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Abstract. In this paper, we present a vision system for object recognition in
aerial images, which enables broader mission profiles for Micro Air Vehicles
(MAVs). The most important factors that inform our design choices are: real-time
constraints, robustness to video noise, and complexity of object appearances. As
such, we first propose the HSI color space and the Complex Wavelet Transform
(CWT) as a set of sufficiently discriminating features. For each feature, we then
build tree-structured belief networks (TSBNs) as our underlying statistical mod-
els of object appearances. To perform object recognition, we develop the novel
multiscale Viterbi classification (MSVC) algorithm, as an improvement to multi-
scale Bayesian classification (MSBC). Next, we show how to globally optimize
MSVC with respect to the feature set, using an adaptive feature selection algo-
rithm. Finally, we discuss context-based object recognition, where visual contexts
help to disambiguate the identity of an object despite the relative poverty of scene
detail in flight images, and obviate the need for an exhaustive search of objects
over various scales and locations in the image. Experimental results show that the
proposed system achieves smaller classification error and fewer false positives
than systems using the MSBC paradigm on challenging real-world test images.

1 Introduction

We seek to improve our existing vision system for Micro Air Vehicles (MAVs) [1–3] to
enable more intelligent MAV mission profiles, such as remotetraffic surveillance and
moving-object tracking. Given many uncertain factors, including variable lighting and
weather conditions, changing landscape and scenery, and the time-varying on-board
camera pose with respect to the ground, object recognition in aerial images is a chal-
lenging problem even for the human eye. Therefore, we resortto a probabilistic for-
mulation of the problem, where careful attention must be paid to selecting sufficiently
discriminating features and a sufficiently expressive modeling framework. More impor-
tantly, real-time constraints and robustness to video noise are critical factors that inform
the design choices for our MAV application.

Having experimented with color and texture features [3], weconclude that both
color and texture clues are generally required to accurately discriminate object appear-
ances. As such, we employ both the HSI color space, for color representation, and
also the Complex Wavelet Transform (CWT), for multi-scale texture representation. In
some cases, where objects exhibit easy-to-classify appearances, the proposed feature
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set is not justifiable in light of real-time processing constraints. Therefore, herein, we
propose an algorithm for selecting an optimal feature subspace from the given HSI and
CWT feature space that considers both correctness of classification and computational
cost.

Given this feature set, we then choose tree-structured belief networks (TSBNs) [4],
as underlying statistical models to describe pixel neighborhoods in an image at vary-
ing scales. We build TSBNs for both color and wavelet features, using Pearl’s message
passing scheme [5] and the EM algorithm [6]. Having trained TSBNs, we then proceed
with supervised object recognition. In our approach, we exploit the idea ofvisual con-
texts [7], where initial identification of the overall type of scene facilitates recognition of
specific objects/structures within the scene. Objects (e.g., cars, buildings), the locations
where objects are detected (e.g., road, meadow), and the category of locations (e.g., sky,
ground) form a taxonomic hierarchy. Thus, object recognition in our approach consists
of the following steps. First, sky/ground regions in the image are identified. Second,
pixels in the ground region1 are labeled using the learned TSBNs for predefined loca-
tions (e.g., road, forest). Finally, pixels of the detectedlocations of interest are labeled
using the learned TSBNs for a set of predefined objects (e.g.,car, house).

To reduce classification error (e.g., “blocky segmentation”), which arises from the
fixed-tree structure of TSBNs, we develop the novel multiscale Viterbi classification
(MSVC) algorithm, an improved version of multiscale Bayesian classification (MSBC)
[8, 9]. In the MSBC approach, image labeling is formulated asBayesian classification
at each scale of the tree model, separately; next, transition probabilities between nodes
at different scales are learned using the greedy classification-tree algorithm, averaging
values over all nodes and over all scales; finally, it is assumed that labels at a “coarse
enough” scale of the tree model are statistically independent. On the other hand, in our
MSVC formulation, we perform Bayesian classification only at the finest scale, fusing
downward the contributions of all the nodes at all scales in the tree; next, transition
probabilities between nodes at different scales are learned as histogram distributions
that are not averaged over all scales; finally, we assume dependent class labels at the
coarsest layer of the tree model, whose distribution we again estimate as a histogram
distribution.

2 Feature Space

Our feature selection is largely guided by extensive experimentation reported in our
prior work [3], where we sought a feature space, which spans both color and texture
domains, and whose extraction meets our tight real-time constraints.

We obtained the best classification results when color was represented in the HSI
color space. Tests suggested that hue (H), intensity (I) and saturation (S) features were
more discriminative, when compared to the inherently highly correlated features of the
RGB and other color systems [10]. Also, first-order HSI statistics proved to be sufficient
and better than the first and higher-order statistics of other color systems.

For texture-feature extraction, we considered several filtering, model-based and
statistical methods. Our conclusion agrees with the comparative study of Randenet

1 Recognition of objects in the sky region can be easily incorporated into the algorithm.
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al. [11], which suggests that for problems where many textures with subtle spectral dif-
ferences occur, as in our case, it is reasonable to assume that spectral decomposition by
a filter bank yields consistently superior results over other texture analysis methods. Our
experimental results also suggest that it is necessary to analyze both local and regional
properties of texture. Most importantly, we concluded thata prospective texture analy-
sis tool must have high directional selectivity. As such, weemploy the complex wavelet
transform (CWT), due to its inherent representation of texture at different scales, orien-
tations and locations [12]. The CWT’s directional selectivity is encoded in six bandpass
subimages of complex coefficients at each level, coefficients that are strongly oriented
at angles±15◦,±45◦,±75◦. Moreover, CWT coefficient magnitudes exhibit the fol-
lowing properties [13, 14]: i)multi-resolutional representation, ii)clustering, and iii)
persistence (i.e. propagation of large/small values through scales).

Computing CWT coefficients at all scales and forming a pyramid structure from
HSI values, where coarser scales are computed as the mean of the corresponding chil-
dren, we obtain nine feature trees. These feature structures naturally give rise to TSBN
statistical models.

3 Tree-Structured Belief Networks

So far, two main types of prior models have been investigatedin the statistical im-
age modeling literature – namely, noncausal and causal Markov random fields (MRF).
The most commonly used MRF model is the tree-structured belief network (TSBN)
[8,9,14–16]. A TSBN is a generative model comprising hidden, X , and observable,Y ,
random variables (RVs) organized in a tree structure. The edges between nodes, rep-
resentingX , encode Markovian dependencies across scales, whereasY ’s are assumed
mutually independent given the correspondingX ’s, as depicted in Figure 1. Herein,
we enable input of observable information,Y , also to higher level nodes, preserving
the tree dependences among hidden variables. Thus,Y at the lower layers inform the
belief network on the statistics of smaller groups of neighboring pixels (at the lowest
level, one pixel), whereasY at higher layers represent the statistics of larger areas in
the image. Hence, we enforce the nodes of a tree model to represent image details at

(a) (b)

Fig. 1. Differences in TSBN models: (a) observable variables at thelowest layer only; (b) our
approach: observable variables at all layers. Black nodes denote observable variables and white
nodes represent hidden random variables connected in a treestructure.
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various scales.2 Furthermore, we assume that features are mutually independent, which
is reasonable given that wavelets span the feature space using orthogonal basis func-
tions. Thus, our overall statistical model consists of ninemutually independent trees
Tf , f ∈ F = {±15◦,±45◦,±75◦, H, S, I}.

In supervised learning problems, as is our case, a hidden RV,xi, assigned to a tree
nodei, i ∈ Tf , represents a pixel label,k, which takes values in a pre-defined set of
image classes,C. The state of nodei is conditioned on the state of its parentj and is
specified by conditional probability tables,P kl

ij , ∀i, j ∈ Tf , ∀k, l ∈ C. It follows that
the joint probability of all hidden RVs,X = {xi}, can be expressed as

P (X) =
∏

i,j∈Tf

∏

k,l∈C

P kl
ij . (1)

We assume that the distribution of an observable RV,yi, depends solely on the node
state,xi. Consequently, the joint pdf ofY = {yi} is expressed as

P (Y |X) =
∏

i∈Tf

∏

k∈C

p(yi|xi = k, θk
i ) , (2)

wherep(yi|xi = k, θk
i ) is modeled as a mixture ofM Gaussians,3 whose parameters

are grouped inθk
i . In order to avoid the risk of overfitting the model, we assumethat

the θ′s are equal for alli at the same scale. Therefore, we simplify the notation as
p(yi|xi=k, θk

i )=p(yi|xi). Thus, a TSBN is fully specified by the joint distribution of
X andY given by

P (X, Y ) =
∏

i,j∈Tf

∏

k,l∈C

p(yi|xi)P
kl
ij . (3)

Now, to perform pixel labeling, we face the probabilistic inference problem of com-
puting the conditional probabilityP (X |Y ). In the graphical-models literature, the best-
known inference algorithm for TSBNs is Pearl’s message passing scheme [5, 18]; sim-
ilar algorithms have been proposed in the image-processingliterature [8, 14, 15]. Es-
sentially, all these algorithms perform belief propagation up and down the tree, where
after a number of training cycles, we obtain all the tree parameters necessary to com-
puteP (X |Y ). Note that, simultaneously with Pearl’s belief propagation, we employ
the EM algorithm [6] to learn the parameters of Gaussian-mixture distributions. Since
our TSBNs have observable variables at all tree levels, the EM algorithm is naturally
performed at all scales. Finally, having trained TSBNs for aset of image classes, we
proceed with multiscale image classification.

4 Multiscale Viterbi Classification

Image labeling with TSBNs is characterized by “blocky segmentations,” due to their
fixed-tree structure. Recently, several approaches have been reported to alleviate this
problem (e.g., [19, 20]), albeit at prohibitively increased computational cost. Given the

2 This approach is more usual in the image processing community [8,9,14].
3 For largeM , a Gaussian-mixture density can approximate any probability density [17].
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real-time requirements for our MAV application, these approaches are not realizable,
and the TSBN framework remains attractive in light of its linear-time inference algo-
rithms. As such, we resort to our novel multiscale Viterbi classification (MSVC) algo-
rithm to reduce classification error instead.

Denoting all hidden RVs at the leaf levelL asXL, classification at the finest scale
is performed according to the MAP rule

X̂L = argmax
XL

{P (Y |X)P (X)} = argmax
XL

gL. (4)

Assuming that the class label,xl
i, of nodei at scaleℓ, completely determines the distri-

bution ofyl
i, it follows that:

P (Y |X) =

0∏

ℓ=L

∏

i∈ℓ

p(yℓ
i |x

ℓ
i) , (5)

wherep(yℓ
i |x

ℓ
i) is a mixture of Gaussians, learned using the inference algorithms dis-

cussed in Section 3. As is customary for TSBNs, the distribution of Xℓ is completely
determined byXℓ−1 at the coarserℓ − 1 scale. However, while, for training, we build
TSBNs where each node has only one parent, here, for classification, we introduce a
new multiscale structure where we allow nodes to have more than one parent. Thus,
in our approach to image classification, we account for horizontal statistical dependen-
cies among nodes at the same level, as depicted in Figure 2. The new multiresolution
model accounts for all the nodes in the trained TSBN, except that it no longer forms a
tree structure; hence, it becomes necessary to learn new conditional probability tables
corresponding to the new edges. In general, the Markov chainrule reads:

P (X) =
0∏

ℓ=L

∏

i∈ℓ

P (xℓ
i |X

ℓ−1) . (6)

The conditional probabilityP (xℓ
i |X

ℓ−1) in (6), unknown in general, must be estimated
using a prohibitive amount of data. To overcome this problem, we consider, for each
nodei, a3 × 3 box encompassing parent nodes that neighbor the initial parentj of i in
the quad-tree. The statistical dependence ofi on other nodes at the next coarser scale,

Fig. 2. Horizontal dependences among nodes at the same level are modeled by vertical depen-
dences of each node on more than one parent.
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in most cases, can be neglected. Thus, we assume that a nine-dimensional vectorvℓ−1

j ,
containing nine parents, represents a reliable source of information on the distribution
of all class labelsXℓ−1 for child nodei at levelℓ. Given this assumption, we rewrite
expression (6) as

P (X) =

0∏

ℓ=L

∏

i∈ℓ

∏

j∈ℓ−1

P (xℓ
i |v

ℓ
j) . (7)

Now, we can express the discriminant function in (4) in a moreconvenient form as

gL =
0∏

ℓ=L

∏

i∈ℓ

∏

j∈ℓ−1

p(yℓ
i |x

ℓ
i)P (xℓ

i |v
ℓ−1

j ) . (8)

Assuming that our featuresf ∈ F are mutually independent, the overall maximum
discriminant function can therefore be computed as

gL =
∏

f∈F

gL
f . (9)

The unknown transition probabilitiesP (xℓ
i |v

ℓ−1

j ) can be learned through vector
quantization [21], together with Pearl’s message passing scheme. After the prior proba-
bilities of class labels of nodes at all tree levels are learned using Pearl’s belief propaga-
tion, we proceed with instantiation of random vectorsvℓ

i . For each tree level, we obtain
a data set of nine-dimensional vectors, which we augment with the class label of the
corresponding child node. Finally, we perform vector quantization over the augmented
ten-dimensional vectors. The learned histogram distributions represent estimates of the
conditional probability tables. Clearly, to estimate the distribution of a ten-dimensional
random vector it is necessary to provide a sufficient number of training images, which
is readily available from recorded MAV-flight video sequences. Moreover, since we are
not constrained by the same real-time constraints during training as during flight, the
proposed learning procedure results in very accurate estimates, as is demonstrated in
Section 7.

The estimated transition probabilitiesP (xℓ
i |v

ℓ−1

j ) enable classification from scale
to scale in Viterbi fashion. Starting from the highest leveldownwards, at each scale,
we maximize the discriminant functiongL along paths that connect parent and children
nodes. From expressions (8) and (9), it follows that image labeling is carried out as

x̂L
i = arg max

xL
i
∈C

∏

f∈F

0∏

ℓ=L

∏

i∈ℓ

∏

j∈ℓ−1

p(yℓ
i,f |x

ℓ
i)P (xℓ

i |v̂
ℓ−1

j ) , (10)

wherev̂ℓ−1

j is determined from the previously optimized class labels ofthe coarser scale
ℓ − 1.

5 Adaptive Feature Selection

We have already pointed out that in some cases, where image classes exhibit favorable
properties, there is no need to compute expression (10) overall features. Below, we
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present our algorithm for adaptive selection of the optimalfeature set,Fsel, from the
initial feature set,F .

1. Form a new empty setFsel = {∅}; assigngnew = 1, gold = 0;
2. ComputêgL

f , ∀f ∈ F , given by (8) forx̂L
i given by (10);

3. Move the best featuref∗, for which ĝL
f∗ is maximum, fromF toFsel;

4. Assigngnew =
∏

f∈Fsel
ĝL

f ;
5. If (gnew < gold) deletef∗ fromFsel and go to step 3;
6. Assigngold = gnew;
7. If (F 6= {∅}) go to step 3;
8. Exit and segment the image using features inFsel.

The discriminant function,g, is nonnegative; hence, the above algorithm finds at least
one optimal feature. Clearly, the optimization criteria above consider both correctness
of classification and computational cost.

6 Object Recognition Using Visual Contexts

In our approach to object recognition, we seek to exploit theidea ofvisual contexts [7].
Having previously identified the overall type of scene, we can then proceed to recognize
specific objects/structures within the scene. Thus, objects, the locations where objects
are detected, and the category of locations form a taxonomichierarchy. There are sev-
eral advantages to this type of approach. Contextual information helps disambiguate
the identity of objects despite the poverty of scene detail in flight images and quality
degradation due to video noise. Furthermore, exploiting visual contexts, we obviate the
need for an exhaustive search of objects over various scalesand locations in the image.

For each aerial image, we first perform categorization, i.e., sky/ground image seg-
mentation. Then, we proceed with localization, i.e., recognition of global objects and
structures (e.g., road, forest, meadow) in the ground region. Finally, in the recognized
locations we search for objects of interest (e.g., cars, buildings). To account for different
flight scenarios, different sets of image classes can be defined accordingly. Using the
prior knowledge of a MAV’s whereabouts, we can reduce the number of image classes,
and, hence, computational complexity as well as classification error.

At each layer of the contextual taxonomy, downward, we conduct MSVC-based
object recognition. Here, we generalize the meaning of image classes to any global-
object appearance. Thus, the results from Sections 3 and 4 are readily applicable. In the
following example, shown in Figure 3, each element of the setof locations{road, forest,
lawn} induces subsets of objects, say,{car, cyclist} pertaining toroad. Consequently,
when performing MSVC, we consider only a small finite number of image classes,
which improves recognition results. Thus, in spite of videonoise and poverty of image
detail, the object in Figure 3, being tested against only twopossibilities, is correctly
recognized as acar.

7 Results

In this section, we demonstrate the performance of the proposed vision system for real-
time object recognition in supervised-learning settings.We carried out several sets of
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(a) (b) (c) (d)

Fig. 3. The hierarchy of visual contexts conditions gradual image interpretation: (a) a128 × 128

flight image; (b) categorization: sky/ground classification; (c) localization: road recognition; (d)
car recognition.

experiments which we report below. For space reasons, we discuss only our results for
car and cyclist recognition in flight video.

For training TSBNs, we selected 200 flight images for the car and cyclist classes.
We carefully chose the training sets to account for the enormous variability in car and
cyclist appearances, as illustrated in Figure 4 (top row). After experimenting with dif-
ferent image resolutions, we found that reliable labeling was achievable for resolutions
as coarse as64×64 pixels. At this resolution, all the steps in object recognition (i.e.,
sky/ground classification, road localization and car/cyclist recognition), when the fea-
ture set comprises all nine features, takes approximately 0.1s on an Athlon 2.4GHz
PC. For the same set-up, but for only one optimal feature, recognition time is less than
0.07s,4 which is quite sufficient for the purposes of moving-car or moving-bicycle track-
ing. Moreover, for a sequence of video images, the categorization and localization steps
could be performed only for images that occur at specified time intervals, although, in
our implementation, we process every image in a video sequence for increased noise
robustness.

After training our car and bicycle statistical models, we tested MSVC performance
on a set of 100 flight images. To support our claim that MSVC outperforms MSBC,
we carried out a comparative study of the two approaches on the same dataset. For
validation accuracy, we separated the test images into two categories. The first category
consists of 50 test images with easy-to-classify car/cyclist appearances as illustrated
in Figure 4a and Figure 4b. The second category includes another 50 images, where
multiple hindering factors (e.g. video noise and/or landscape and lighting variability, as
depicted in Figure 4c and Figure 4d) conditioned poor classification. Ground truth was
established through hand-labeling pixels belonging to objects for each test image. Then,
we ran the MSVC and MSBC algorithms, accounting for the image-dependent optimal
subset of features. Comparing the classification results with ground truth, we computed
the percentage of erroneously classified pixels for the MSVCand MSBC algorithms.

4 Note that even if only one set of wavelet coefficients is optimal, it is necessary to compute
all other sets of wavelets in order to compute the optimal oneat all scales. Thus, in this case,
time savings are achieved only due to the reduced number of features for which MSVC is
performed.
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(a) (b) (c) (d)

Fig. 4. Recognition of road objects: (top) Aerial flight images; (middle) localization: road recog-
nition; (bottom) object recognition. MSVC was performed for the following optimized sets of
features: (a)Fsel = {H, I,−45

◦}, (b) Fsel = {H,±75
◦}, (c) Fsel = {±15

◦,±45
◦}, (d)

Fsel = {H,±45
◦}.

The results are summarized in Table 1, where we do not report the error of complete
misses (CM) (i.e., the error when an object was not detected at all) and the error of
swapped identities (SI) (i.e., the error when an object was detected but misinterpreted).
Also, in Table 2, we report the recognition results for 86 and78 car/cyclist objects in
the first and second categories of images, respectively. In Figure 5, we illustrate better
MSVC performance over MSBC for a sample first-category image.

Table 1.Percentage of misclassified pixels by MSVC and MSBC

I category imagesII category images
MSVC 4% 10%
MSBC 9% 17%

Finally, we illustrate the validity of our adaptive featureselection algorithm. In Fig-
ure 6, we present MSVC results for different sets of features. Our adaptive feature selec-
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tion algorithm, for the given image, foundFsel = {H,−45◦,±75◦} to be the optimal
feature subset. To validate the performance of the selection algorithm, we segmented
the same image using all possible subsets of the feature setF . For space reasons, we il-
lustrate only some of these classification results. Obviously, from Figure 6, the selected
optimal features yield the best image labeling. Moreover, note that when all the features
were used in classification, we actually obtained worse results. In Table 3, we present
the percentage of erroneously classified pixels by MSVC using different subsets of fea-
tures for our two categories of 100 test images. As before, wedo not report the error of
complete misses. Clearly, the best classification results were obtained for the optimal
set of features.

Table 2.Correct recognition (CR), complete miss (CM), and swapped identity (SI)

I category images II category images

(86 objects) (78 objects)

CR CM SI CR CM SI

MSVC 81 1 4 69 5 4

MSBC 78 2 6 64 9 5

(a) (b) (c)

Fig. 5. Better performance of MSVC vs. MSBC for the optimal feature set Fsel =

{H, I,±15
◦,±75

◦}: (a) a first-category image; (b) MSVC; (c) MSBC.

8 Conclusion

Modeling complex classes in natural-scene images requiresan elaborate consideration
of class properties. The most important factors that informed our design choices for a
MAV vision system are: (1) real-time constraints, (2) robustness to video noise, and (3)
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(a) (b) (c) (d)

Fig. 6. Validation of the feature selection algorithm for road recognition: (a) MSVC for the op-
timizedFsel = {H,−45

◦,±75
◦}; (b) MSVC for all nine features inF ; (c) MSVC for subset

F1 = {H, S, I}; (d) MSVC for subsetF2 = {±15
◦,±45

◦ ± 75
◦}.

Table 3.Percentage of misclassified pixels by MSVC

I categoryII category
Fsel 4% 10%
F = {H, S, I,±15

◦,±45
◦ ± 75

◦} 13% 17%
F1 = {H, S, I} 16% 19%
F2 = {±15

◦,±45
◦ ± 75

◦} 14% 17%

complexity of various object appearances in flight images. In this paper, we first pre-
sented our choice of features: the HSI color space, and the CWT. Then, we introduced
the TSBN model and the training steps for learning its parameters. Further, we described
how the learned parameters could be used for computing the likelihoods of all nodes at
all TSBN scales. Next, we proposed and demonstrated multiscale Viterbi classification
(MSVC), as an improvement to multiscale Bayesian classification. We showed how to
globally optimize MSVC with respect to the feature set through an adaptive feature se-
lection algorithm. By determining an optimal feature subset, we successfully reduced
the dimensionality of the feature space, and, thus, not onlyapproached the real-time
requirements for applications operating on real-time video streams, but also improved
overall classification performance. Finally, we discussedobject recognition based on
visual contexts, where contextual information helps disambiguate the identity of ob-
jects despite a poverty of scene detail and obviates the needfor an exhaustive search of
objects over various scales and locations in the image. We organized test images into
two categories of difficulty and obtained excellent classification results, especially for
complex-scene/noisy images, thus validating the proposedapproach.
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