mini-detector and the trans-
former are set to le-5, le-5 and le-4, respectively, and the
batch size is set to 16. For the backbone networks with di-
lation convolution, the batch size is 8. The learning rate
decay is set to 0.1, and applied after 40 epochs for the 50-
epoch training schedule. 300 objects with the highest clas-
sification score are selected for training and testing, if not
otherwise specified.

Evaluation metrics. Following the standard COCO

evaluation protocols, we report average precision (AP) at
0.50, 0.75 and for small, medium, and large objects, as well
as average recall (AR) with maximum 1, 10 and 100 detec-
tions, and for small, medium, and large objects.

Loss functions. The same supervision is applied to pre-
dictions of the mini-detector and to predictions of the last
decoder layer. We use the same loss functions as C-DETR.
An optimal bipartite matching between predicted results
and the ground truth is obtained by the Hungarian algo-
rithm. Our classification loss is the focal loss, and our box
regression loss includes L1 and generalized IoU loss.

4.1. Ablation Studies

Components. Tab. 1 systematically evaluates how each
component of DESTR affects performance on COCO-val.
The top row shows our strong baseline C-DETR, and the
following rows top to bottom gradually extend C-DETR
with our contributions. From Tab. 1, as new components
are gradually added, performance increases with a reason-
ably small increase of model complexity. For example,
relative to C-DETR, adding the mini-detector or splitting
cross-attention, each on its own gives a performance gain,
but their combination results in a significant AP increase by
2.0. This supports the claim that our two contributions — the
mini-detector and the decoder’s split cross-attention — are
viable extensions each on their own right, as well as justi-
fies our idea to combine them by initializing the decoder’s
classification and regression embeddings with the mini-
detector’s output. Also, adding pair self-attention gives an
additional gain of 0.7 in AP. This validates our idea to incor-
porate prior knowledge by the means of pair self-attention
and thus increase DESTR’s inductive bias. From Tab. 1,
AP drops when we allow the gradients to back-propogate

MiniDet | CASplit | PairAtt | Gflops | # params(M) | AP
90 44 40.9

v 96 50 415

v 95 56 41.4

v 93 49 41.6

v (w/o SG) v 101 63 42.1
v V' (s—p) 101 63 41.8

v v 101 63 429

v v v(wlom) | 103 69 425

v v v 104 69 43.6

Table 1. Ablation of components evaluated on COCO-val. Top
row is C-DETR, and the following rows to bottom extend C-DETR
with our contributions. miniDet denotes the mini-detector, CAS-
plit denotes our splitting of cross-attention, PairAtt means using
pair self-attention with A = 0.5. The check sign means that the
component is included. “w/o SG” means we allow gradient back-
propagation from the decoder to the mini-detector. “w/o 7 means
we do not use the flip-operator 7 in (6). “s—p” means that we use
p instead of s in (9).



K (training) | K (testing) | Gflops AP
300 100 93 41.8
300 200 99 43.2
300 300 104 43.6
300 400 110 43.7
600 300 104 435
600 600 122 43.8

Table 2. Performance of DESTR on COCO-val for the varying
number of object queries in the decoder K in training and testing.

A 00 | 025 05 | 075 1.0
AP | 424 | 432 | 43.6 | 43.0 | 429

Table 3. Results of DESTR on COCO-val for varying the A weight
between individual self-attention and pair self-attention in (8).

from the decoder to the mini-detector, i.e., we observe that
the mini-detector overfits without the stop-gradient opera-
tion. Finally, AP drops by 1.1 when we do not use the flip-
operator 7 in (6). This validates our claim that the relative
position of object queries within a pair should be consistent
with queries in another pair for pair self-attention.

The number of object queries K. The mini-detector
selects the top K highest classification scoring object pro-
posals, which is also taken as the total number of object
queries in the decoder. Tab. 2 shows performance of DE-
STR on COCO-val for varying K in training and testing.
In the following, we will using the same K = 300 in both
training and testing, since from Tab. 2, this setting gives a
good trade-off between AP and complexity, and allows a
fair comparison with C-DETR.

Pair attention. Tab. 3 varies the A weight between indi-
vidual self-attention and pair self-attention in (8), and shows
the best results on COCO-val for A = 0.5.

4.2. Comparison with SOTA on COCO

Tab 4 compares DESTR on COCO-val with DETR [2],
Deformable DETR (single scale) [30], UP-DETR [4], C-
DETR [19], and Anchor DETR [25]. Following DETR and
C-DETR, we report AP values for 4 backbone networks:
ResNet-50, ResNet-101, ResNet50-DC, and ResNet101-
DC, where “DC” denotes using dilated C5 features, while
the others use original C5 features. From Tab 4, DESTR
outperforms the strong baseline C-DETR, in all AP met-
rics, for all four backbones. While Deformable DETR has
been design primarily for the multi-scale features, DESTR
outperforms its single-scale variant Deformable DETR-SS.
DESTR has a larger performance gain over SOTA with
ResNet-50 than with ResNet5S0-DC and ResNet101-DC.
Based on the DETR GitHub discussions, we believe that
this is because of the larger batch sizes used by SOTA for
ResNet50-DC and ResNet101-DC, while our hardware lim-

C-DETR

DESTR reg

DESTR cls
A
)

Figure 6. Out of 8 attention multi-heads, this figure visualizes the
cross-attention map for the head focusing on the object’s center
while the other maps are given in the supplement. For clarity, we
show square-root values of attention. C-DETR’s cross-attention
for the object’s center focuses on a relatively small region, whereas
DESTR’s classification and regression cross-attention maps have a
broader spatial support including the object’s immediate surround-
ing, as intended by our pair attention.

its our batch size to be only limage/GPU x 8GPUs. Tab 4
shows inferior results of TSP-FCOS-R50 and TSP-RCNN-
R50 [23] to ours for the same ResNet-50 backbone, al-
though they use multi-scale features.

Tab. 5 compares DESTR on COCO-test-dev with the fol-
lowing SOTA detectors: FCOS [24], ATSS [27], Deform-
DETR [30], and C-DETR [19]. DESTR achieves the high-
est AP and AR scores among the approaches that use single-
scale features, for all four backbones. DESTR also outper-
forms CNN-based FCOS [24] and ATSS [27] for the same
backbones, although they use multi-scale features.

Fig. 6 shows cross-attention maps estimated for exam-
ple images from COCO. Out of 8 attention multi-heads, the
figure visualizes the cross-attention map for the head focus-
ing on the object’s center while the other maps are given
in the supplement. DESTR’s classification and regression
cross-attention maps differ, as expected, since they focus
on different visual cues for their respective tasks. Also,
both classification and regression cross-attention maps of
DESTR highlight a larger spatial support than C-DETR’s
attention. This suggests that our cross-attention additionally
seeks important cues from the object’s immediate vicinity.

5. Conclusion

We have specified DESTR that extends the recent family
of Transformer-based object detectors with three contribu-
tions: 1) cross-attention is split into the independent clas-
sification and regression branches so attention could opti-
mally focus on relevant visual cues for the respective tasks;
2) a mini-detector is used to learn and initialize both content
and positional embeddings of the decoder, and enable hav-



Model #epochs | GFLOPs #params (M) AP APso AP75s APgs APp APp
DETR-R50 [2] 500 86 41 420 624 442 205 458 6l1.1
Deform-DETR-R50-SS [30] 50 78 34 394 596 423 206 43.0 555
UP-DETR-R50 [4] 150 86 41 40.5 60.8 426 190 444 60.0
UP-DETR-R50 [4] 300 86 41 428 630 453 208 47.1 61.7
C-DETR-R50 [19] 50 90 44 409 61.8 433 208 446 592
Anchor DETR-R50 [25] 50 - - 42,1 63.1 449 223 462 600
DESTR-R50 50 104 69 43.6 647 465 23.6 475 62.1
DETR-DC5-R50 [2] 500 187 41 433  63.1 459 225 473 61.1
Deform-DETR-DCS5-R50-SS [30] 50 128 34 41.5 61.8 449 241 453 560
C-DETR-DC5-R50 [19] 50 195 44 438 644 467 240 476 60.7
Anchor DETR-DC5-R50 [25] 50 151 - 442 6477 475 247 482 60.6
DESTR-DC5-R50 50 232 69 453 657 483 273 488 624
DETR-R101 [2] 500 152 60 435 63.8 464 219 480 61.8
C-DETR-R101 [19] 50 156 63 428 6377 460 21.7 466 609
Anchor DETR-R101 [25] 50 - - 435 643 46.6 232 477 614
DESTR-R101 50 171 88 44.6 654 478 24.1 487 638
DETR-DC5-R101 [2] 500 253 60 449 6477 477 237 495 623
C-DETR-DC5-R101 [19] 50 262 63 450 655 484 26.1 489 60.7
Anchor DETR-DC5-R101 [25] 50 - - 451 657 488 258 494 61.6
DESTR-DC5-R101 50 299 88 464 67.1 501 282 503 637
TSP-FCOS-R50 [23] 36 189 - 431 623 47.0 266 468 559
TSP-RCNN-R50 [23] 36 188 - 438 633 483 286 469 557

Table 4. Comparison with other DETR variants on COCO-val for 4 backbone networks: ResNet-50 (R50), ResNet-101 (R101), ResNet50-

DC, and ResNetl101-DC, where “DC” denotes using dilated C5 features. Note that TSP-FCOS-R50 and TSP-RCNN-R50 [

] in the

bottom block use multiscale features, so the double horizontal separation indicates that a direct comparison is not fair to us.

Model #epochs feature scale | AP AP50 AP75 APS AP]\{ APL Ale AleO ARm100 ARS AR]\{ ARL
C-DETR-R50 [19]* 50 ss 41.1 623 438 192 443 574 336 544 586 316 639 823
DESTR-R50 50 ss 43.3 64.5 46.3 21.8 46.5 60.3| 350 56.8 609 351 663 834
C-DETR-DC5-R50 [19]* 50 ss 437 64.6 468 227 47.0 59.1| 350 575 61.7 363 669 83.8
DESTR-DC5-R50 50 ss 453 66.0 48.9 249 483 60.0| 359 593 63.8 40.2 68.3 84.3
C-DETR-R101 [19]* 50 ss 43.1 645 46.1 214 464 599 347 563 603 340 656 83.6
DESTR-R101 50 ss 449 66.1 48.0 22.8 483 61.5| 357 58.2 62.3 36.6 67.9 84.6
C-DETR-DC5-R101 [19]* 50 ss 454 663 489 243 488 615 36.1 588 63.0 38.1 683 84.7
DESTR-DC5-R101 50 ss 46.8 67.6 50.5 25.8 50.1 62.3| 368 60.3 648 412 699 852
FCOS-R101 [24] 24 ms 415 60.7 450 24.0 442 513 -
ATSS-R101 [27] 24 ms 43.6 62.1 474 26.1 470 53.6| -
ATSS-DC-R101 [27] 24 ms 46.3 647 504 2777 49.8 584 | -
Deform-DETR-R50 [30] 50 ms 469 66.4 508 27.7 49.7 599| -
Deform-DETR-R101 [30] 50 ms 48.7 68.1 529 29.1 515 62.0| -
Table 5. Comparison with SOTA on COCO-test-dev. “-” means the results have not been reported. “*” means we test the models with

weights provided on the authors’ official GitHub. “ms” and “ss” denote multi-scale and single-scale features used by the model. Note that
the SOTA approaches in the bottom block use multi-scale features, so the double horizontal separation indicates that a direct comparison

is not fair to us.

ing an adaptive inferred number of object queries; 3) self-
attention is estimated over pairs of adjacent object queries
so attention of each query could be enhanced by the im-
mediate spatial context of the other query in the pair. An
extensive ablation study reported in this paper has demon-
strated performance gains for each of these contributions
and combinations thereof, relative to the strong baseline
of C-DETR. Our experiments have shown that, under the
standard evaluation settings on the COCO-val and COCO-
test-dev datasets, DESTR outperforms the SOTA Trans-
former detectors which use single-scale features in both AP

and AR with comparable model complexity. For limita-
tion, one could point out that the mini-detector breaks the
well-streamlined architecture of DETR; however, the mini-
detector is used only for initialization of the content queries,
and DESTR’s final detections are not explicitly constrained
by the mini-detector’s predictions. As any system for ob-
ject detection, ours could be misused for malicious human
monitoring and violations of privacy.
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