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Abstract. In this paper, we present a vision system for object rectmnin
aerial images, which enables broader mission profiles far®iir Vehicles
(MAVs). The most important factors that inform our desigoiciles are: real-time
constraints, robustness to video noise, and complexityojefad appearances. As
such, we first propose the HSI color space and the Complex [fauansform
(CWT) as a set of sufficiently discriminating features. Factefeature, we then
build tree-structured belief networks (TSBNs) as our ulyiley statistical mod-
els of object appearances. To perform object recognitiendewelop the novel
multiscale Viterbi classification (MSVC) algorithm, as amgrovement to multi-
scale Bayesian classification (MSBC). Next, we show how tdally optimize
MSVC with respect to the feature set, using an adaptive feagelection algo-
rithm. Finally, we discuss context-based object recognijtivhere visual contexts
help to disambiguate the identity of an object despite thative poverty of scene
detail in flight images, and obviate the need for an exhaeis@arch of objects
over various scales and locations in the image. Experirhezgalts show that the
proposed system achieves smaller classification error @mndrffalse positives
than systems using the MSBC paradigm on challenging redbwest images.

1 Introduction

We seek to improve our existing vision system for Micro Aithitdes (MAVS) [1-3] to
enable more intelligent MAV mission profiles, such as rentéfic surveillance and
moving-object tracking. Given many uncertain factors|uding variable lighting and
weather conditions, changing landscape and scenery, antintle-varying on-board
camera pose with respect to the ground, object recogniti@erial images is a chal-
lenging problem even for the human eye. Therefore, we résatprobabilistic for-
mulation of the problem, where careful attention must bel paiselecting sufficiently
discriminating features and a sufficiently expressive ningéramework. More impor-
tantly, real-time constraints and robustness to videoerais critical factors that inform
the design choices for our MAV application.

Having experimented with color and texture features [3],a@aclude that both
color and texture clues are generally required to accyrdtstriminate object appear-
ances. As such, we employ both the HSI color space, for c@presentation, and
also the Complex Wavelet Transform (CWT), for multi-scabettire representation. In
some cases, where objects exhibit easy-to-classify appeas, the proposed feature
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set is not justifiable in light of real-time processing coastts. Therefore, herein, we
propose an algorithm for selecting an optimal feature sadsfrom the given HSI and
CWT feature space that considers both correctness of fitasin and computational
cost.

Given this feature set, we then choose tree-structuredfbediworks (TSBNSs) [4],
as underlying statistical models to describe pixel neighbods in an image at vary-
ing scales. We build TSBNs for both color and wavelet featusing Pearl’'s message
passing scheme [5] and the EM algorithm [6]. Having train&BNs, we then proceed
with supervised object recognition. In our approach, wdakfhe idea ofvisual con-
texts[7], where initial identification of the overall type of saefacilitates recognition of
specific objects/structures within the scene. Objects,(eags, buildings), the locations
where objects are detected (e.g., road, meadow), and #gorgiof locations (e.g., sky,
ground) form a taxonomic hierarchy. Thus, object recognith our approach consists
of the following steps. First, sky/ground regions in the geaaare identified. Second,
pixels in the ground regidrare labeled using the learned TSBNs for predefined loca-
tions (e.g., road, forest). Finally, pixels of the detedtezhtions of interest are labeled
using the learned TSBNs for a set of predefined objects @g.house).

To reduce classification error (e.g., “blocky segmentdjiomhich arises from the
fixed-tree structure of TSBNs, we develop the novel multesdéterbi classification
(MSVC) algorithm, an improved version of multiscale Bayestlassification (MSBC)
[8,9]. In the MSBC approach, image labeling is formulatedagesian classification
at each scale of the tree model, separately; next, trangitiababilities between nodes
at different scales are learned using the greedy classgificiiee algorithm, averaging
values over all nodes and over all scales; finally, it is agglithat labels at a “coarse
enough” scale of the tree model are statistically independan the other hand, in our
MSVC formulation, we perform Bayesian classification ortlytee finest scale, fusing
downward the contributions of all the nodes at all scalehnttee; next, transition
probabilities between nodes at different scales are lelaasehistogram distributions
that are not averaged over all scales; finally, we assumendepé class labels at the
coarsest layer of the tree model, whose distribution weragstimate as a histogram
distribution.

2 Feature Space

Our feature selection is largely guided by extensive expenitation reported in our
prior work [3], where we sought a feature space, which spais tolor and texture
domains, and whose extraction meets our tight real-timstcaimts.

We obtained the best classification results when color waesented in the HSI
color space. Tests suggested that hidg {ntensity () and saturation§) features were
more discriminative, when compared to the inherently higidrrelated features of the
RGB and other color systems [10]. Also, first-order HSI stats proved to be sufficient
and better than the first and higher-order statistics ofratbler systems.

For texture-feature extraction, we considered severarifify, model-based and
statistical methods. Our conclusion agrees with the coatpar study of Randest

! Recognition of objects in the sky region can be easily incmated into the algorithm.
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al. [11], which suggests that for problems where many textuigssubtle spectral dif-
ferences occur, as in our case, it is reasonable to assuirsptwral decomposition by
a filter bank yields consistently superior results over otieture analysis methods. Our
experimental results also suggest that it is necessaryalgzmboth local and regional
properties of texture. Most importantly, we concluded thatospective texture analy-
sis tool must have high directional selectivity. As such amgloy the complex wavelet
transform (CWT), due to its inherent representation ofutexat different scales, orien-
tations and locations [12]. The CWT'’s directional seldtyiis encoded in six bandpass
subimages of complex coefficients at each level, coeffisithat are strongly oriented
at anglest15°, +45°, £75°. Moreover, CWT coefficient magnitudes exhibit the fol-
lowing properties [13, 14]: imulti-resolutional representation, iiflustering, and iii)
persistence (i.e. propagation of large/small values through scales).

Computing CWT coefficients at all scales and forming a pycastiucture from
HSI values, where coarser scales are computed as the mdanaifrresponding chil-
dren, we obtain nine feature trees. These feature struchaterrally give rise to TSBN
statistical models.

3 Tree-Structured Belief Networks

So far, two main types of prior models have been investigatatie statistical im-
age modeling literature — namely, noncausal and causaldadndom fields (MRF).
The most commonly used MRF model is the tree-structurecdbrétwork (TSBN)
[8,9,14-16]. A TSBN is a generative model comprising hiddénand observablé;,
random variables (RVs) organized in a tree structure. Tlypetetween nodes, rep-
resentingX, encode Markovian dependencies across scales, whetgase assumed
mutually independent given the correspondiXits, as depicted in Figure 1. Herein,
we enable input of observable informatidn, also to higher level nodes, preserving
the tree dependences among hidden variables. Thas,the lower layers inform the
belief network on the statistics of smaller groups of neiwiirig pixels (at the lowest
level, one pixel), whereak at higher layers represent the statistics of larger areas in
the image. Hence, we enforce the nodes of a tree model tosepranage details at

Fig. 1. Differences in TSBN models: (a) observable variables atighest layer only; (b) our
approach: observable variables at all layers. Black nodastd observable variables and white
nodes represent hidden random variables connected in sttueture.
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various scale$.Furthermore, we assume that features are mutually indeméenahich
is reasonable given that wavelets span the feature spawg ardhogonal basis func-
tions. Thus, our overall statistical model consists of nimgtually independent trees
Ty, f € F = {£15°,+45°, +75° H, S, I'}.

In supervised learning problems, as is our case, a hidden,Réssigned to a tree
nodes, i € Ty, represents a pixel labet, which takes values in a pre-defined set of
image classeg;. The state of nodéis conditioned on the state of its pargnand is
specified by conditional probability tables}', Vi, j € Ty, Vk,l € C. It follows that
the joint probability of all hidden RVsX = {z;}, can be expressed as

rx)= [ I P¥- 1)

i,€T} k,l€EC

We assume that the distribution of an observable jRVdepends solely on the node
state,z;. Consequently, the joint pdf &f = {y;} is expressed as

Py |X) =[] ] pwilw: = k.,6) , )

i€T; keC

wherep(y;|x; = k,0F) is modeled as a mixture df/ Gaussiang,whose parameters
are grouped i¥. In order to avoid the risk of overfitting the model, we assuthet
the 6's are equal for ali at the same scale. Therefore, we simplify the notation as
p(yi|ri=k, 0%)=p(y;|=;). Thus, a TSBN is fully specified by the joint distribution of
X andY given by
P(X,Y)= H H p(yilxi)Pijl . (3)
i,j€T; k,leC
Now, to perform pixel labeling, we face the probabilistiterence problem of com-
puting the conditional probabiliti? (X|Y). In the graphical-models literature, the best-
known inference algorithm for TSBNs is Pearl's messageipgssheme [5, 18]; sim-
ilar algorithms have been proposed in the image-procedisangture [8, 14, 15]. Es-
sentially, all these algorithms perform belief propagatip and down the tree, where
after a number of training cycles, we obtain all the tree pei@rs necessary to com-
pute P(X|Y). Note that, simultaneously with Pearl’'s belief propagatiwe employ
the EM algorithm [6] to learn the parameters of Gaussiantméxdistributions. Since
our TSBNs have observable variables at all tree levels, Melgorithm is naturally
performed at all scales. Finally, having trained TSBNs faeaof image classes, we
proceed with multiscale image classification.

4 Multiscale Viterbi Classification

Image labeling with TSBNs is characterized by “blocky segtagons,” due to their
fixed-tree structure. Recently, several approaches hase teported to alleviate this
problem (e.g., [19, 20]), albeit at prohibitively incredssomputational cost. Given the

2 This approach is more usual in the image processing comyniii@, 14].
3 For largeM, a Gaussian-mixture density can approximate any prolablinsity [17].
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real-time requirements for our MAV application, these aymhes are not realizable,
and the TSBN framework remains attractive in light of itelmn-time inference algo-
rithms. As such, we resort to our novel multiscale Viterlissification (MSVC) algo-
rithm to reduce classification error instead.

Denoting all hidden RVs at the leaf levBlas X, classification at the finest scale
is performed according to the MAP rule

Xt = argrr;gx{P(ﬂX)P(X)} = argrr)lﬁng. 4

Assuming that the class labet,, of nodei at scale/, completely determines the distri-
bution ofy!, it follows that:

0
ry|x) =[] [Irwi=)) (5)

(=L ict

wherep(y¢|zt) is a mixture of Gaussians, learned using the inference ithgos dis-
cussed in Section 3. As is customary for TSBNs, the distidbudf X ¢ is completely
determined byX*‘~! at the coarsef — 1 scale. However, while, for training, we build
TSBNs where each node has only one parent, here, for claswific we introduce a
new multiscale structure where we allow nodes to have mae tme parent. Thus,
in our approach to image classification, we account for lonitizl statistical dependen-
cies among nodes at the same level, as depicted in FigureeZn&h multiresolution
model accounts for all the nodes in the trained TSBN, exdwggitit no longer forms a
tree structure; hence, it becomes necessary to learn neditiomal probability tables
corresponding to the new edges. In general, the Markov chénreads:

0
Px)=1J I[ Pailx") . (6)

(=L il

The conditional probability?(z£| X *~1) in (6), unknown in general, must be estimated
using a prohibitive amount of data. To overcome this problem consider, for each
nodei, a3 x 3 box encompassing parent nodes that neighbor the initiahpaof 7 in

the quad-tree. The statistical dependenceaf other nodes at the next coarser scale,

Fig. 2. Horizontal dependences among nodes at the same level amledda; vertical depen-
dences of each node on more than one parent.
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in most cases, can be neglected. Thus, we assume that aimeasibnal vectovf L

containing nine parents, represents a reliable sourcdahation on the distribution
of all class labelsX“~! for child nodei at level/. Given this assumption, we rewrite

expression (6) as
0
“IT I T Pt )

(=L i€t jel—1
Now, we can express the discriminant function in (4) in a meanevenient form as

0
P=TIII II pwiehpetor™ . @

(=L i€l jel—1

Assuming that our feature € F are mutually independent, the overall maximum
discriminant function can therefore be computed as

= II ¢ (9)

feF

The unknown transition probabilitieB(xﬂvf‘l) can be learned through vector
quantization [21], together with Pearl’s message passihgrae. After the prior proba-
bilities of class labels of nodes at all tree levels are ledusing Pearl’s belief propaga-
tion, we proceed with instantiation of random vectofsFor each tree level, we obtain
a data set of nine-dimensional vectors, which we augmeft thiz class label of the
corresponding child node. Finally, we perform vector qizmtton over the augmented
ten-dimensional vectors. The learned histogram distiobstrepresent estimates of the
conditional probability tables. Clearly, to estimate tligtribution of a ten-dimensional
random vector it is necessary to provide a sufficient numbaaming images, which
is readily available from recorded MAV-flight video sequeacMoreover, since we are
not constrained by the same real-time constraints duraigitrg as during flight, the
proposed learning procedure results in very accurate attsnas is demonstrated in
Section 7.

The estimated transition probabilitié%(:cﬂvf_l) enable classification from scale
to scale in Viterbi fashion. Starting from the highest legelvnwards, at each scale,
we maximize the discriminant functigrf along paths that connect parent and children
nodes. From expressions (8) and (9), it follows that imageliag is carried out as

of = arg max J] H II I pwislahP@iio; ™), (10)
jG]—' (=L iel jel—1
whereﬁf‘1 is determined from the previously optimized class labethetoarser scale
l—1.
5 Adaptive Feature Selection

We have already pointed out that in some cases, where imagsesl exhibit favorable
properties, there is no need to compute expression (10)alv&atures. Below, we
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present our algorithm for adaptive selection of the optifeature setF,.;, from the
initial feature setF.

Form a new empty sef;.; = {0}; assigngnew = 1, gora = 0;
Computejf, Vf € F, given by (8) forz[ given by (10);

Move the best featurg*, for which gJ% is maximum, from#F to F,.;;
AssigNgnew = [z, gL

If (gnew < gold) df8|et6f
AsSigngoid = Gnew:

If (F # {0}) go to step 3;

Exit and segment the image using featuregijy.

f:
*from F,; and go to step 3;

ONoUk~ wWDNE

The discriminant functiory, is nonnegative; hence, the above algorithm finds at least
one optimal feature. Clearly, the optimization criteriaab consider both correctness
of classification and computational cost.

6 Object Recognition Using Visual Contexts

In our approach to object recognition, we seek to exploiidiea ofvisual contexts[7].
Having previously identified the overall type of scene, we iteen proceed to recognize
specific objects/structures within the scene. Thus, ofjdice locations where objects
are detected, and the category of locations form a taxonbiararchy. There are sev-
eral advantages to this type of approach. Contextual irdtion helps disambiguate
the identity of objects despite the poverty of scene detaflight images and quality
degradation due to video noise. Furthermore, exploitisgafi contexts, we obviate the
need for an exhaustive search of objects over various saatekcations in the image.

For each aerial image, we first perform categorization, sley/ground image seg-
mentation. Then, we proceed with localization, i.e., rettgn of global objects and
structures (e.g., road, forest, meadow) in the ground redgimally, in the recognized
locations we search for objects of interest (e.g., carddimgs). To account for different
flight scenarios, different sets of image classes can beeatefincordingly. Using the
prior knowledge of a MAV'’s whereabouts, we can reduce thelmenmof image classes,
and, hence, computational complexity as well as classiicagrror.

At each layer of the contextual taxonomy, downward, we cehddSVC-based
object recognition. Here, we generalize the meaning of englgsses to any global-
object appearance. Thus, the results from Sections 3 aredréadily applicable. In the
following example, shown in Figure 3, each element of theslketcations{road, forest,
lawn} induces subsets of objects, s&gar, cyclist} pertaining toroad. Consequently,
when performing MSVC, we consider only a small finite numbemeage classes,
which improves recognition results. Thus, in spite of videise and poverty of image
detail, the object in Figure 3, being tested against only pwesibilities, is correctly
recognized as ear.

7 Results

In this section, we demonstrate the performance of the [megbwision system for real-
time object recognition in supervised-learning settings. carried out several sets of
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@ (b) (© (d)

Fig. 3. The hierarchy of visual contexts conditions gradual imawerpretation: (a) 428 x 128
flight image; (b) categorization: sky/ground classificafi(c) localization: road recognition; (d)
car recognition.

experiments which we report below. For space reasons, wastionly our results for
car and cyclist recognition in flight video.

For training TSBNs, we selected 200 flight images for the cak @yclist classes.
We carefully chose the training sets to account for the epagwariability in car and
cyclist appearances, as illustrated in Figure 4 (top roviferfexperimenting with dif-
ferent image resolutions, we found that reliable labelirgachievable for resolutions
as coarse a4 x64 pixels. At this resolution, all the steps in object recommit(i.e.,
sky/ground classification, road localization and carfsyeckcognition), when the fea-
ture set comprises all nine features, takes approximatély &n an Athlon 2.4GHz
PC. For the same set-up, but for only one optimal featuregeition time is less than
0.07s? which is quite sufficient for the purposes of moving-car omng-bicycle track-
ing. Moreover, for a sequence of video images, the categiwizand localization steps
could be performed only for images that occur at specifiee fimervals, although, in
our implementation, we process every image in a video semufem increased noise
robustness.

After training our car and bicycle statistical models, wetéel MSVC performance
on a set of 100 flight images. To support our claim that MSV(Qerfbrms MSBC,
we carried out a comparative study of the two approaches ersdime dataset. For
validation accuracy, we separated the test images into&tegories. The first category
consists of 50 test images with easy-to-classify car/syelppearances as illustrated
in Figure 4a and Figure 4b. The second category includesand0 images, where
multiple hindering factors (e.g. video noise and/or lamghgcand lighting variability, as
depicted in Figure 4c and Figure 4d) conditioned poor diasdion. Ground truth was
established through hand-labeling pixels belonging tectisjfor each test image. Then,
we ran the MSVC and MSBC algorithms, accounting for the imdgpendent optimal
subset of features. Comparing the classification resuttsgvound truth, we computed
the percentage of erroneously classified pixels for the M&¥@ MSBC algorithms.

4 Note that even if only one set of wavelet coefficients is optinit is necessary to compute
all other sets of wavelets in order to compute the optimalairad| scales. Thus, in this case,
time savings are achieved only due to the reduced numberatdris for which MSVC is
performed.
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Fig. 4. Recognition of road objects: (top) Aerial flight images; dufie) localization: road recog-
nition; (bottom) object recognition. MSVC was performed fbe following optimized sets of
features: (a)Fse: = {H,I,—45°}, (b) Foer = {H,£75°}, (€) Foer = {£15°,4+45°}, (d)
Fset = {H,+45°}.

The results are summarized in Table 1, where we do not relperetror of complete

misses (CM) (i.e., the error when an object was not detedtedl)aand the error of

swapped identities (SI) (i.e., the error when an object veasaled but misinterpreted).
Also, in Table 2, we report the recognition results for 86 &8ccar/cyclist objects in

the first and second categories of images, respectivelyigur& 5, we illustrate better
MSVC performance over MSBC for a sample first-category image

Table 1. Percentage of misclassified pixels by MSVC and MSBC

| category imagg$l category images
MSvC 4% 10%
MSBC| 9% 17%

Finally, we illustrate the validity of our adaptive featis®lection algorithm. In Fig-
ure 6, we present MSVC results for different sets of featudes adaptive feature selec-
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tion algorithm, for the given image, fours,.; = {H, —45°, +£75°} to be the optimal
feature subset. To validate the performance of the seteetigorithm, we segmented
the same image using all possible subsets of the featusé. $&ir space reasons, we il-
lustrate only some of these classification results. ObWofrem Figure 6, the selected
optimal features yield the best image labeling. Moreovete that when all the features
were used in classification, we actually obtained worseltedn Table 3, we present
the percentage of erroneously classified pixels by MSVCgudifierent subsets of fea-
tures for our two categories of 100 test images. As beforejaweot report the error of
complete misses. Clearly, the best classification resiwgte wbtained for the optimal
set of features.

Table 2. Correct recognition (CR), complete miss (CM), and swappledtity (SI)

| category images Il category images
(86 objects) (78 objects)
CR CM SI CR CM SI
MSVC |81 1 4 69 5
MSBC |78 2 6 64 9 5

(b)

Fig.5. Better performance of MSVC vs. MSBC for the optimal featuret & =
{H,1,+15°,£75°}: (a) afirst-category image; (b) MSVC; (c) MSBC.

8 Conclusion

Modeling complex classes in natural-scene images reqairetaborate consideration
of class properties. The most important factors that infiraur design choices for a
MAV vision system are: (1) real-time constraints, (2) raimess to video noise, and (3)

10
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Fig. 6. Validation of the feature selection algorithm for road rgaition: (a) MSVC for the op-
timized Fse; = {H, —45°,£75°}; (b) MSVC for all nine features itF; (c) MSVC for subset
F1={H, S, I}, (d) MSVC for subsetF, = {£15°, £45° £ 75°}.

Table 3. Percentage of misclassified pixels by MSVC

| categoryll category
]:sel 4% 100/0
F={H,S,I1,£15° +£45° £ 75°}| 13% 17%
Fir={H, S, I} 16% 19%
Fo = {£15°,4+45° £75°} 14% 17%

complexity of various object appearances in flight imageghls paper, we first pre-
sented our choice of features: the HSI color space, and th€. C¥én, we introduced
the TSBN model and the training steps for learning its patarseFurther, we described
how the learned parameters could be used for computingkbiéhibods of all nodes at
all TSBN scales. Next, we proposed and demonstrated malkisGterbi classification
(MSVC), as an improvement to multiscale Bayesian classifinaWe showed how to
globally optimize MSVC with respect to the feature set tlgioan adaptive feature se-
lection algorithm. By determining an optimal feature supse successfully reduced
the dimensionality of the feature space, and, thus, not approached the real-time
requirements for applications operating on real-time @idigzeams, but also improved
overall classification performance. Finally, we discussbgkct recognition based on
visual contexts, where contextual information helps disgmate the identity of ob-
jects despite a poverty of scene detail and obviates thefoead exhaustive search of
objects over various scales and locations in the image. \§enired test images into
two categories of difficulty and obtained excellent clasation results, especially for
complex-scene/noisy images, thus validating the propapptbach.
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