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Abstract

Automating orchard tasks, such as pruning tree branches,
requires tree-structure understanding – a significant chal-
lenge for computer vision. This paper introduces the first
large-scale dataset for semantic and instance segmenta-
tion of modern fruit orchards. It consists of videos show-
ing Cherry and Apple trees in modern-orchard scenes, and
includes both labeled synthetic and real data, along with
synthetic tree meshes. To address prohibitive costs of an-
notating numerous tree branches, we study unsupervised
domain adaptation from synthetic to real data. For this
setting, we propose a new Semantically-Guided Depth Re-
finement (SGDR) that leverages zero-shot depth estimation
and semantic-aware smoothing. SGDR outperforms strong
baselines and state of the art. Furthermore, we also bench-
mark the dataset in the supervised setting, where the initial
annotations from the first frame are automatically propa-
gated throughout the video using the foundation Segment
Anything Model (SAM). The resulting pseudo labels are
then manually corrected to generate the ground truth. For
the supervised setting, we introduce SAM-Mask2Former
(SAM-M2F) aimed at instance segmentation. By providing
this dataset and benchmarking for both settings, we aim to
enable new research for precision agriculture.

1. Introduction
Labor shortages and increasing global food demand are
driving the need for agricultural automation, particularly
in labor-intensive tasks within modern fruit orchards with
trees bearing apples, cherries or other fruits [4, 17, 19]. In a
modern orchard, trees are arranged in rows and trained into
specific shapes (e.g., flat, wall-like structures or V-shaped
trellises). Pruning – a critical operation for maintaining
tree health, spacing of fruiting locations, and adequate sun-
light penetration – is the second most labor-intensive task
in such orchards [21, 36, 50]. The decision-making process
for pruning is complex, requiring detailed knowledge of tree
structure, from large trunks and support branches down to

Figure 1. Left: Real Envy apple tree. Right: Procedurally gener-
ated Envy apple tree generated with custom LPy[9] software.

the small, tertiary branches where fruiting buds reside.
Recent advances in semantic and instance segmentation,

combined with the accessibility of low-cost RGB-D cam-
eras, have paved the way for developing effective robotic
systems to automate this process [77]. However, achieving
precise robotic manipulation requires a highly accurate seg-
ment of the overall plant architecture. This is challenging
due to the highly-variable imaging conditions in the out-
door environment, the vast range of scales – from large
trunks to millimeter-thin branches – the presence of long
slender structures, large variations in tree structure within
and across orchards of different fruit types, and significant
background clutter from surrounding orchard trees.

While recent supervised object segmentation methods,
such as SegFormer [71] and Mask2Former [14], have
shown promise, they require extensive training data. Un-
fortunately, no such large-scale datasets are publicly avail-
able for modern fruit orchards. This paper introduces a new,
large-scale database encompassing both images and videos
of modern fruit orchards, and including both synthetic and
real-world data. We believe this dataset will be a critical
resource for developing and benchmarking advanced scene
understanding algorithms for vision in agriculture.

The proposed dataset is benchmarked in two settings –
namely, the supervised setting with limited annotations and
the unsupervised domain adaptation (UDA) setting from
synthetic to real data. For the former, we mitigate the sub-
stantial labeling effort by first automatically propagating the
annotations provided for the initial frame throughout the
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video, and then by manually correcting any errors in the re-
sulting pseudo labels to generate the ground truth for train-
ing. In the context of robotic pruning, structural errors (e.g.,
”floating” branches, incorrectly merged branches) are far
more detrimental than minor boundary inaccuracies. There-
fore, in the supervised setting, we investigate both semantic
and instance segmentation.

In the UDA setting, we rely solely on synthetic data an-
notations for training, and use real-data labels only for eval-
uation. We focus solely on UDA semantic segmentation,
as prior work has reported that UDA instance segmentation
remains too challenging, even in simpler domain contexts.

Most existing instance segmentation methods are fully
supervised, requiring fully annotated big datasets [14, 41].
Unfortunately, manual labeling of these images is very chal-
lenging and prone to error. Other approaches perform label
transfer based on unrelated images [7, 68], which may not
include object classes of our interest, such as tertiary spur
branches or trellis wires. Furthermore, as input, existing
UDA segmentation methods [30, 32] either use RGB im-
ages or require complex multi-modal fusion to incorporate
depth information [74].

To address the limitations of existing approaches, this
paper makes the following key contributions:

• Large-Scale Orchard Dataset. We introduce the first
large-scale, labeled synthetic dataset and partially la-
beled real-world dataset designed for semantic and in-
stance segmentation of fruit trees in modern orchards.
The synthetic and real datasets focus on two distinct tree
structures: (1) Cherry trees grown in an Upright Fruit-
ing Offshoot (UFO) system and (2) Apple trees grown
in a V-Trellis system. The synthetic dataset consists of
5,000 images per tree type, encompassing nine seman-
tic classes: foreground trunk (leader), foreground sec-
ondary branches (branch), foreground tertiary branches
(spur), wires, ground, sky, background (other trees), fore-
ground/background posts. This dataset can be easily ex-
panded if needed. The real-world dataset comprises 132
videos (68,760 frames) of UFO cherry trees and 91 videos
(91,470 frames) of Envy apple trees. The real dataset
is partially labeled for evaluation, where 387 cherry im-
ages are manually labeled with the spur, branch, and
leader classes for semantic segmentation, and 24 apple
and 15 cherry images are labeled for instance segmen-
tation. We are also releasing 500 synthetically gener-
ated tree meshes, representing both UFO and V-Trellis
tree structures, to provide a valuable resource for future
research in 3D reconstruction, simulation, and synthetic
dataset generation.

• Semantic Depth-Fusion. We benchmark state-of-the-
art UDA methods (e.g., MIC: Masked Image Consis-
tency) and propose a novel approach called Semantically-
Guided Depth Refinement (SGDR). SGDR incorporates

zero-shot depth estimation to address noise in depth esti-
mates. SGDR leverages ground-truth labels available in
the synthetic dataset to smooth the estimated depth, lead-
ing to more stable and accurate domain adaptation.

• Efficient Video Label Extension. We introduce SAM-
Mask2Former (SAM-M2F) that uses a foundation seg-
mentation model, SAM 2, for efficient zero-shot video
segmentation and label propagation.

2. Related Work

2.1. Segmentation Datasets for Dormant Trees
Prior research on dormant tree segmentation has primarily
focused on small datasets and limited label categories. For
instance, researchers have used datasets of around 450 im-
ages to train models like mask2former for truck segmenta-
tion [66] or YOLO for detecting trunks and branches [57].
Similarly, [48] used a dataset containing 356 images to seg-
ment various tree parts. [76] introduced synthetic data gen-
erated in Blender [1] to segment foreground trees from or-
chard backgrounds. Similarly, accurate synthetic images
can be generated using 3D-reconstructed trees [5], though
tree reconstruction remains an open challenge. [8] created
a high-fidelity synthetic dataset by compositing images of
cherry trees onto various backgrounds to train a Mask R-
CNN for segmenting leaders. However, the omission of key
labels like trellis wires and spurs – due to limited data, long
annotation times, or inaccurate meshes – reduces the practi-
cal utility of these models. The development of tools to pro-
cedurally generate 3D meshes of trees [2, 3, 16] has enabled
the generation of high-fidelity synthetic environments, pri-
marily utilizing Blender. For example, [10] leveraged such
environments to generate synthetic point cloud data for for-
est tree segmentation. They addressed the domain gap be-
tween the real and synthetic point clouds through domain
adaptation techniques. Existing tree mesh generation tools
lack support for modeling orchard-specific practices such
as pruning and tying. To overcome this limitation, inspired
by [16], we extend LPy [9]–an open-source tree modeling
tool–to incorporate the tying and pruning processes. This
allows us to produce high-fidelity synthetic datasets tailored
for fruit tree segmentation.

2.2. Unsupervised Domain Adaptation
Unsupervised Domain Adaptation (UDA) transfers knowl-
edge from a labeled source domain to an unlabeled tar-
get domain, commonly using adversarial training [22, 26–
28, 56, 61, 63] or self-training [6, 11, 23, 30, 31, 39, 49,
51, 54, 59, 60, 70, 73, 79, 80, 83, 84]. Because semantics
and geometry are related [62, 72, 81], many UDA meth-
ods use depth. Some treat depth estimation as an auxiliary
task [13, 29, 40, 55, 62, 64, 65, 69], while others jointly
optimize depth and segmentation in a multi-task framework



[24, 33, 37, 47, 65, 72, 82]. RGB-D segmentation meth-
ods [12, 35] also use depth to enhance RGB features, often
with Squeeze-and-Excitation (SE) blocks [34] or attention
[12, 35, 47, 67, 72, 78]. In contrast, we use pre-computed
depth as an additional input, similar to RGB-D segmenta-
tion but within a UDA context. This setup is like MICDrop
[74], but crucially, we avoid their complex attention-based
fusion and masking. Our method directly integrates depth
for a simpler, more efficient UDA solution.

2.3. Semi-supervised Instance Segmentation
Semi-supervised instance segmentation improves perfor-
mance by using both labeled and unlabeled data. Early
methods like Mask-RCNN [25] and ViTDet [44] used de-
tection followed by segmentation, while transformers like
MaskFormer [15] and Mask2Former [14] adopted mask
classification. Pseudo-labeling, where a teacher model la-
bels unlabeled data for a student model, is common [20, 68],
often relying on techniques like EMA teacher updates and
differential data augmentation. Noisy Boundaries [68]
used a fixed teacher, and Polite Teacher [20] used EMA
[59]. Guided Distillation (GD) [7] pre-trained the student
with pseudo-labels from a fixed teacher. Other knowl-
edge distillation (KD) methods exist [18, 42, 43, 46], but
primarily complement pseudo-labeling. However, exist-
ing methods often require complex teacher-student archi-
tectures and EMA updates [20, 68], are sensitive to pseudo-
label accuracy [7], and heavily rely on image augmenta-
tion consistency [58]. In contrast, our approach targets
practical agricultural applications. We incorporate mini-
mal human-in-the-loop feedback to refine easily-revisable
pseudo-labels, ensuring high-quality annotations. Further-
more, we move beyond image-based augmentation by ex-
ploring video-based pseudo-label generation through track-
ing and segmentation, a novel approach not explored in
prior work [7, 42, 58, 68].

3. The Tree Segmentation Dataset
Modern fruit orchard trees are trained into specific struc-
tures optimized for increasing yield and reducing time to
harvest. These structures are typically formed by tying
trunks and branches to wires supported by wooden posts
and are maintained through annual cycles of pruning and
tying. Figure 1 (Left) shows an example of a tree in a V-
Trellis architecture. A modern orchard can be specified by
the tree structure and the layout of the orchard. The lay-
out commonly features trees growing in rows with specific
distances between adjacent trees and adjacent rows of trees.
These characteristics give the orchard a unique appearance,
different from typical trees we see in nature.

The image segmentation dataset introduced in this paper
includes images of trees in an orchard trained in two spe-
cific structures: Upright Fruiting Offshoots (UFO) and the

Figure 2. Sample images from the real-world datasets, illustrat-
ing a range of conditions including varying illumination, image
resolutions, times of day (e.g., morning, afternoon), and weather
conditions (e.g., sunny, cloudy, rainy). Top row: UFO subsets
(UFO-1, 2, 3, 4). Bottom row: Envy subsets (Envy-1, 2, 3).

V-trellis system. The V-trellis system features a trunk that
grows at an incline to the ground, with secondary branches
on either side tied to wires that run perpendicular to the
trunk, forming a planar structure. In contrast, the UFO sys-
tem consists of a horizontal trunk with secondary branches
growing upward, supported by wires to keep them vertical
and in the same plane. These secondary branches further
grow tertiary branches – the fruiting sites of the tree.

For vision-enabled robotic pruning of a modern orchard,
a segmentation algorithm must be capable of accurately
phenotyping the relevant parts of the foreground tree – the
tree closest to the camera – such as the trunk, secondary and
tertiary branches. It must also be able to identify orchard
elements such as posts, wires, ground, sky, and background
trees.

To support learning of such a segmentation algorithm
we build a dataset consisting of images from two domains:
(i) synthetically generated orchard images with their cor-
responding semantic annotations, and (ii) real orchard im-
ages. Annotations of the synthetic images comprise three
tree-related and six environment-related categories. The
tree-related categories are: 1) Foreground Trunk, 2) Fore-
ground Secondary Branches, and 3) Foreground Tertiary
Branches. The environmental categories are: 1) Wires, 2)
Ground, 3) Sky, 4) Background trees, 5) Background Posts,
and 6) Foreground Posts. A subset of real images is manu-
ally labeled with the same categories for evaluation.

3.1. Real-World Data
We introduce a new real-world dataset collected from or-
chards in Prosser, Washington, U.S.A. between 2021 and
2024. The videos were captured under unconstrained con-
ditions, resulting in significant variability across several fac-
tors: (1) orchard location, (2) time of day and year, (3) cam-
era model, (4) video resolution, (5) camera motion patterns,
(6) weather conditions, and (7) availability of depth infor-
mation. Figure 2 illustrates the diversity of the collected
data. The specifications of the real-world dataset are out-
lined below.



UFO Cherries – 132 videos collected in 4 settings.
1. Cherry UFO 1 (December 2021): Recorded with a

handheld cellphone (no depth sensing) at 1080×1920
resolution under overcast conditions. The camera moved
in a rectangular pattern close to the tree. This subset
comprises 3 videos, totaling 50 seconds or 1500 frames.

2. Cherry UFO 2 (January 2022): Recorded with a
handheld Intel RealSense D435 (depth sensing) at
1920×1080 under mixed sunny/cloudy conditions. Cam-
era moved vertically close to the tree. 95 videos, 348
seconds, 10,440 frames.

3. Cherry UFO 3 (March 2022): Recorded with a hand-
held Intel RealSense D415 (depth sensing) at 1280×720
under sunny conditions. Camera moved randomly close
to the tree. 20 videos, 107 seconds, 3210 frames.

4. Cherry UFO 4 (January 2023): Recorded with
a handheld Azure Kinect DK (depth sensing) at
1920×1080 under overcast conditions. Camera moved
horizontally farther from the tree. 14 videos, 1787 sec-
onds, 53,610 frames.

Envy Apples – 91 videos collected in 3 settings.
1. Envy V Trellis 1 (January 2022): Recorded with a

handheld Intel RealSense D435 (depth sensing) at
480×640 under overcast conditions. Camera moved ran-
domly close to the tree. 12 videos, 55 seconds, 1,650
frames.

2. Envy V Trellis 2 (January 2023): Recorded with a
robot-mounted Azure Kinect DK (depth sensing) at
1920×1080 under cloudy/overcast conditions. Camera
moved horizontally and vertically at a far distance from
the tree. 71 videos, 2,511 seconds, 75,330 frames.

3. Envy V Trellis 3 (January 2024): Recorded with a
robot-mounted Intel RealSense D435 (depth sensing)
at 424×240 under cloudy/overcast conditions. Camera
moved in an S-shaped pattern, both close to and far from
the tree. 8 videos, 483 seconds, 14,490 frames.

3.2. Synthetic Data
The primary goal of our synthetic dataset generation is to
enable unsupervised domain adaptation for segmentation
methods by: (i) replicating the geometries and visual char-
acteristics of trees growing in an orchard and (ii) generating
images of these trees with variability similar to that of real-

Figure 3. Synthetic dataset: RGB images, labels, and depths.

world data along with their annotations.
To achieve this, we built a 3D virtual orchard that allows

us to place a camera and take pictures. The generation of
this virtual orchard involves three key steps: a) Synthesis of
trees with realistic geometries; b) Creating a virtual orchard
with a desired layout and environmental elements such as
posts and wires; c) Generating artificial images that exhibit
the same variability as real-world ones. These three steps
are explained below.

Generating the trees. We use L-Systems to simulate
tree growth, making modifications to LPy[9] that allow for
continuous tying and pruning to generate tree meshes simi-
lar to modern fruit trees. These meshes have been validated
by horticultural experts to be visually consistent with the
target modern fruit trees. We also encode the segmentation
label of each mesh triangle as a color.

Generating a virtual orchard. We import the tree
meshes, along with meshes of posts and wires in Blender
[1], and place them according to the given specifications of
an orchard. For example, for V-Trellis we place the wires to
be running along with the tree branches and the trees at an
angle to form a V when viewed from the end of the row.

Generating images. We randomize the camera distance
from the tree, lighting, and tree textures. The sun is uni-
formly placed in different positions in the sky, whereas we
use 7 different bark, and 3 different ground textures and
randomly apply them. We use sky textures provided by
Blender. For segmentation ground truth, we re-render with
just the colored mesh vertices (no lighting).

Using this method, we generate UFO-synthetic and
Envy-synthetic datasets. Each dataset consists of 5000
independent RGB images, their corresponding labels, and
depth images. The datasets can be arbitrarily increased as
they are synthetically generated. Figure 3 shows examples
of the RGB, labeled annotations, and depth from the UFO-
Synthetic and Envy-Synthetic data. We also release the tree
meshes that were used to generate these datasets. An exam-
ple mesh is shown in Figure 1 (Right).

4. Unsupervised Domain Adaptation (UDA)
This section presents our multimodal unsupervised domain
adaptation (UDA) approach to semantic segmentation. Our
goal is to train a model using labeled source data (Xs, Ys)
and unlabeled target data (Xt), minimizing the domain gap
to enhance performance on the target domain. As input, we
use both RGB and depth images, and produce a semantic
segmentation map as output. Standard supervised learning
is used for the source domain, while we leverage the unla-
beled target data via a student-teacher framework, drawing
inspiration from related methods [30–32, 60].

The teacher network, updated using an Exponential
Moving Average (EMA) [59] of the student’s weights, gen-
erates pseudo-labels (Xt, Ŷt) for the target data. These
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Figure 5. RGB images and their depth from the real-world dataset.

pseudo-labels provide supervision for the student’s train-
ing on the target domain. To promote robustness, strong
and weak augmentations are provided for the student and
teacher inputs [60], respectively. Masked image consis-
tency (MIC) [32] is incorporated to enforce consistent pre-
dictions between masked views of the target images and the
pseudo-labels generated from the unmasked images.

Building upon hierarchical encoders [30, 31], which pro-
vide multi-resolution feature maps, our approach integrates
depth estimation. Depth is estimated for both source and
target data using the Depth Anything V2 model [75], allow-
ing our method to generalize to datasets with missing, noisy
(Fig. 5), or domain-shifted (Fig. 3) depth.

Our contributions are twofold: (1) improving accuracy
of depth estimation; and (2) fusing the improved depth esti-
mates with RGB features to achieve more robust UDA.
Datasets. For RGB-based unsupervised domain adaptation
(UDA), we use a subset of the UFO cherry orchard dataset,
specified in Section 3.2. Our UDA training set consists of
4,550 unlabeled real-world images, randomly selected from
the dataset, and 9,009 synthetic images, generated using the
algorithm detailed in Section 3.2. For evaluation, we use a
separate, held-out set of 387 labeled real-world images from
the same dataset.
Models. Our baseline, MIC [32], is a domain adapta-
tion method that uses spatial context by enforcing consis-
tency between masked and unmasked views of target im-
ages. We propose two extensions of this baseline: MIC
with Depth (MIC-D) and Semantically-Guided Depth Re-
finement (SGDR). MIC-D integrates zero-shot depth fea-
tures [75] to provide geometric guidance, thereby improv-
ing segmentation accuracy. These depth features are not

fine-tuned. SGDR, in contrast, focuses on improving accu-
racy of the zero-shot depth estimation using a lightweight
adapter. Leveraging labeled data from the source domain,
SGDR refines depth estimates, significantly improving sta-
bility and sharpness, especially at object boundaries and for
small, thin, or narrow structures, as appropriate for our or-
chard domain. This depth refinement is achieved by gen-
erating a semantically-aware depth map: depth values are
averaged within regions defined by each semantic mask
from the source domain. We did not compare our method
with MICDrop [52] – another UDA method that uses depth
as a parallel input to RGB data – because its source code
is not publicly available and its architecture is consider-
ably more complex. MICDrop employs duplicate, heavy-
weight encoders for RGB and depth data, a complex mask-
ing strategy to balance RGB and depth features, and an ad-
ditional attention mechanism for depth-based semantic rea-
soning. Instead, our approach uses a single shared encoder
for RGB and depth. The RGB and depth features are con-
catenated and projected to a lower-dimensional combined
feature. This design is substantially more efficient in terms
of both parameter count and computational cost.

Metrics. Following [32], we evaluate our semantic seg-
mentation on the target domain using the following met-
rics: per-class Intersection-over-Union (IoU) and accuracy
(Acc), mean IoU (mIoU) and mean accuracy (mAcc) cal-
culated across three classes (leader, branch, and spur), and
overall accuracy (aAcc).

Comparison with SOTA. The proposed MIC-D and
SGDR are compared with the MIC baseline [32] in Table 1.
Our SGDR method significantly outperforms both MIC-D
and MIC. Specifically, SGDR improves upon MIC by +5.2
in aAcc, +8.6 in mIoU, and +10.9 in mAcc.

Analysis. Figure 6 illustrates the effectiveness of our SGDR
method compared to the state-of-the-art MIC. Qualitatively,
SGDR’s segmentation aligns more closely with the ground
truth across both synthetic (9 classes: spur, branch, leader,
sky, ground, other trees, wires, post, trunk) and real-world
images (3 classes: spur, branch, leader).
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Figure 6. Qualitative comparison of MIC, MIC-D and SGDR. SGDR demonstrates superior performance in segmenting branches (rows
2-4) and accurately predicting leaders and branches, particularly those located at the image boundary (row 1).

IoU Acc Overall
Method spur branch leader spur branch leader aAcc mIoU mAcc

MIC [32] 28.7 37.7 76.5 45.3 39.4 87.1 69.7 47.6 57.3
MIC-D 27.0 29.2 64.3 39.4 30.0 76.4 59.7 40.2 48.6
SGDR 33.6 58.6 76.4 55.6 69.5 79.5 74.9 56.2 68.2

Table 1. Performance comparison of the baseline MIC [32], MIC with Depth (MIC-D) and Semantically-Guided Depth Refinement
(SGDR). Metrics include overall accuracy (aAcc), mean Intersection-over-Union (mIoU), and mean class accuracy (mAcc).

While our domain adaptation strategy yields promising
results for semantic segmentation, achieving good perfor-
mance in instance segmentation – required for many agri-
cultural applications – remains too challenging. Rather than
relying solely on domain adaptation, we further explore
maximizing the utility of limited labeled data. To enable
instance segmentation, the following sections present our
investigations into: (1) efficient data extension in the sparse
and few-shot annotation settings; and (2) multi-modal foun-
dation models.

5. Supervised Setting

Creating a large-scale, high-quality dataset with instance-
level annotations for our orchard imagery presents signifi-
cant challenges. The diverse, elongated, and curved shapes
of tree branches, combined with the frequent intermingling

of different instances, make manual annotation extremely
laborious and time-consuming. Therefore, in this work, we
pursue efficient annotation extension techniques, leverag-
ing the capabilities of state-of-the-art (SOTA) multi-modal
foundation models. This section specifies our exploration
of two distinct approaches: (1) image-based data extension,
where a single annotated sample serves as a visual prompt
for one-shot novel object detection by a foundation model;
and (2) zero-shot video object segmentation (ZVOS), where
annotation of a single frame is propagated to the remaining
frames of a video sequence. The results and analysis of both
approaches are presented in the subsequent subsections. In
the following, we show that the image-based extension ap-
proach encountered significant difficulties, while the ZVOS
method demonstrated promising performance.

T-Rex2 Image Visual Prompt. T-Rex2 [38], a recently in-
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Figure 7. One-shot detection using T-Rex2 [38]. (a) Input im-
age with a single bounding box annotation provided as a visual
prompt, specifying a tree branch. (b) T-Rex2’s generated detec-
tions based on the visual prompt in (a).

(a) one-point (b) two-point

(c) bounding box (d) mask

Figure 8. Evaluation of SAM2 [53] segmentation performance
with different visual prompt types. (a) Single-point prompt. (b)
Two-point prompt. (c) Bounding box prompt. (d) Mask prompt.
Input prompts (points and boxes) are shown in green; the resulting
SAM-generated segmentation masks are shown in blue.

troduced object detection model, integrates both textual and
visual prompts via contrastive learning to achieve flexible
zero-shot detection across a wide range of object categories
and scenarios. While T-Rex2 demonstrates impressive per-
formance on common object classes such as animals and
fruits, our experiments revealed limitations in its ability to
accurately detect tree branches in our orchard dataset. As il-
lustrated in Figure 7, T-Rex2 exhibits a high rate of missed
detections and frequently detects only partial segments of
the branches, rather than the complete structure. We hy-
pothesize that this limitation stems from the inherent com-
plexity of our orchard imagery. The intricate and overlap-
ping nature of the tree branches, coupled with variations
in lighting and perspective, presents a significant challenge
even for state-of-the-art zero-shot detection models like T-
Rex2, hindering their generalization capabilities in this spe-
cific context.
SAM 2 Frame Visual Prompt. Segment Anything Model
2 (SAM 2) [53] is a powerful foundation model for prompt-
able image segmentation. A critical question for our agri-
cultural application is determining the optimal prompting
strategy to achieve accurate instance segmentation of tree
parts (e.g., leaders and branches) within a complex orchard
environment. Our goal is to achieve effective segmentation

…
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orchard vertical scans

Figure 9. Zero-shot video instance segmentation: We leverage
moving cameras and initial frame annotations to generate a large
labeled dataset, expanding the initial labels hundreds of times.

with minimal annotation effort. Initial experiments evalu-
ating SAM with single-point, two-point, and bounding box
prompts yielded unsatisfactory results (Fig.8). A single pos-
itive point prompt resulted in incomplete segmentation of
the target branch (Fig.8 (a)). A two-point prompt gener-
ated numerous false positives, incorrectly segmenting other
branches and failing to distinguish between foreground and
background objects (Figure 8 (b)). A bounding box prompt
was similarly ineffective (Fig.8 (c)), highlighting the chal-
lenges posed by the intricate and noisy nature of our orchard
imagery. Consequently, we adopted a mask-based prompt-
ing strategy (Fig.8 (d)) for our experiments.

Given the promising results with mask prompts, we
aim to minimize the number of manually labeled frames
while still generating a diverse and comprehensive training
dataset. To this end, we propose a per-tree vertical scanning
strategy for efficient label extension. The vertically oriented
growth pattern of trees ensures that portions of the leader
and branches remain visible as the camera moves upwards
or downwards along the trunk. The adopted vertical camera
scan facilitates reliable tracking and segmentation of tree
branches using a zero-shot tracker, initialized with the ini-
tial mask prompt from SAM. By systematically performing
vertical scans of each tree, we can leverage the foundation
model’s capabilities to generate diverse high-quality seg-
mentation masks, effectively extending our initial labeling.

Experimental Setup: Datasets and Models. To evaluate
the effectiveness of our proposed data extension approach,
we conducted experiments using per-tree vertical scans of
Envy apple and UFO cherry trees. The dataset comprised
14 Envy apple scans and 5 UFO cherry scans, contain-
ing a total of 56 leader instances, 187 branches, and 10
posts across all scans. For initial training, a single repre-
sentative frame from each tree scan was manually anno-
tated. These initial annotations served as the training data
for the baseline Mask2Former model [14]. Our proposed
method, SAM-M2F, uses the Segment Anything Model 2
(SAM 2) [53] for label extension. The initial frame an-
notations were propagated through their respective video
sequences using SAM 2. Manual corrections were made
to the SAM-generated labels as needed to ensure accuracy.
This expanded the training set, comprising both the initial
manual annotations and the corrected ones. The expanded



Method AP AP50 AP75 APm APl leader branch post
Mask2Former [14] 54.289 81.997 54.246 24.341 56.321 57.290 31.146 74.431

SAM-M2F 64.095 91.145 79.060 53.384 66.157 74.922 43.086 74.277

Table 2. Instance segmentation results on 20 evaluation scenes. SAM-M2F outperforms the strong Mask2Former [14] baseline by a
significant margin. Mask2Former was trained without label extension from SAM 2 [53].

(a1) Envy - Mask2former (a2) Envy - SAM-M2F

(b1) UFO - Mask2former (b2) UFO - SAM-M2F

R1

R2
R3

R1

R2

R3

Figure 10. Qualitative comparison of Mask2Former and our pro-
posed SAM-M2F for instance segmentation on Envy Apple (a) and
UFO Cherry (b) trees. (a1) and (b1) depict Mask2Former results;
(a2) and (b2) depict SAM-M2F results.

dataset was used to train the Mask2Former instance seg-
mentation model. Both models used COCO [45] pre-trained
weights [14] and were trained for 500 iterations with a batch
size of 6 and a learning rate of 5e-5. For evaluation, we ran-
domly selected 20 scenes not used in the training set. The
evaluation set included 10 scenes from each tree type (Envy
apple and UFO cherry), containing a total of 49 leader in-
stances, 143 branches, and 6 posts.
Metrics. For instance segmentation, we use the standard
average precision (AP) metrics, including per-category AP
and overall AP across all categories [14, 45].
Comparison with SOTA. Table 2 demonstrates that SAM-
M2F, using our proposed label extension, achieves signifi-
cantly better performance compared to Mask2Former. We
observe a 10% increase in overall AP, a 12% increase in
branch segmentation AP, and a 17% increase in leader seg-
mentation AP. This substantial improvement highlights the
effectiveness of our proposed label extension.
Analysis. Figure 10 presents a qualitative comparison be-
tween Mask2Former and our proposed SAM-M2F. Each in-
stance box displays the predicted category (0: leader, 1:
branch) and a confidence score, with different colors dis-
tinguishing individual instances. Dashed white boxes (R1,
R2, R3) in each image pair highlight regions of improve-
ment. We observe several key advantages of SAM-M2F.
In the Envy Apple comparison ((a1) vs. (a2)), R1 and R2
demonstrate that Mask2Former incorrectly segments some
background tree branches, leading to false positives. SAM-
M2F, in contrast, avoids these errors. Furthermore, R3

shows that Mask2Former fails to completely segment a
leader at the bottom of the image, whereas SAM-M2F pro-
vides a more complete and accurate segmentation. In the
UFO Cherry comparison ((b1) vs. (b2)), R1 illustrates a
case where Mask2Former misses an obvious leader, while
SAM-M2F successfully detects it. Finally, in R2 and R3,
Mask2Former misclassifies a supporting post and part of
a leader as branches, while SAM-M2F successfully avoids
both false positives and misclassification errors. These ex-
amples clearly demonstrate SAM-M2F’s improved ability
to handle complex orchard scenes and its adherence to our
specific segmentation goals.

6. Conclusion
This work is aimed at enabling vision-based automation of
labor-intensive tasks in modern orchards. We have intro-
duced the first large-scale dataset for semantic and instance
segmentation of fruit trees in modern orchards. The dataset
encompasses both synthetic images and real-world videos,
as well as a collection of synthetic 3D meshes of trees. The
provided manual annotations of the dataset are aimed at
supporting semantic and instance segmentation. The dataset
is benchmarked in the supervised setting with limited initial
annotations and the unsupervised domain adaptation set-
ting. For instance segmentation in the supervised setting
with limited labeled data, we have proposed a new SAM-
M2F model, which leverages the SAM 2 foundation model
to provide an effective data extension for a supervised train-
ing of the Mask2Former. For the unsupervised domain
adaptation setting, we have proposed the SGDR model,
which effectively refines and integrates depth estimation for
enhanced semantic segmentation. The new dataset and pro-
posed SAM-M2F and SGDR models fill a critical gap in
the field toward advancing vision research for agriculture
applications.
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