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Abstract

This paper addresses incremental few-shot instance seg-
mentation, where a few examples of new object classes ar-
rive when access to training examples of old classes is not
available anymore, and the goal is to perform well on both
old and new classes. We make two contributions by extend-
ing the common Mask-RCNN framework in its second stage
– namely, we specify a new object class classifier based on
the probit function and a new uncertainty-guided bounding-
box predictor. The former leverages Bayesian learning to
address a paucity of training examples of new classes. The
latter learns not only to predict object bounding boxes but
also to estimate the uncertainty of the prediction as a guid-
ance for bounding box refinement. We also specify two
new loss functions in terms of the estimated object-class
distribution and bounding-box uncertainty. Our contribu-
tions produce significant performance gains on the COCO
dataset over the state of the art – specifically, the gain of
+6 on the new classes and +16 on the old classes in the
AP instance segmentation metric. Furthermore, we are the
first to evaluate the incremental few-shot setting on the more
challenging LVIS dataset.

1. Introduction
This paper addresses the two related problems of incre-

mental few-shot object detection (iFSOD) and instance seg-
mentation (iFSIS). Initially, we are given a large training set
of base object classes, which can be used for pre-training an
instance segmenter. After this pre-training, access to train-
ing examples of the base classes becomes unavailable. With
an arrival of a few training examples of new classes, the
goal is to achieve successful object detection and instance
segmentation on both new and base classes. Our key chal-
lenges include: how to address a paucity of data for new
classes, and how to train on the new classes such that the
base classes are not “forgotten”.

Tab. 1 compares iFSOD and iFSIS with other related
problems. iFSOD and iFSIS are important problems aris-
ing in many applications, where access to old training data
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Figure 1. Our iFS-RCNN is first pre-trained on abundant exam-
ples of base classes, and then fine-tuned on a few examples of
new classes. iFS-RCNN modifies the classification head of Mask-
RCNN by estimating the class-weight distribution via Bayesian
learning. iFS-RCNN modifies the bounding-box head of Mask-
RCNN by computing uncertainty of predicting the left (L), right
(R), top (T), and bottom (B) sides of the bounding boxes. For test-
ing, the last layers learned on the new classes (diagonal stripes)
are concatenated with the corresponding ones learned on the base
classes (solid color).

becomes unavailable, due to, e.g., privacy and security is-
sues or new legal regulations of data access. Also, they are
critical in applications where limited time budgets prohibit
retraining on both base and new classes.

There is scant work on iFSOD and iFSIS. Following re-
cent FSIS approaches, we use Mask-RCNN [13], and mod-
ify its prediction heads, as shown in Fig. 1. Mask-RCNN
is first pre-trained with abundant examples of base classes,
and then fine-tuned on new classes by “freezing” all mod-



Settings Pretrained on Fine-tuned on Tested on

FSOD - FSIS base new new
gFSOD - gFSIS base base + new base + new

CL base new base + new
iFSOD - iFSIS base new base + new

Table 1. A comparison of related problems. The blue and red in-
dicate abundant and a few examples, respectively, of base and new
classes. FSOD (FSIS): few-shot object detection (instance seg-
mentation), gFSOD (gFSIS): generalized FSOD (FSIS), CL: con-
tinual learning, iFSOD (iFSIS): incremental FSOD (FSIS). iFSOD
(iFSIS) are more challenging than: FSOD (FSIS), since we test on
both classes; gFSOD (gFSIS), since our training cannot access the
base classes; CL, since they work with more examples.

ules except for the classification head, bounding-box head,
and segmentation-mask head. Finally, for testing on both
base and new classes, weights learned on the new classes
are concatenated with weights learned on the base classes
to make the corresponding last layers in the classification,
bounding-box, and segmentation-mask heads.

As shown in Fig. 1 and depicted in more detail in Fig. 2,
we make two contributions aimed at addressing overfit-
ting of Mask-RCNN in few-shot fine-tuning and improving
its generalization to query images with large appearance-
shape-scale variations of both base and new classes.

Inspired by deep Bayesian learning [2], our first contri-
bution is about learning a distribution of the classification
head’s weights on the new classes, and using the estimated
distribution for regularization of the fine-tuning. Instead of
using the standard Monte Carlo sampling of weights for this
Bayesian learning, our key technical novelty is in casting
the weight-distribution learning as a Bayesian logistic re-
gression problem, and specifying an efficient approximation
to this intractable problem using the probit function. From
our ablation studies, our probit-based approximation gives a
significantly better performance than the Monte Carlo sam-
pling, even under a reasonable training-time budget.

Our second contribution is about estimating the uncer-
tainty of bounding-box localization on the new classes, and
using the estimated uncertainty for two purposes – to refine
the bounding-box prediction and to appropriately weight
the loss of bounding-box prediction. As shown in Fig. 2, we
use the estimated uncertainty along with the ROI-aligned-
pooled feature map as input to a new bounding-box refine-
ment module. The refined bounding box is subsequently
input to the segmentation head. Also, we define a new loss
between the ground truth and predicted bounding box, such
that the loss becomes smaller for highly uncertain predic-
tions, i.e., our fine-tuning stronger penalizes errors on train-
ing examples with highly certain bounding-box predictions.

It is worth noting that we neither use Bayesian learn-
ing nor explicitly estimate uncertainty for fine-tuning of the
segmentation head of Mask-RCNN. This is because fine-

tuning of the segmentation head on a few examples of the
new classes does not face the common challenges of few-
shot learning. Recall that the segmentation head predicts
pixel labels independently with a 1×1 convolution. Conse-
quently, every (pixel, label) pair is an independent training
example, giving rise to a sufficiently large training set for
fine-tuning of the segmentation mask.

Our extension of Mask-RCNN for incremental few-shot
setting gives the name to our approach – iFS-RCNN. iFS-
RCNN is evaluated on the COCO dataset [24] for few-shot
object detection and instance segmentation with the iFSOD,
iFSIS, FSOD, and FSIS tasks. iFS-RCNN significantly out-
performs a recent approach [11]. In comparison with the
standard Mask-RCNN trained in the gFSOD and gFSIS set-
tings, iFS-RCNN shows a considerable improvement on the
new classes while retaining the same performance on the
base classes. On iFSOD and iFSIS, we also achieve the
higher COCO AP rates by +6 and +16 for the new and base
classes, respectively, relative to the state of the art.

In addition, we are the first to report the results of
iFSOD, FSIS, and iFSIS on the more challenging LVIS
dataset [12] having significantly more classes and long-
tailed class distributions.

In the following, Sec. 2 reviews prior work; Sec. 3 spec-
ifies iFS-RCNN; and Sec. 4 presents our implementation
details and experimental results.

2. Related Work
This section reviews closely related work.
FSOD approaches [6, 8, 9, 16, 17, 19, 32, 33, 35, 36, 38]

typically adapt Faster-RCNN [29], YOLO [28], or DETR
[5] for standard object detection to few-shot setting. These
approaches can be divided into two subgroups based on:
episodic training [8, 16, 35, 36, 38] and fine-tuning [6, 9, 32,
33]. The former uses episodic training to mimic the setting
of few-shot learning, by limiting access to a few annotated
support images for each base class. The latter fine-tunes the
weights of some layers while freezing the rest to preserve
knowledge learned on the base classes.

FSIS approaches typically use Mask-RCNN [13] as their
backbone network. As in FSOD, these methods either train
episodically [10, 25, 26, 37] or pretrain on the base classes
then fine-tune the last layers of each head [32] on the new
classes. Our iFS-RCNN follows the second training strat-
egy and applies it to all three heads – the classification,
bounding-box, and segmentation heads – of Mask-RCNN.

iFSOD approaches [20, 21, 27] typically use Faster-
RCNN as their backbone network. In [20], knowledge dis-
tillation ensures the prediction of the base classes, after fine-
tuning on the new classes, to match its pretrained prediction.
In [27], weights of the box head are generated on the fly,
based on a class-specific code extracted from examples of
the target classes. In this way, each class has a distinct box
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Figure 2. iFS-RCNN extends Mask-RCNN with two contributions: probit classifier and uncertainty-guided box predictor. The former uses
Bayesian learning to estimate a probability distribution of the classifier head’s weights (red diagonal stripes). Our contribution 1 is the
efficient, analytical formulation of this Bayesian learning using the probit function. The latter explicitly estimates uncertainty of predicting
bounding boxes (blue diagonal stripes), and uses the estimated uncertainty (violet) as input features along with the ROI-align-pooled
features (dark yellow) for refining the boxes. The colored stripes depict the last layers of the classification, box, and segmentation heads
learned in the few-shot setting during fine-tuning of the new classes.

head for object detection. Our iFS-RCNN also uses for each
class a distinct set of the classification, bounding-box, and
segmentation heads of Mask-RCNN, where the difference
between the respective heads is in the last layer fine-tuned
for each new class separately.

iFSIS: A recent approach to iFSIS [11] replaces the
standard fully-connected classifier in Mask-RCNN with the
cosine-similarity classifier. Unlike our iFS-RCNN, they do
not use Bayesian learning and do not estimate bounding-
box uncertainty. They convert activations of the classifica-
tion head to a softmax distribution, and train the head with
cross-entropy loss. In this way, the activation scores of all
classes compete with each other to determine the class of
the bounding box. As training examples of the new classes
are scarce, their activation scores are likely to be smaller
than those of the base classes in the softmax function. Con-
sequently, their classifier is likely to be biased toward fa-
voring the base classes. They address this bias by using the
cosine-similarity classifier, where both the box feature and
class weights are normalized to have unit length before the
dot product for reducing a statistical difference between the
base and new classes. In contrast, we directly use sigmoid
activation of the classification head for predicting the class

of the bounding box, and train our fully-connected classifier
with the focal loss [23]. Our iFS-RCNN uses the sigmoid
activation to predict each class independently, and thus al-
leviate the aforementioned bias.

3. Specification of iFS-RCNN
3.1. Problem Statement

We address N-way K-shot iFSOD and iFSIS, where
abundant training examples of Nb base classes are provided
for pre-training. After that, access to training examples of
the base classes is not available. When a few training ex-
amples K of additional Nn new classes are arbitrarily pro-
vided, our goal is to detect and segment all object instances
belonging to all N = Nb +Nn classes in a query image.

In the following, we specify our two contributions – the
probit classifier and uncertainty-guided box predictor.

3.2. The Probit Classifier

As mentioned in Sec. 2, our iFS-RCNN uses sigmoid ac-
tivation instead of softmax activation for predicting the class
of a bounding box. With sigmoid activation, the scores for
all classes are independently predicted, and thus our classi-



fication head effectively addresses the statistical difference
between the base and new classes. However, in the FSOD
and FSIS settings, our experiments (see Tab. 2) demonstrate
that the classification head with the sigmoid activation usu-
ally gives a lower performance than that with the softmax
activation, when weights of the classifier head (also referred
to as class weights) are learned as point estimation.

To address this problem, we resort to Bayesian learning
of a distribution of the class weights, and adopt the com-
mon variational framework. Formally, the class weights w
are characterized by the normal distribution, w ∼ N (µ,Σ),
with mean µ ∈ RD and diagonal covariance matrix Σ ∈
RD×D+ . Our goal is to learn µ and Σ by minimizing the
following variational objective:

Lc = ld(p(c|f, µ,Σ), c∗) + KL(N (µ,Σ)||N (0, 1)), (1)

where f ∈ RD is a feature extracted from the bounding
box; c and c∗ are the predicted and ground-truth classes; ld
is the incurred sigmoid focal loss [23] for predicting c; KL
stands for the KullbackLeibler divergence; and p(c|f, µ,Σ)
is the posterior predictive distribution defined as

p(c|f, µ,Σ) =

∫
σ(f>w)N (w|µ,Σ)dw, (2)

where σ(·) denotes the sigmoid activation.
Once µ and Σ are learned, class prediction amounts to

the MAP problem: c = arg maxc′ p(c
′|f, µ,Σ). How-

ever, the integral in (2) is intractable. Prior work typically
approximates the MAP problem with Monte Carlo sam-
pling: p(c|f, µ,Σ) ≈ 1

T

∑
wt∼N (µ,Σ) σ(f>wt) where T

is the number of Monte-Carlo samples. The Monte Carlo
approximation, however, has a poor trade off between ef-
ficiency and accuracy, where using a sufficiently large T
would make our training and testing prohibitively slow.

Instead of the stochastic Monte Carlo sampling, we spec-
ify a more efficient deterministic approximation of the pos-
terior predictive distribution. We first observe that our fine-
tuning of the classification head’s last layer using Bayesian
learning is equivalent to learning a Bayesian logistic regres-
sion (BLR). Conveniently, the well-known probit function
Φ(x) [30], [1, p. 219] provides a deterministic approxima-
tion to BLR. The probit function approximates the sigmoid
function as σ(x) ≈ Φ(λx) = 1

2

[
1 + erf

(
λx√

2

)]
, where

erf(·) is the error function, and λ2 = π/8 ensures that the
two functions have the same slope at the origin. An impor-
tant property of the probit function is that its convolution
with a Gaussian function can be expressed analytically. Let
a = f>w ∈ R be a random variable whose expectation and
variance can be expressed as E[a] = µa = f>µ ∈ R and
V[a] = Σa = f>Σf ∈ R. Then the posterior predictive

distribution given by (2) can be efficiently approximated as

p(c|f, µ,Σ) =

∫
σ(a)N (a|µa,Σa)da, (3)

≈
∫

Φ(λa)N (a|µa,Σa)da = Φ

(
λµa

(1 + λ2Σa)
1
2

)
, (4)

≈ σ

(
f>µ

(1 + π
8 f
>Σf)

1
2

)
. (5)

As our classifier head uses the probit function for the
MAP class prediction, we call it the probit classifier. It is
suitable for iFSOD and iFSIS for two reasons. It leverages
Bayesian learning to address the paucity of training data.
Also, it predicts a score for each class independently to ad-
dress the incremental-learning setting.

3.3. Uncertainty-Guided Bounding Box Predictor

Object appearances, shapes, and scales in test images
may significantly differ from a few training examples avail-
able. Also, target objects in query images may be subject to
partial occlusion. All this gives rise to uncertainty in bound-
ing box prediction. We seek to explicitly model this un-
certainty when predicting four offset values {mk}k=1..4 ∈
R4 that initially identify the location of bounding boxes.
Specifically, as shown in Fig. 2, our box predictor addition-
ally estimates four uncertainty values {uk}k=1..4 ∈ R4

+ of
the bounding box prediction, one for each of the {mk} pre-
dictions. The estimated uncertainty {uk} is then used as
input along with the ROI-align-pooled features – extracted
from the initially predicted box m – to the box refine-
ment module for the final offset bounding-box prediction
{bk}k=1..4 ∈ R4.

To learn how to predict uncertainty {uk}, initial
bounding-box {mk}, and refined bounding-box {bk} on a
few training examples, we specify the following box loss:

Lb = Lu + Lrefine, (6)

where Lu is our new uncertainty-weighted box loss and
Lrefine is loss incurred by the box refinement module.

We define Lu as

Lu =

4∑
k=1

1

2

(
(mk − b∗k)2

u2
k

+ u2
k

)
, (7)

where b∗ is the ground-truth box. The first term in (7)
is aimed at minimizing a weighted difference between the
ground-truth and predicted boxes. The weighting is in-
versely proportional to the predicted uncertainty uk such
that the lower loss is incurred for box predictions with high
uncertainty. The second term in (7) is aimed at minimizing
uncertainty values such that the network incurs a penalty
for predicting high uncertainty when trying to reduce the
first term in (7).



When the box refinement module makes the final predic-
tion b, it incurs the following loss:

Lrefine =

4∑
k=1

smooth L1(bk, b
∗
k). (8)

It is worth noting that our loss formulation fundamen-
tally differs from other recent approaches aimed at estimat-
ing uncertainty in object detection. For example, recent ap-
proaches [15, 18] make the assumption that the bounding-
box location and its uncertainty are governed by a Gaussian
distribution. In contrast, we do not explicitly specify any
probability distribution of box locations. iFS-RCNN ap-
pears related to Cascade-RCNN [3, 4] which also refines
the initial box. However, these approaches do not explicitly
predict uncertainty and thus cannot use uncertainty as an in-
put feature for the box refinement as we do. By contrast, our
uncertainty estimation in training serves to transfer “knowl-
edge” from the base classes to the new testing classes. In ex-
periments, these approaches show worse performance than
our uncertainty-guided box refinement module.

3.4. Our Training and Testing Strategies

Training on the base classes
1. Obtain a variant of Mask-RCNN named

Mask+Sigmoid by replacing the standard soft-
max classifier with the sigmoid classifier. Train
Mask+Sigmoid with the following loss functions:
sigmoid focal loss, Lrefine in (8), and mask-BCE loss.

2. Obtain a variant of Mask+Sigmoid named
Mask+Sigmoid+Uncertainty by replacing the box
predictor with the uncertainty-guided box predictor
(contribution 2 in Fig. 2). While freezing other
modules, train the uncertainty-guided box predictor of
Mask+Sigmoid+Uncertainty with loss Lb in (6).

3. Store the class weights µb of the base classes for the
sigmoid classifier of Mask+Sigmoid+Uncertainty.

Fine-tuning on the new classes
1. Obtain a variant of Mask+Sigmoid+Uncertainty

named iFS-RCNN by replacing the sigmoid classifier
with the probit classifier (contribution 1 in Fig. 2).

2. While freezing other modules, train the probit clas-
sifier with loss Lc in (1) to obtain the class weights
µn,Σn of the new classes. Also, train the last layer of
the box predictor with Lb in (6); and the last layer of
the segmentation head with the mask-BCE loss.

Testing on the base and new classes
1. Set µ = [µb;µn] and Σ = [0; Σn] for the probit clas-

sifier, where [·; ·] is a concatenation. Also, concatenate
the weights estimated for the base and new classes to
obtain the box and segmentation-mask heads.

2. Run iFS-RCNN on query images.

4. Experimental Results
Datasets & Metrics: We evaluate iFS-RCNN on the

modified version of the COCO 2014 dataset [24] intro-
duced by [16] for FSIS and FSOD. Also, we are the first
to evaluate iFSOD, FSIS, and iFSIS on a new split of the
LVIS dataset [12] introduced by [32] for FSOD. We re-
port the common COCO-style evaluation metrics of both
object detection and instance segmentation – namely, the
average precision (AP) at multiple intersection-over-union
(IoU) thresholds ranging from 0.5 to 0.95.

For COCO, the 20 categories shared with PASCAL VOC
[7] are used as new classes while the remaining 60 classes
are used as the base classes. We vary the number of exam-
ples for the new classes, i.e. K = {1, 2, 3, 5, 10, 30}, and
report average results with 95% confidence interval over 10
runs with different sets of few-shot examples for each K.
This paper reports results for K = {1, 5, 10} for brevity.
Other results are in the supplementary material.

LVIS has 1230 classes where some have a large number
of examples and some other, called rare classes, have only
a few examples (less than 10 examples per class). Hence,
the number of images for each class in LVIS has a long-tail
distribution. We take the frequent (appearing in more than
100 images) classes and the common classes (10-100 im-
ages) in LVIS as the base classes, while the 454 rare classes
(appearing less than 10 images) as the new classes. Due to
the small number of training examples for the rare classes
in LVIS, we cannot have multiple runs as in COCO, thus we
follow [32] on their split with K ≤ 10.

4.1. Implementation Details

Our backbone CNN is ResNet-50 [14] with the FPN
of [22], as in recent work on FSIS. All variants of iFS-
RCNN are implemented using the detectron2 toolbox [34]
with the codebase of [32]. All variants of our approach,
specified in Sec. 4.2, are trained using SGD and a batch
size of 16 on 8 NVIDIA GPUs V100s, with two images
per GPU. The learning rate is set to 0.02 and 0.01 for the
pre-training and fine-tuning stages respectively. The num-
ber of iterations for the pre-training stage is 110000 with
two weight decay steps with the rate of 10 at 80000 and
100000 iterations. The number of iterations for fine-tuning
stage depends on the number of examples ranging from 500
iterations (with K = 1) to 6000 iterations (with K = 30).
The hyper-parameters of the focal loss are γ = 0.25, α = 2.

The threshold for filtering predictions before the NMS
is 0.05. To select proposals for training the uncertainty-
guided box predictor, we choose the predicted boxes with
IoU larger than 0.7 with their closest ground-truth boxes.
The threshold for deciding foreground and background in
the segmentation mask head is 0.5. We use the softplus
function f(x) = ln(1 + exp(x)) to ensure the class vari-
ances Σ and box uncertainty u are non-negative.



Object Detection Instance Segmentation
Number of shots 1 2 3 5 10 30 1 2 3 5 10 30
Mask-RCNN 3.58 5.07 5.79 7.81 8.59 12.68 3.71 5.24 5.29 7.66 8.46 11.09
Mask+Cosine 3.39 4.87 5.19 6.87 7.96 12.52 3.40 5.00 4.75 6.68 7.72 11.03
Mask+Sigmoid 3.60 4.49 5.63 7.06 7.68 11.40 3.92 4.63 5.63 7.15 7.67 10.94
Mask+Probit 5.18 5.90 7.82 9.45 10.43 13.48 5.15 6.03 7.67 9.34 9.52 12.07
Mask+MC 4.52 5.45 7.02 8.85 9.57 13.05 4.54 5.19 6.91 8.26 8.98 11.55
Mask+Sig+Uncert 4.48 5.32 6.76 8.49 9.16 12.85 4.84 5.88 7.00 8.62 9.22 11.98
Mask+Sig+Gauss 3.74 4.77 5.89 7.33 7.86 11.65 3.94 4.72 5.87 7.24 7.76 11.02
Mask+Sig+Refine 3.87 4.57 5.78 7.48 8.23 11.95 3.99 4.77 5.68 7.40 7.87 11.01
iFS-RCNN 6.34 6.93 8.93 10.53 11.27 14.66 5.54 6.33 7.80 9.41 10.23 13.08

Table 2. Our ablation study on FSOD and FSIS with different K = {1, 2, 3, 5, 10, 30} on COCO. The best results are in red, second-best
results are in blue. Mask-RCNN and Mask+Cosine use the softmax activation with cross-entropy loss for training. The remaining ablations
use the sigmoid activation with the focal loss for training.

Object Detection Instance Segmentation
Tested on New classes Base classes All classes New classes Base classes All classes
Number of shots 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10
TFA [32] 2.90 7.00 9.10 31.90 32.30 32.40 3.60 11.50 14.20 - - - - - - - - -
FSDetView [35] 3.35 8.53 12.50 25.75 25.05 24.82 20.15 20.92 21.74 - - - - - - - - -
GIFSOD [21] - - 8.50 - - 28.10 - - 23.20 - - - - - - - - -
ONCE [27] 0.70 1.00 1.20 17.90 17.90 17.90 13.60 13.70 13.70 - - - - - - - - -
LEAST [20] 4.40 9.40 12.50 24.60 25.20 23.10 7.50 13.70 16.20 - - - - - - - - -
iMTFA [11] 3.23 6.07 6.97 27.81 24.13 23.36 21.67 19.62 19.26 2.81 5.19 5.88 25.90 22.56 21.87 20.13 18.22 17.87
Mask+Sigmoid 2.85 6.34 8.04 38.55 38.53 38.53 29.62 30.49 30.91 3.06 6.52 8.00 35.70 35.69 35.69 27.54 28.76 29.37
iFS-RCNN 4.54 9.91 12.55 40.08 40.06 40.05 31.19 32.52 33.02 3.95 8.80 10.06 36.35 36.33 36.32 28.45 29.89 30.41

Table 3. iFSOD and iFSIS results on COCO with different K = {1, 5, 10}. ‘-’ indicates no results are reported. Best results are in bold.

Our segmentation head is the same as in Mask-RCNN
[13]. It is trained with the binary cross-entropy (BCE) loss.
Our box refinement module has the same architecture as the
box head. The final layers of the uncertainty-guided box
predictor and segmentation head are class-specific, and ob-
tained by concatenating the class weights learned for the
base and new classes.

4.2. Ablation Study

The following ablations are evaluated on the first run of
COCO for studying how each component of iFS-RCNN af-
fects the final performance.
• Mask-RCNN: the original Mask-RCNN [13] with the

softmax classifier.
• Mask+Cosine: replace the dot product with the cosine-

similarity classifier in Mask-RCNN as in [11].
• Mask+Sigmoid: replace the softmax classifier with the

sigmoid classifier in Mask-RCNN (our strong baseline).
• Mask+Probit: replace the sigmoid classifier with the

probit classifier in Mask+Sigmoid, our contribution 1 in
Fig. 2.

• Mask+MC: replace the probit approximation with the
Monte Carlo (MC) sampling in Mask+Probit, where the
number of samplings is T = 10.

• Mask+Sig+Uncert: replace the box predictor in
Mask+Sigmoid with the uncertainty-guided box predic-
tor, our contribution 2 in Fig. 2.

• Mask+Sig+Gauss: a variant of Mask+Sigmoid which
additionally predicts box uncertainty (similar to [15])
with Gaussian distribution assumption.

• Mask+Sig+Refine: similar to Cascade RCNN [3] as it
does not explicitly predict uncertainty when refining the
initial box prediction

• Our iFS-RCNN in Fig. 2.
Tab. 2 shows our evaluation of the above ablations

on FSOD and FSIS (see Tab. 1). From Tab. 2, Mask-
RCNN with the softmax activation outperforms other point-
estimation-based ablations with the sigmoid activation.
However, Mask-RCNN gives worse performance than the
ablations which use the sigmoid activation with Bayesian
learning for the Probit or MC. This justifies our choice
of Bayesian-based classifiers with the sigmoid activation.
Also, our probit classifier outperforms the MC classifier,
suggesting that MC requires longer stochastic sampling
T � 10, which would be prohibitively slow in practice. Im-
portantly, our modeling of uncertainty in Mask+Sig+Uncert
gives a substantial performance gain over Mask+Sigmoid,
Mask+Sig+Gauss, and Mask+Sig+Refine. This justifies our
contribution 2. Finally, our full approach, iFS-RCNN yields



Settings FSOD FSIS Object Detection Instance Segmentation
Tested on New New New Base-c Base-f All New Base-c Base-f All
TFA [32] (gFSOD) 18.35 - 16.90 24.30 27.90 24.40 - - - -
Mask-RCNN [13] (gFSOD & gFSIS) 16.50 18.31 12.11 24.54 28.59 24.04 12.75 25.35 27.75 24.36
Mask+Sigmoid (iFSOD & iFSIS) 16.93 19.18 15.02 23.33 27.23 23.55 17.39 25.26 27.05 24.75
iFS-RCNN (iFSOD & iFSIS) 20.76 21.06 18.38 26.11 30.12 26.46 18.26 26.29 28.46 25.90

Table 4. Object detection and instance segmentation results with AP metric for FSOD, FSIS, iFSOD, and iFSIS tasks on LVIS. The best
results are in bold. TFA and Mask-RCNN are trained with more supervision than Mask+Sigmoid and iFS-RCNN as described in Tab. 1.
Base-c and Base-f indicate the common classes (≥ 100 images) and frequent classes (10-100 images) among the base classes.

the best performance, about +2.5 performance gain over the
strong baseline Mask+Sigmoid and +2 over Mask-RCNN.
In the following experiments, we choose Mask+Sigmoid
and iFS-RCNN to compare with prior work.

4.3. Comparison with Prior Work on COCO

Tab. 3 compares our results on COCO in iFSOD and
iFSIS with the strong baseline Mask+Sigmoid, approaches
designed for FSOD and FSIS (TFA [32], FSDetView [35]),
and approaches designed for iFSOD and iFSIS (GIFSOD
[21], ONCE [27], LEAST [20], MTFA, and iMTFA [11]).

TFA (a fine-tuning-based approach) and FSDetView (an
episodic-training-based approach) are adapted to the iFSOD
setting as follows. TFA is first trained on the base classes,
resulting in model 1. Then, TFA is fine-tuned on the new
classes, resulting in model 2. Finally, we run the models 1
and 2 on the same test images and select the top 100 predic-
tions, as in the COCO evaluation protocol. For FSDetView,
after pre-training the model on training examples of the base
classes, we use the pretrained model to estimate the proto-
type for each base class, and then run the pretrained model
on the new classes to extract their prototypes. FSDetView
uses the prototypes of both new and base classes for object
detection in test images. As TFA and FSDetView were not
originally designed for iFSOD, their aforementioned adap-
tation from FSOD to iFSOD has two limitations: (1) Stor-
age and running of two distinct models/prototypes for pre-
dicting the base and new classes; (2) The two distinct mod-
els may independently each yield a high score on a base and
new class in the test image, which is then hard to resolve.

Among the approaches aimed at iFSOD, ONCE is based
on YOLO [28], and LEAST and GIFSOD are based on
Faster-RCNN [29]. iMTFA is a variant of Mask+Cosine,
where the weight µn is set to the box feature f extracted
from an example of the new class.

For the comparison in Tab. 3, results are averaged over
10 runs with different sets of few-shot examples. From
this table, for the iFSOD setting, iFS-RCNN outperforms
state of the art (SOTA) approaches slightly on new classes
(+0.05) while significantly on the base classes (+12) for
K = 10. For the iFSIS setting, iFS-RCNN outperforms
the SOTA iMTFA with significant margins. Specifically, for
K = 10, our performance gains are about +6 for the new

classes and +16 for the base classes on segmentation. Our
performance gains are very large, especially for the chal-
lenging COCO dataset.

4.4. Results on LVIS

Tab. 4 reports our results on LVIS with K ≤ 10 on iF-
SIS and FSIS. Although Mask+Sigmoid uses less super-
vision than Mask-RCNN and TFA, they give comparable
results. iFS-RCNN significantly outperforms Mask-RCNN
with the gains of +3 on FSIS and +6 on iFSIS on the new
classes. These results demonstrate the effectiveness of our
iFS-RCNN on the more challenging dataset LVIS.

4.5. Qualitative Evaluation

Fig. 3 illustrates some of our results. The top two rows
show success cases while the bottom row shows failure
cases. For the failure cases from left to right: the train is
misclassified as bus due to very similar appearance, the bird
detection has a large bounding box due to the occlusion, the
human leg is segmented as a part of the motorbike due to
similar appearance, and the small boats far behind are not
detected. Fig. 4 shows our box refinement results. As can
be seen, high uncertainty about the box prediction gives a
considerable box refinement.

5. Conclusion and Discussion
We have specified iFS-RCNN to address N-way K-shot

incremental few-shot object detection (iFSOD) and instance
segmentation (iFSIS). iFS-RCNN leverages Mask-RCNN,
but modifies the standard softmax classifier and bounding-
box prediction head. The softmax classifier has been re-
placed with the sigmoid classifier for alleviating a statisti-
cal imbalance of the base and new classes. The sigmoid
classifier has been further improved via Bayesian learning
to robustly estimate a distribution of the classifier head’s
weights on a few examples of the new classes. For this
Bayesian learning, we have proposed an analytical approx-
imation using the probit function. Also, the standard box
predictor of Mask-RCNN has been extended to explicitly
predict uncertainty of box prediction, and use the estimated
uncertainty as input to a bounding-box refinement module.
iFS-RCNN significantly outperforms iMTFA – the state of



Figure 3. Representative results of iFS-RCNN on COCO-new with K = 30. The top two rows show success cases while the bottom row
shows failure cases. In the last row, from left to right: the train is detected as bus, bonding-box is too large for the bird, the human leg is
segmented as a part of the motorbike, the small boats far behind are not detected.

L:5, T:12, R:4, B:16 L:7, T:6, R:4, B:12

L:23, T:11, R:15, B:12

Figure 4. Bounding-box refinement with our uncertainty-guided
box predictor on COCO-new with K = 1. For each pair, left:
initial box, right: refined box. The box labels show left (L), top
(T), right (R), and bottom (B) side uncertainties; red text indicates
high uncertainty (≥ 10) that lead to large refinements. Yellow
arrows indicate the refined direction of each box side.

the art in iFSIS – with very large performance gains on
the COCO dataset, +6 on the new classes and +16 on the
base classes with 10 training examples. Moreover, we are

the first to report the results on the LVIS dataset for the
iFSOD, FSIS, and iFSIS problems, where we outperform
strong baselines.

As for potential limitations, our contribution 1, in gen-
eral, could be applied to any object detector, including
RPN-based ones like Faster-RCNN [29] and Mask-RCNN
[13]), point-based ones like FCOS [31] and Center-Net
[39]), and transformer-based ones like DETR [5]. How-
ever, in our experiments, we have succeeded in applying
it only to the RPN-based detector. This might be due to
the pre-selected balanced training examples of background
and foreground classes in the second stage of Faster-RCNN,
which is absent in the other two detector frameworks. Also,
while our estimation of uncertainty of box prediction and
our new uncertainty-weighted box loss have enabled signif-
icant performance gains, our contribution 2 lacks a theoret-
ical underpinning as to why our formulation outperforms a
Gaussian-based uncertainty estimation.

As any system for object detection and segmentation,
ours could be weaponized and misused for malicious vio-
lations of privacy, as well as used for efficiently discovering
and fighting against such misuses due to its few-shot learn-
ing capabilities.
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