
in Proc. 12th European Conference on Computer Vision, Firenze, Italy, 2012

Human Activities as Stochastic Kronecker Graphs

Sinisa Todorovic

Oregon State University, Corvallis, Oregon
sinisa@eecs.oregonstate.edu

Abstract. A human activity can be viewed as a space-time repetition of activity
primitives. Both instances of the primitives, and their repetition are stochastic.
They can be modeled by a generative model-graph, where nodescorrespond to
the primitives, and the graph’s adjacency matrix encodes their affinities for prob-
abilistic grouping into observable video features. When a video of the activity is
represented by a graph capturing the space-time layout of video features, such a
video graph can be viewed as probabilistically sampled fromthe activity’s model-
graph. This sampling is formulated as a successive Kronecker multiplication of
the model’s affinity matrix. The resulting Kronecker-powermatrix is taken as a
noisy permutation of the adjacency matrix of the video graph. The paper presents
our: 1) model-graph; 2) memory- and time-efficient, weakly supervised learn-
ing of activity primitives and their affinities; and 3) inference aimed at finding
the best expected correspondences between the primitives and observed video
features. Our results demonstrate good scalability on UCF50, and superior per-
formance to that of the state of the art on individual, structured, and collective
activities of UCF YouTube, Olympic, and Collective datasets.

1 Introduction

This paper is about detecting and localizing human activities in real-world videos. Both
individual activities of people (e.g., triple-jump), and collective activities of groups of
people (e.g., waiting in line) are considered in a unified framework. We define an ac-
tivity as a hierarchical, space-time repetition of activity primitives. The primitives have
probabilistic affinities to recursively combine into observable spatiotemporal patterns
of the activity. The main advantage of such a definition over existing, alternative formu-
lations is that the essence of the activity can be compactly captured only via a (small)
set of primitives, their affinities, and an operator for their recursive grouping. This, in
turn, allows for memory- and time-efficient, scalable learning and inference algorithms.

Our motivation comes from an observation that an activity may consist of a number
of subactivities, where each subactivity is an activity on its own right. This recursion
ends with activity primitives. For example, in a collectiveactivity of jogging, the indi-
vidual activity of running is stochastically repeated by multiple actors within the group,
where each running activity represents a repetition of characteristic protrusions of the
legs, and swinging of the arms.

Given a video of an activity, we capture the spatiotemporal repetition of activity
primitives by a graph. Nodes in the video graph correspond tovideo features (e.g., KLT
tracks of Harris corners [1]). Their neighbor relationships in space and time are captured

1

2 Sinisa Todorovic

by the graph’s adjacency matrix, also referred to as video matrix. We posit that video
graphs representing instances of an activity class are probabilistically sampled from a
generative model-graph of the activity. Nodes of this model-graph represent the activity
primitives. Their probabilistic affinities for recursive grouping into video features are
captured by the affinity matrix, also referred to as initiator matrix. As an operator for
generating video graphs from the model-graph, we use the Kronecker product. Specif-
ically, the grouping of the activity primitives is formulated as a successive Kronecker-
multiplication of the initiator matrix. Consequently, theresulting video matrices can be
viewed as stochastic realizations of a Kronecker-power of the initiator matrix.

We learn the model-graph of the activity under weak supervision. From the above,
the goal of our learning is to discover the set of activity primitives, and estimate their
affinities from a set of training video graphs. The goal of ourinference is to identify
a subset of primitives, and how they have recursively grouped so as to generate the
observed video features. In this paper, we exploit the structure of the Kronecker power
of a matrix to specify memory- and time-efficient inference and learning algorithms that
take linear time in the number of video features.

Our results demonstrate good scalability on the benchmark UCF50 dataset, as well
as superior performance to that of the state of the art on individual, structured, and
collective activities in UCF YouTube, Olympic, and Collective datasets.

Related work – We are not aware of any work in computer vision that uses Kronecker
graphs to represent images or videos. The most related to ours is the work on model-
ing video segmentation graphs for activity recognition by an archetype graph, whose
inference and learning are formulated as a weighted least squares estimation [2]. Their
model, however, is not compact, requiring the numbers of model nodes and edges to ex-
ceed those found in the segmentation graphs of training videos. By contrast, our gener-
ative model-graph stores only the affinity matrix of a relatively small number of activity
primitives. Other related work has focused on 2D shape recognition by modeling im-
age graphs with mixture of trees [3], generative Delaunay graph [4], and tree-union [5].
Kronecker graphs have been successfully used for modeling social networks [6]. This
line of work, however, focuses on modelinglocal structural properties of asingle large
social network (e.g., shrinking node diameter, densification power law, etc.). They do
not need to make a distinction between two distinct sets of nodes representing fore-
ground and background. Our model-graph, instead, is aimed at capturing both local and
global space-time relations captured by a set of video graphs. Also, we need to take into
account that only a subset of nodes in each video graph represent foreground. A com-
pact generative model, called video epitomes, has been usedfor video super-resolution
and video interpolation [7]. Similar to our activity primitives, the epitomes compactly
capture the essence of a large number of space-time cubes from training videos. Related
is also the action-bank representation of activities [8]. However, this approach requires
a manual specification of the bank of elementary actions, andtheir detectors, instead of
automatically discovering activity primitives.

While recent work typically focuses on a particular type of activities [9] — in par-
ticular, on single-actor punctual and repetitive activities [10–12], or exclusively on ac-
tivities with distinct temporal structure [2, 13–15], or exclusively on collective activi-

Human Activities as Stochastic Kronecker Graphs 3

ties [16, 17] — we present a unified framework that is capable of addressing all these
activity types in challenging, realistic (YouTube) videos.

Overview – Our approach consists of three computational modules: feature extraction,
inference, and learning.Feature extraction: Given a video, motion features are extracted
in the form of trajectory snippets, which can be either KLT tracks of Harris corners [1],
or Lagrangian particle trajectories [18]. These features have been demonstrated by prior
work as robust against many challenges of real-world videos, including large variations
in camera motions, object pose and scale, and illumination.The neighboring tracks are
then linked in the video graph.Inference: Our inference identifies the activity whose
model-graph most likely generated foreground features of the video. Specifically, in-
ference estimates correspondences between nodes of the activity model and nodes of
the video graph in two steps. Given a model-graph, we first apply the Kronecker prod-
uct to its initiator matrix a number of times. This results ina Kronecker-power matrix,
whose random permutations of rows and columns are taken as the adjacency matrix of
the video graph. Second, we find the expected correspondences between the Kronecker-
power matrix, and the video’s adjacency matrix via summing out the random permu-
tations. This immediately estimates the subset of activityprimitives, and the way they
have recursively combined so as to generate the observed video features.Learning:
Given a set of graphs representing training videos of an activity class, we learn a model-
graph that most likely generated the training graphs. The three-fold goal of learning is
to estimate: i) initiator matrix, ii) number of times the Kronecker product needs to be
successively applied to the initiator matrix to generate the training graphs, and (iii) opti-
mal correspondences (i.e., permutations) between the Kronecker-power of the initiator
matrix, and the adjacency matrices of the training video graphs.

In the sequel, Sec. 2 reviews main properties of the Kronecker product, Sec. 3 for-
malizes our activity model, Sec. 4 presents our inference and its complexity, Sec. 5
specifies our learning algorithm, Sec. 6 describes our feature extraction, and Sec. 7
presents our experimental evaluation.

2 A Brief Review of the Kronecker Product

This section closely follows the review presented in [6], for completeness. Our activity
model is characterized by the initiator square matrixΘ of sizeN ×N , whose elements
θij take values in[0, 1]. Θ is used to recursively construct a sequence ofNk × Nk

matrices{Θ[k] : k = 2, ...,K}, whereΘ[K] is taken as a random permutation of the
adjacency matrix of the video graph. The sequence{Θ[k]} is produced by a successive
application of the Kronecker product toΘ, as specified in the following two definitions.1

Def. 1: The Kronecker product of ann ×m matrixA = [aij] andn′ ×m′ matrix

B is the(n · n′) × (m ·m′) matrixC = A⊗B =

[

a11B ... a1mB
...

an1B ... anmB

]

.

Def. 2: Thekth Kronecker power of matrixΘ is matrixΘ[k] = Θ[k−1] ⊗Θ.

1 For simplicity, we use a singleΘ. This can be trivially extended by using a number of distinct
initiator matrices of different sizes, which can be Kronecker-multiplied to obtainΘ[k].

4 Sinisa Todorovic

SinceΘ ∈ [0, 1]N×N , the Kronecker power matrixΘ[k] ∈ [0, 1]N
k×Nk

can be
viewed as encoding a probability distribution of Bernoulliedges in an ensemble of
graphs{G} with Nk nodes, as explained in Sec. 3. Suppose that{G} represent video
graphs of activity instances. Then, everyG can be probabilistically sampled fromΘ[k]

by including edges between nodesu andv in G with corresponding probabilitiesθ[k]
uv .

The structure of the Kronecker product allows for an efficient computation of each
elementθ[k]

uv in O(k) time, as follows. Let us look at a relationship between rows of
Θ and rows ofΘ[k]. Defineu, v as the indices of rows ofΘ[k], u = 1, ..., Nk and
v = 1, ..., Nk. Then, from Def. 1 and Def. 2, every rowu of Θ[k] can be described with
a sequence(u1, . . . , ul, . . . , uk) of rows l of Θ, whereul ∈ {1, ..., N}, l = 1, ..., k.
Similarly, another rowv of Θ[k] corresponds to the sequence(v1, . . . , vl, . . . , vk) of
rows ofΘ, wherevl ∈ {1, ..., N}, l = 1, ..., k. It follows that the probability that edge

(u, v) is present inG is computed asθ[k]
uv =

∏k
l=1 θulvl

, which can be equivalently
expressed as the followingO(k) time computation:

θ[k]
uv =

∏k−1
l=0 θmodN (u−1

Nl
)+1,modN (v−1

Nl
)+1, u = 1, ..., Nk, v = 1, ..., Nk. (1)

From the above, observable features of a video graph, represented as nodes ofG,
can be interpreted as ordered sequences of activity primitives. Since nodesu of G can
be described by sequences of rows ofΘ, (u1, ..., uk), we can view the rows ofΘ as
encoding the activity primitives. From such an interpretation, elementsθij of Θ can
be viewed as probabilistic affinities between primitivesi and j. This is because the
probability of an edge inG, θ[k]

uv , is computed as a product ofk elementsθij , as in (1).

Thus, the greater the affinitiesθij , the larger the linking probabilityθ[k]
uv . In addition, our

use of the successive Kronecker products ofΘ for generatingG can be interpreted as an
effective encoding of both homophily and heterophily of theprimitives. For homophily,
pairs of nodes(u, v) in G described by similar sequences of the primitives,(u1, ..., uk)
and(v1, ..., vk), are more likely to link inG whenΘ has high value elements on the main
diagonal. For heterophily, pairs of nodes inG with different sequences of the primitives
are more likely to link inG whenΘ has high value elements off the main diagonal.

3 The Model

This section extends the Kronecker graph model presented in[6] by explicitly account-
ing for a video’s foreground and background. We assume that the space-time domain
of a video,D, is partitioned into foreground and background,D = Dfg ∪ Dbg, and
Dfg ∩ Dbg = ∅. Dfg is represented by a graph,G = (V,E), whereV is a set of nodes
corresponding to foreground video features and|V | = Nk, andE is a set of edges
capturing neighbor relationships of foreground features and |E| ≪ N2k . We say that
G explains the foreground,Dfg = D(G), where every nodev ∈ V explains the corre-
sponding foreground video part,Dfg = ∪v∈V Dv. Let p(Dfg|G) denote the foreground
likelihood. Also, letq(Dbg) denote a generic pdf of background, made implicit in our
derivation. Then, the likelihood of the video data can be defined as

p(D|G) = p(Dfg|G)q(Dbg)
q(Dfg)

q(Dfg)
= q(D)

p(Dfg|G)

q(Dfg)
= q(D)

∏

v∈V

p(Dv|G)

q(Dv)
. (2)

Human Activities as Stochastic Kronecker Graphs 5

In (2), each ratiop(Dv|G)
q(Dv) = ψ(xv) can be viewed as a confidence of a foreground-

background classifier (i.e., detector) applied to a descriptor vectorxv of video features
extracted from domainDv.

Following the formalism of [6], given theN ×N initiator matrixΘ, our generative
model-graph assigns the likelihoodp(G|Θ) to the video graphG. To definep(G|Θ),
we use the following generative process. We first Kronecker-multiply Θ to create an
Nk × Nk Kronecker power matrixΘ[k], as described in Sec. 2. Elements ofΘ[k] are
viewed as probabilities of the presence of corresponding edges inG. Since the assign-
ment of node IDs inG is arbitrary, it is necessary to explicitly account for the permu-
tation π that maps rows and columns of the adjacency matrix ofG to the rows and
columns ofΘ[k]. Specifically, edges(u, v) ∈ E are modeled as independent Bernoulli

random variables, parameterized by the corresponding elementsθ[k]
πuπv of Θ[k], where

πu denotesuth element of random permutationπ. Thus, the likelihood ofG is

p(G|k,Θ, π) =
∏

(u,v)∈E θ
[k]
πuπv

∏

(u,v)/∈E(1 − θ
[k]
πuπv). (3)

From (2) and (3), we define the joint pdf ofD andG as

p(D,G|k,Θ) = q(D)
∏

v∈V ψ(xv)
∑

π

∏

(u,v)∈E θ
[k]
πuπv

∏

(u,v)/∈E(1 − θ
[k]
πuπv)p(π).

(4)
We assume that a priori all model-data correspondences are equally likely, i.e., the prior
distributionp(π) is uniform.

From (4), the model of each activity classa ∈ A is defined by(ψa, Θa, ka).

4 Inference

Suppose we are given a video showing an activity class,a∗ ∈ A, whose model-graph
has initiator matrix,Θa∗ , of sizeNa∗ ×Na∗ . TheNk

a∗ foreground features of the video
form a spatiotemporal configurationGa∗ . Edges ofGa∗ are sampled from the Kronecker
power matrixΘ[k]

a∗ under a random permutation. Our inference evaluates the joint log-
pdf of D andGa, given by (4), for all activity models{(ψa, Θa, ka) : ∀a ∈ A}, and
selects the activitya∗ which gives the highest joint log likelihood:

a∗ = argmax
a∈A

[

∑

v∈Va
logψa(xv) + log

∑

π p(Ga|ka, Θa, π)p(π)
]

. (5)

From (5), inference consists of two computational stages, summarized in Alg. 1 and
Alg. 2. The first stage identifiesGa using the first term in (5), while the second stage
evaluates the likelihood of edges present inGa using the second term in (5).

In the first stage of inference, for a particular activitya, we apply its foreground-
background detector,ψa, to all features extracted from the video, as explained in Sec. 6.
Then, theNk

a most confident foreground features are taken to form the set of nodesVa

of Ga. Inference accounts for their confidences via the term
∑

v∈Va
logψa(xv) in (5).

A subset of node pairs(u, v) ∈ Va × Va representing neighboring video features are
then linked to form the set of edgesEa of Ga.

In the second stage of inference, we estimate the likelihood
∑

π p(Ga|k,Θa, π)p(π).
To this end, we use the standard Markov Chain Monte Carlo (MCMC) simulation, as
explained next.

6 Sinisa Todorovic

4.1 Probabilistic Sampling of Permutations

In this section, we drop the subscripta in notation, implying that inference is conducted
for a particular activity model. As in [6], we use the standard Metropolis-Hastings (MH)
algorithm to sample permutations{π(τ) : τ = 1, ..., T}. These sample permutations are
then used to compute the second term in (5) as

∑

π p(G|k,Θ, π)p(π) ≈ 1
T

∑T
τ=1 p(G|k,Θ, π

(τ)). (6)

In each iterationτ , MH samplesπ(τ) from the posterior distribution

p(π|G, k, Θ) =
p(G, k, Θ, π)

∑

π′ p(G, k, Θ, π′)
=
p(G|k,Θ, π)p(k,Θ)p(π)

∑

π′ p(G, k, Θ, π′)
. (7)

This generates a Markov chain in which stateπ(τ+1) depends only on the previous
stateπ(t). The MH jumps between the states are reversible, and governed by a proposal
distribution, which we assume is uniform. The proposal to jump fromπ(τ) to π(τ+1) is
accepted if the acceptance rate,α ∼ U [0, 1], satisfies

α < min
{

1, p(π(τ+1)|G,k,Θ)

p(π(τ)|G,k,Θ)

}

= min
{

1, p(G|k,Θ,π(τ+1))

p(G|k,Θ,π(τ))

}

= min
{

1,

∏

(u,v)∈E

θ
[k]

π
(τ+1)
u π

(τ+1)
v

∏

(u,v)/∈E

(

1−θ
[k]

π
(τ+1)
u π

(τ+1)
v

)

∏

(u,v)∈E

θ
[k]

π
(τ)
u π

(τ)
v

∏

(u,v)/∈E

(

1−θ
[k]

π
(τ)
u π

(τ)
v

)

}

,
(8)

where the priorsp(k,Θ), p(π), and
∑

π′ p(G, k,Θ, π′) cancel out.
We expect that there will be a relatively small number of permutations yielding

high values ofp(G|k,Θ, π). To avoid sampling zero-likelihood permutations, as in [6],
we design a Markov chain which would stay longer in a high-likelihood region of the
permutation space. The Markov chain ensures that the MH jumps remain reversible.
To this end, we select an edge inG uniformly at random, and swap the IDs of its two
nodes. Note that this is biased toward swapping IDs of nodes with high degrees, since
they have more edges inG. This is suitable, since such nodes represent foreground video
features co-occurring with many other foreground features, resulting in a more accurate
sampling of permutations over foreground features, as desired. The balance condition
of reversible MH jumps holds as graph edges are sampled uniformly at random. We call
this procedure Swap2Nodes(G).

4.2 Reducing Complexity of Inference

Following the derivation of [6], evaluation of (8) and (6) can be made both computa-
tionally and memory efficient.

First, for memory efficiency, we do not store the adjacency matrix Θ
[k]
a for each

activity a. Instead, we store only the initiator matricesΘa, ∀a ∈ A, which have signif-
icantly smaller sizesNa ×Na. Consequently, every time the Bernoulli probabilityθ[k]

uv

is needed in (8) and (6), we use (1), which takesO(k) time.

Human Activities as Stochastic Kronecker Graphs 7

Second, note that in (8) permutationsπ(τ) andπ(τ+1) differ only at two positions.
This means that most terms in (8) cancel out, except for edgeswhere(π

(τ)
u , π

(τ)
v) 6=

(π
(τ+1)
u , π

(τ+1)
v). This makes complexity of samplingT permutationsO(Tk).

Third, to compute (6), there is no need to evaluate everyp(G|k,Θ, π(τ)) anew, for
τ = 1, ..., T . Instead, from (3), it suffices to compute the initial likelihoodp(G|k,Θ, π(1)),
and then to update the subsequent likelihoods, by traversing two rows and columns of
matrixΘ[k], for edges where(π(τ)

u , π
(τ)
v) 6= (π

(τ+1)
u , π

(τ+1)
v).

What remains to be explained is the complexity of evaluatingp(G|k,Θ, π(1)). A
naive evaluation of (3), which considers allN2k node pairs inG, takesO(kN2k). In-
stead, as in [6], we first calculate the likelihoodp(G|k,Θ, π) for an empty graphG
with the same number of nodes asG but zero edges, and then correct for the edges that
appear inG. From (3), and using the Taylor approximationlog(1 − x) ≈ −x − 1

2x
2,

it is straightforward to derive thatlog p(G|k,Θ, π) =
∑Nk

u=1

∑Nk

v=1 log(1 − θ
[k]
πuπv) ≈

−(
∑N

i,j=1 θij)
k − 1

2 (
∑N

i,j=1 θ
2
ij)

k. The Taylor approximation oflog p(G|k,Θ, π) re-
duces complexity fromO(kN2k) toO(kN2). Then, we account for edges inG as

log p(G|k,Θ, π)≈−(

N
∑

i,j=1

θij)
k−

1

2
(

N
∑

i,j=1

θ2ij)
k+

∑

(u,v)∈E

(

log θ[k]
πuπv

− log(1−θ[k]
πuπv

)
)

.

(9)
From (9), computingp(G|k,Θ, π) takesO(k|E|). In comparison with the naive ap-
proach (3), the approximation in (9) is efficient, sinceG is typically sparse,|E|≪N2k.

In summary, inference has complexityO(k(T + |E|)). As the number of edges in
G is of the same order as the number of nodes, inference is linear in the number of
extracted video features. Inference is summarized in Alg. 1and Alg. 2.

Algorithm 1 : Inference
Input : Models{(ψa, Θa, ka) : a ∈ A};

Descriptors of video features{xv}
Output : Activity a∗; ForegroundGa∗

for a ∈ A do1

Detect foreground features{ψa(xv)} ;2

FormGa fromNk
a most confident3

foreground features;
Sample permutations{π(τ)} as in Alg. 2;4

Computep(D,Ga|ka,Θa)
q(D)

in (4) using (6);5

end6

Finda∗ using (5);7

Algorithm 2 : MCMC
Input : Initiator matrixΘ; video graphG;

number of iterationsT
Output : Permutations{π(τ):τ=1, . . ., T}
Initialize random node IDsπ(1);1

Computep(G|Θ, π(1)) using (9) and (1);2

for τ = 1 : T − 1 do3

repeat4

Sampleπ(τ+1) by Swap2Nodes(G);5

Sampleα ∼ U [0, 1];6

Update the ratio in (8);7

until α < The ratio in (8) ;8

end9

8 Sinisa Todorovic

5 Learning

Suppose we are given a set of graphsG = {Gt = (Vt, Et) : t = 1, 2, ...}, representing
foreground features of training videos of an activity class. We assume that∀t, |Vt| =
Nk, for a positive integerk. For now, we will assume thatN andk are known, and
then later relax this assumption. The goal of learning is to estimate anN ×N initiator
matrixΘ. We learnΘ by maximizing the log-likelihood of the training graphs,Θ∗ =
arg maxΘ LΘ, whereLΘ =

∑T
t=1 log [

∑

π p(Gt|k,Θ, π)p(π)]. Thus, we extend the
learning ofΘ∗ from a single network, presented in [6], to learning from a set of graphs.
We compute the gradient ofLΘ as

∂LΘ

∂Θ
=

∑

t

∑

π
∂p(Gt|k,Θ,π)

∂Θ p(π)
∑

π p(Gt|k,Θ, π)p(π)
=

∑

t

∑

π

∂ log p(Gt|k,Θ, π)

∂Θ
p(π|k,Gt, Θ).

(10)
Note that (10) has a convenient form that allows for the MCMC sampling of permuta-

tions,π(τ), τ=1, ..., T , as in Alg. 2, and estimating∂LΘ

∂Θ ≈
∑

t
1
T

∑T
τ=1

∂ log p(Gt|k,Θ,π(τ))
∂Θ .

To compute∂ log p(Gt|k,Θ, π(τ))/∂Θ, we use the Taylor approximation given by

(9). From (9), this gradient entails computing∂ log θ[k]
uv

∂θij
for all pairs of activity primitives

i andj, wherei, j ∈ {1, ..., N}, and for all ordered sequencesu = (u1, . . . , ul, . . . , uk)
andv = (v1, . . . , vl, . . . , vk), whereul, vl ∈ {1, ..., N} (see Sec. 2). Letfuv

ij denote
a frequency that the pair of activity primitivesi and j appear in the pair of ordered

sequencesu andv, where∃l, ul = i andvl = j. Then, we derive that∂ log θ[k]
uv

∂θij
=

fuv
ij

θij
(1

1−θ
[k]
uv

). This closed-form solution of∂ log p(Gt|k,Θ, π(τ))/∂Θ allows efficient

computation of the gradient for a given permutationπ(τ).

As explained in Sec. 4.2, we efficiently compute∂ log p(Gt|k,Θ, π(τ))/∂Θ over
a number of probabilistically sampled permutations by exploiting the fact that two
consecutive permutationsπ(τ) andπ(τ+1) differ only at two positions. Thus, given
the gradient∂ log p(Gt|k,Θ, π(τ))/∂Θ, we account for the swap of the two rows and
columns ofΘ[k], and thus only update the gradients of these individual parameters in
∂ log p(Gt|k,Θ, π

(τ+1))/∂Θ. Since the space of permutations onNk nodes is(Nk)!,
we will be able to explore only a small fraction of that space,and thus may converge
to a local maximum. As we empirically show in Sec. 7, we are notsensitive to this:
multiple restarts result in equivalent estimates ofΘ∗ (permuted).

Next, we consider how to determinek andN , and thus the right size of matrix
Θ. As in [6], we use the standard Bayes Information Criterion (BIC). This is justified
because, our likelihoodp(G|k,Θ, π) is an exponential 1 family distribution, for which
BIC holds. Since the categorical number of our model parameters isN2k, BIC(N, k) =
−LΘ∗

N
+ 1

2N
2 logN2k. As most model-selection methods, we exhaustively examinethe

valuesN = 4 : 10, andk = 2 : 6, and find the minimum BIC(N∗, k∗) with the best
tradeoff between model complexity and quality of the fit.

Human Activities as Stochastic Kronecker Graphs 9

6 Feature Extraction

This section presents our feature extraction. Since our focus here is on modeling a
spatiotemporal graph of video features – not on particular features – we use two recent,
easy-to-implement approaches that were thoroughly evaluated in the literature [1,18].

Our first approach uses KLT tracks of Harris corners [1]. The KLT tracks are de-
scribed using the standard, log-polar, 24-bin, Shape Context (SC) descriptor. We break
each track into a number of consecutive, straight-line fragments connecting high-curvature
points of the track. The number of line fragments is automatically estimated, so that an
average error of the piece-wise linear approximation of a track is sufficiently low (ǫ ≤ 2
pixels). For example, for a KLT track of length 50 frames, theapproximation typically
yields 10–20 straight line fragments (or just 1, when the KLTtrack is a straight line).
The orientation and magnitude of the motion vector along each fragment is then en-
coded into one of 24 bins of the SC.

Our second approach uses Lagrangian particle (LP) trajectories of the foreground
motions in the video [18]. The LP tracks are obtained by advecting dense optical flow
over time. They capture the ensemble motions of a scene, including both camera-
induced and object-induced components. The LP tacks that correspond to moving ob-
jects are separated from those arising from the camera motion using a low rank op-
timization, presented in [18]. The resulting LP tacks of moving objects are described
using a descriptor of the chaotic invariants [18], aimed at encoding underlying dynam-
ics of each track. These descriptors are then clustered withK-means, and the clusters’
centroids are taken as the representative LP trajectories.

We associate with the extracted track-based features descriptor vectorsX = {xz :
z = 1, 2, ...}. The tracks are classified as belonging to the foreground or background
(see Sec. 3) with a linear SVM,ψa(xz), with the complexity parameterC = 1. The
SVM is learned on tracks that fall within annotated boundingboxes in training videos
for each activity classa ∈ A. Note that our feature extraction is simpler than that
of recent methods, e.g., [11] ([16]), which run part-based person or object detectors
(or sophisticated multi-target trackers), and then use detector responses (or multi target
tracks) as input for activity recognition.

The margin-based confidence of the linear SVM is used to select a total ofNka
a

most confident foreground features, and link them into a video graph,Ga = (Va, Ea)
for activity classa ∈ A. An edge(u, v) ∈ Ea links the corresponding foreground
tracks if they are neighbors in the space-time volume of the video. We say that the
tracks are neighbors in two cases: if they overlap in time (i.e., co-occur in some of their
subintervals), or follow each other byδ frames. We empirically setδ = 5 to handle
accidental breaks of tracks due to noise. This produces a sparse graphGa where the
number of edges|Ea| is of the order of|Va| = Nka

a .

7 Results

Evaluation is conducted on collective activities and individual activities.

10 Sinisa Todorovic

The collective activities dataset2 consists of videos showing six activity classes:
Crossing, Waiting, Queuing, Talking, Dancing, and Jogging. This dataset tests our per-
formance on the behaviors of groups of people under realistic conditions, including
background clutter, and mutual occlusions of actors. For training and testing, we use
the standard split of2/3 and1/3 of the videos from each class, respectively. Labels of
every 10th frame are provided in terms of bounding boxes around people performing
the activity, their pose, and activity class.

UCF-YT, UCF50: UCF-YT3 and UCF503 show punctual or repetitive activities oc-
curring in challenging YouTube videos with large variations in camera motion, object
appearance and pose, object scale, viewpoint, cluttered background, and illumination.
UCF-YT consists of 1600 videos, of approximately 150 frameseach, showing 11 ac-
tivity classes (mostly various sports). There are about 100clips per action. We use
the recommended split of UCF-YT into 2/3 training set and 1/3test set [11], as well as
Leave-One-Out (LOO) validation. UCF50 consists of 6685 videos of 50 activity classes,
mostly including sports activities. Each activity is represented by more than 100 videos.
For training and testing on UCF50, we use 2/3 and 1/3 of the videos from each class,
respectively.

Olympic dataset [14] consists of 50 YouTube videos for each of 16 activity classes.
Each activity represents a temporal sequence of primitive activities (e.g., running, jump-
ing, landing, and standing-up). As in [14], we use 80% of videos from the dataset for
training, and the rest for testing. Challenges of this dataset arise from very similar, and
thus hard-to-discriminate temporal structures of the activity classes.

Metrics: We evaluate video classification accuracy on all datasets, and recall and
precision of localizing foreground video parts on the Collective dataset. Localization
error is estimated only on accurately classified instances.A true positive is declared if
the intersection of a bounding box that we place around detected foreground features,
and the ground-truth bounding box is larger than 50% of theirunion.

Variants: To evaluate sensitivity to certain design choices, we defineVar0 as our
default approach, and then make changes in one computational step at a time, resulting
in variants Var1 and Var2. Var0 uses Lagrangian particle (LP) tracks as features (Sec. 6),
and a linear SVM to classify the tracks as foreground or background, where the SVM is
learned on the annotated foreground tracks of training videos. For UCF-YT and UCF50,
we train the SVM on “positive” tracks that fall in a bounding box centered at the im-
age center, since the datasets do not provide ground-truth bounding boxes of activities.
Typically, we extract on the order of103 foreground features. From our experiments,
this preprocessing step is sufficiently reliable to yield a high recall of true foreground
tracks. On all Collective videos, the SVM gives on average 82.4% recall and 32.7% pre-
cision of foreground LP tracks. This preprocessing result is improved by our inference
in Alg. 1. Fig. 1 illustrates the results of foreground (magenta) vs. background (cyan)
classification of LP tracks in an example frame from a Kayaking video of UCF50 (only
a subset of LP tracks is shown for visibility). The white bounding box in Fig. 1 encloses
all tracks estimated as foreground. As can be seen, this preprocessing step is capable of
addressing very challenging YouTube videos with large camera motions, and dynamic

2 http://www.eecs.umich.edu/vision/activity-dataset.html
3 http://vision.eecs.ucf.edu/datasetsActivities.html

Human Activities as Stochastic Kronecker Graphs 11

Fig. 1. UCF50 Kayaking: SVM detection of fore-
ground (magenta) and background (cyan) LP tracks;
only a subset of LP tracks is shown for clarity

2000 4000 6000 8000 10000
−5

−4

−3

−2

−1

0

1

2

3

4
Inference

number of sampling permutations

lo
g−

lik
el

ih
oo

d

Alg. 1
Ground truth

Fig. 2. 10 restarts of Alg. 1 for the
video shown in Fig. 1.

backgrounds. In learning and inference, Var0 samplesT = 104 permutations. Fig. 2
shows how Alg. 1 maximizes the log-likelihood in (9), for 10 restarts, on an example
Kayaking video from UCF50. As can be seen, multiple restartsof sampling permu-
tations result in the same, accurate inference. We empirically observe the same trend
across all datasets used. Even in cases when restarts yield different log-likelihoods, the
highest log-likelihood value typically gives accurate classification. Since our learning
uses the same Alg. 2, we also empirically observe that multiple restarts of learning in
most cases yield the same model parametersΘ. Var1 uses KLT tracks as features. Var2
does not classify tracks into foreground and background, but constructs the video graph
from all features.

Quantitative Results: On UCF50, Var0 achieves81.03 ± 4.7% average per-class
accuracy, demonstrating our scalability, i.e., that we cansuccessfully handle a large
number of activity classes, under extreme YouTube conditions. We outperform the
76.2±11.7% average per-class accuracy of the action-bank approach [8]. This improve-
ment is significant, considering that [8] uses a manually specified bank of elementary
actions, whose detector responses are more sophisticated features than our LP tracks.

In Tab. 1, we compare our performance on UCF-YT with the stateof the art [10,12],
using the standard LOO validation, as well as with [11] usingtheir setup of 2/3–1/3
dataset split for training and testing. Tab. 1 also shows theperformance of Global bag-
of-words—a baseline that uses an SVM classifier on the globalhistogram of STIP code-
words [19]. As can be seen in Tab. 1, Var0 outperforms Var1, suggesting that the LP
tracks and associated descriptors are better low-level video representation than KLT
tracks for our approach. Also, classifying features into foreground and background
yields more than 4% gain in accuracy relative to Var2 where this classification is not
done. Var0 outperforms the state of the art by more than 5% in LOO setting, and 8% in
the dataset-split setting. Also, all our variants are superior to existing methods, which
suggests that the main power of our approach does not come from particular features
used, or their preprocessing, but from the Kronecker graph modeling of activities.

Tab. 3 shows our superior performance to [2,14,19] on Olympic videos. Both Tab. 1
and Tab. 3 demonstrate that we are effective at classifying individual activities with
complex temporal structures in unscripted real-world video.

12 Sinisa Todorovic

Method Accuracy LOOAccuracy Splits
Var0 92.1 ± 1.4 86.8 ± 2.2

Var1 88.4 ± 1.8 83.9 ± 2.6

Var2 89.0 ± 1.9 82.6 ± 1.9

[11] 83.7 78.6
[12] N/A 76.5
[10] 87.3 N/A

global BOW 81.9 63.1

Table 1. Average per-class accuracy in [%]
on UCF-YT for LOO validation, and 2/3–1/3
dataset split.

Cross Wait Queue Talk Dance Jog
Cross 86.87 3.15 0 0 0 9.98
Wait 2.08 89.09 8.02 0 0.82 0

Queue 0 13.10 86.90 0 0 0
Talk 0.59 3.03 3.33 93.04 0 0

Dance 6.73 2.29 0.67 0 90.31 0
Jog 2.76 0 0 0 0 97.24

Table 2. Confusion table of Var0’s accuracy in
[%] on Collective activities.

Sport Var0 [2] [14] [19]
high-jump 79.1 75.8 68.9 52.4
long-jump 81.4 78.6 74.8 66.8
triple-jump 72.3 69.7 52.3 36.1
pole-vault 86.2 85.5 82.0 47.8

g-vault 92.2 89.4 86.1 88.6
shot-put 74.3 65.9 62.1 56.2
snatch 83.3 72.1 69.2 41.8

clean-jerk 91.3 86.2 84.1 83.2
javelin 86.7 77.8 74.6 61.1

hammer 81.2 79.4 77.5 65.1
discus 72.3 62.2 58.5 37.4

diving-pl. 90.2 89.9 87.2 91.5
diving-sp. 89.1 82.2 77.2 80.7
basketball 88.3 79.7 77.9 75.8
bowling 85.9 78.7 72.7 66.7
tennis 73.2 63.8 49.1 39.6

Average 82.9 77.3 71.1 62.0

Table 3.Classification accuracy in [%]
on Olympic data.

Tab. 2 presents Var0’s confusion table on Collective. Our mean per-class accuracy is
90.57± 3.6%, which improves the recent82.0± 6.4% accuracy of [16]. This improve-
ment is significant, considering that [16] uses part-based people detections as input to
their MRF-based approach, which are more sophisticated features than our LP tracks.

Fig. 3 illustrates our localization results on two example videos from the Collective
dataset. Fig. 4 shows that Var0 achieves the average precision of 69.5% and recall of
76.2% at the point of equal error rate on Collective dataset.This ROC plot is generated
by manually varying the number of most confident foreground features,Nk, selected
to form the video graphG in inference. The use of the learnedN andk values gives
average precision of 72.8% and recall of 70.3%. This suggests that Alg. 1 conservatively
selects low-level features toward improving precision of activity localization.

Running time: The computation time of our MATLAB implementation of infer-
ence is less than 15s on an Intel Core i7-2600, 8GB RAM PC on UCF-YT videos, for
T = 104, N = 7, k = 4. Our learning additionally optimizes overN = 4 : 10, and
thus has the computation time of about 20min for 100 trainingvideos from UCF-YT.

8 Conclusion

Capturing spatiotemporal layouts of video features has been argued as instrumental
for accurate activity recognition. While graph based representations are capable of ef-
fectively encoding feature layouts, they are typically notsuitable for applications with
stringent requirements in terms of time complexity and scalability. This is typically due

Human Activities as Stochastic Kronecker Graphs 13

Fig. 3.Examples of Crossing and Waiting from the Collec-
tive activities dataset. A subset of foreground (magenta)
and background (cyan) KLT tracks is shown for clarity.
The bounding box encloses the estimated foreground.

Fig. 4. Average ROC on Collective
dataset with marked equal error rate

to their prohibitively expensive inference and learning. In this paper, we have addressed
this fundamental problem by exploiting the recursive structure of human activities.

We have formulated an activity as a spatiotemporal layout ofordered sequences of
activity primitives. The primitives are stochastically grouped into ordered sequences
to generate observable video features. Such a formulation is fundamentally efficient in
both memory and time, because videos of activity instances can be compactly repre-
sented by a relatively small set of activity primitives, their probabilistic affinities for
grouping into video features, and the grouping operator. Wehave used the Kronecker
product as the grouping operator. Building upon recent workon modeling social net-
works [6], we have exploited the structure of the Kronecker product to specify the in-
ference and learning algorithms with linear-time complexity in the number of video
features.

Our formulation has enabled detection and localization of different types of activ-
ities — including individual, structured, and collective activities — within a unified
framework. This advances prior work which typically addresses only a single activ-
ity type. Our results demonstrate good scalability and superior performance to that of
the state of the art on benchmark datasets, including UCF50,UCF YouTube, Olympic,
and Collective activities datasets. Evaluation of our design choices suggests that the
main power of our approach does not come from particular features used, or their pre-
processing, but from the compositional modeling of activities, operationalized by the
Kronecker product.

Acknowledgement

The support of the National Science Foundation under grant NSF IIS 1018490 is grate-
fully acknowledged.

References

1. Messing, R., Pal, C., Kautz, H.A.: Activity recognition using the velocity histories of tracked
keypoints. In: ICCV. (2009)

2. Brendel, W., Todorovic, S.: Learning spatiotemporal graphs of human activities. In: ICCV.
(2011)

14 Sinisa Todorovic

3. Torsello, A., Hancock, E.R.: Learning shape-classes using a mixture of tree-unions. IEEE
TPAMI 28 (2006) 954–967

4. Torsello, A.: An importance sampling approach to learning structural representations of
shape. In: CVPR. (2008)

5. Todorovic, S., Ahuja, N.: Unsupervised category modeling, recognition, and segmentation
in images. IEEE TPAMI30 (2008) 1–17

6. Leskovec, J., Chakrabarti, D., Kleinberg, J.M., Faloutsos, C., Ghahramani, Z.: Kronecker
graphs: An approach to modeling networks. Journal of Machine Learning Research11
(2010) 985–1042

7. Cheung, V., Frey, B.J., Jojic, N.: Video epitomes. IJCV76 (2008) 141–152
8. Sadanand, S., Corso, J.J.: Action bank: A high-level representation of activity in video. In:

CVPR. (2012)
9. Aggarwal, J., Ryoo, M.: Human activity analysis: A review. ACM Comput. Surv.43 (2011)

16:1–16:43
10. Kovashka, A., Grauman, K.: Learning a hierarchy of discriminative space-time neighbor-

hood features for human action recognition. In: CVPR. (2010)
11. Lan, T., Wang, Y., Mori, G.: Discriminative figure-centric models for joint action localization

and recognition. In: ICCV. (2011)
12. Bhattacharya, S., Sukthankar, R., Jin, R., Shah, M.: A probabilistic representation for effi-

cient large scale visual recognition tasks. In: CVPR. (2011)
13. Gupta, A., Srinivasan, P., Shi, J., Davis, L.: Understanding videos, constructing plots learning

a visually grounded storyline model from annotated videos.In: CVPR. (2009)
14. Niebles, J., Chen, C.W., Fei-Fei, L.: Modeling temporalstructure of decomposable motion

segments for activity classification. In: ECCV. (2010)
15. Pei, M., Jia, Y., Zhu, S.C.: Parsing video events with goal inference and intent prediction.

In: ICCV. (2011)
16. Choi, W., Shahid, K., Savarese, S.: Learning context forcollective activity recognition. In:

CVPR. (2011)
17. Lan, T., Wang, Y., Yang, W., Robinovitch, S., Mori, G.: Discriminative latent models for

recognizing contextual group activities. IEEE TPAMI (2011)
18. Wu, S., Oreifej, O., Shah, M.: Action recognition in videos acquired by a moving camera

using motion decomposition of Lagrangian particle trajectories. In: ICCV. (2011)
19. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from

movies. In: CVPR. (2008)

