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Abstract. A human activity can be viewed as a space-time repetitiorcifity
primitives. Both instances of the primitives, and theiret{ion are stochastic.
They can be modeled by a generative model-graph, where matesspond to
the primitives, and the graph’s adjacency matrix encodeis #ifinities for prob-
abilistic grouping into observable video features. Wheiidaw of the activity is
represented by a graph capturing the space-time layoutebvieatures, such a
video graph can be viewed as probabilistically sampled fitweractivity’s model-
graph. This sampling is formulated as a successive Kromaukgiplication of
the model’s affinity matrix. The resulting Kronecker-poweatrix is taken as a
noisy permutation of the adjacency matrix of the video grdjte paper presents
our: 1) model-graph; 2) memory- and time-efficient, weaklypervised learn-
ing of activity primitives and their affinities; and 3) infaice aimed at finding
the best expected correspondences between the primitieeslzserved video
features. Our results demonstrate good scalability on WC&Bd superior per-
formance to that of the state of the art on individual, sticed, and collective
activities of UCF YouTube, Olympic, and Collective dataset

1 Introduction

This paper is about detecting and localizing human aaiith real-world videos. Both
individual activities of people (e.g., triple-jump), andllective activities of groups of
people (e.g., waiting in line) are considered in a unifiedneavork. We define an ac-
tivity as a hierarchical, space-time repetition of aciyitimitives. The primitives have
probabilistic affinities to recursively combine into obssnle spatiotemporal patterns
of the activity. The main advantage of such a definition oxesting, alternative formu-
lations is that the essence of the activity can be compaatiyuced only via a (small)
set of primitives, their affinities, and an operator for theicursive grouping. This, in
turn, allows for memory- and time-efficient, scalable léagrand inference algorithms.

Our motivation comes from an observation that an activity e@nsist of a number
of subactivities, where each subactivity is an activity tsnawn right. This recursion
ends with activity primitives. For example, in a collectizetivity of jogging, the indi-
vidual activity of running is stochastically repeated byltiple actors within the group,
where each running activity represents a repetition ofadtaristic protrusions of the
legs, and swinging of the arms.

Given a video of an activity, we capture the spatiotempagpktition of activity
primitives by a graph. Nodes in the video graph corresponibeo features (e.g., KLT
tracks of Harris corners [1]). Their neighbor relationshipspace and time are captured
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by the graph’s adjacency matrix, also referred to as videwixn&\Ve posit that video
graphs representing instances of an activity class areapilidtically sampled from a
generative model-graph of the activity. Nodes of this magtalph represent the activity
primitives. Their probabilistic affinities for recursiveauping into video features are
captured by the affinity matrix, also referred to as initfatwatrix. As an operator for
generating video graphs from the model-graph, we use thadtier product. Specif-
ically, the grouping of the activity primitives is formutad as a successive Kronecker-
multiplication of the initiator matrix. Consequently, thesulting video matrices can be
viewed as stochastic realizations of a Kronecker-powen@fritiator matrix.

We learn the model-graph of the activity under weak supemig-rom the above,
the goal of our learning is to discover the set of activitynptives, and estimate their
affinities from a set of training video graphs. The goal of mierence is to identify
a subset of primitives, and how they have recursively grdugze as to generate the
observed video features. In this paper, we exploit the stra®f the Kronecker power
of a matrix to specify memory- and time-efficient inferenoéd &earning algorithms that
take linear time in the number of video features.

Our results demonstrate good scalability on the benchm@&#k30 dataset, as well
as superior performance to that of the state of the art orvichakl, structured, and
collective activities in UCF YouTube, Olympic, and Collsetdatasets.

Related work —We are not aware of any work in computer vision that uses Krkeie
graphs to represent images or videos. The most related soisthie work on model-
ing video segmentation graphs for activity recognition byaachetype graph, whose
inference and learning are formulated as a weighted leastreg estimation [2]. Their
model, however, is not compact, requiring the numbers ofehoddes and edges to ex-
ceed those found in the segmentation graphs of traininggid®y contrast, our gener-
ative model-graph stores only the affinity matrix of a refaly small number of activity
primitives. Other related work has focused on 2D shape m@&tiog by modeling im-
age graphs with mixture of trees [3], generative Delaunaply4], and tree-union [5].
Kronecker graphs have been successfully used for modediciglsnetworks [6]. This
line of work, however, focuses on modelitagal structural properties of single large
social network (e.g., shrinking node diameter, densificaiower law, etc.). They do
not need to make a distinction between two distinct sets desaepresenting fore-
ground and background. Our model-graph, instead, is aitneapauring both local and
global space-time relations captured by a set of video grablso, we need to take into
account that only a subset of nodes in each video graph esgréseground. A com-
pact generative model, called video epitomes, has beenfoseidieo super-resolution
and video interpolation [7]. Similar to our activity pririvies, the epitomes compactly
capture the essence of a large number of space-time cules&ining videos. Related
is also the action-bank representation of activities [&widver, this approach requires
a manual specification of the bank of elementary actionstlagiddetectors, instead of
automatically discovering activity primitives.

While recent work typically focuses on a particular type cfiaties [9] — in par-
ticular, on single-actor punctual and repetitive act@st[10-12], or exclusively on ac-
tivities with distinct temporal structure [2, 13-15], orahxsively on collective activi-
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ties [16, 17] — we present a unified framework that is capabkddressing all these
activity types in challenging, realistic (YouTube) videos

Overview —Our approach consists of three computational modulesufeaixtraction,
inference, and learnin§eature extraction: Given a video, motion features are extracted
in the form of trajectory snippets, which can be either KLacks of Harris corners [1],
or Lagrangian particle trajectories [18]. These featusa®lbeen demonstrated by prior
work as robust against many challenges of real-world vidiectiding large variations
in camera motions, object pose and scale, and illuminaiiba.neighboring tracks are
then linked in the video graphnference: Our inference identifies the activity whose
model-graph most likely generated foreground featureh@fvideo. Specifically, in-
ference estimates correspondences between nodes of ity anbdel and nodes of
the video graph in two steps. Given a model-graph, we firslyabp Kronecker prod-
uct to its initiator matrix a number of times. This resultsaitkronecker-power matrix,
whose random permutations of rows and columns are takereasljacency matrix of
the video graph. Second, we find the expected corresponslbateeen the Kronecker-
power matrix, and the video’s adjacency matrix via summiangthe random permu-
tations. This immediately estimates the subset of actmiimitives, and the way they
have recursively combined so as to generate the observed ¥dturesLearning:
Given a set of graphs representing training videos of amiictilass, we learn a model-
graph that most likely generated the training graphs. Theetiiold goal of learning is
to estimate: i) initiator matrix, i) number of times the Krecker product needs to be
successively applied to the initiator matrix to generagetthining graphs, and (iii) opti-
mal correspondences (i.e., permutations) between thed€kam-power of the initiator
matrix, and the adjacency matrices of the training videplysa

In the sequel, Sec. 2 reviews main properties of the Krormgmiaeluct, Sec. 3 for-
malizes our activity model, Sec. 4 presents our inferencki@ncomplexity, Sec. 5
specifies our learning algorithm, Sec. 6 describes our feaytraction, and Sec. 7
presents our experimental evaluation.

2 A Brief Review of the Kronecker Product

This section closely follows the review presented in [6f,dompleteness. Our activity
model is characterized by the initiator square ma#tiaf size N x N, whose elements
0,; take values ino, 1]. © is used to recursively construct a sequencéVéfx N*
matrices{O*] : k = 2, ..., K}, where©!*! is taken as a random permutation of the
adjacency matrix of the video graph. The sequef®@®!} is produced by a successive
application of the Kronecker product® as specified in the following two definitiors.

Def. 1: The Kronecker product of am x m matrix A = [a;;] andn’ x m/ matrix
allB almB
Bisthe(n-n') x (m-m/)matrixC = A® B=| ..

a1 B ... apm B

Def. 2 Thekth Kronecker power of matri@ is matrix0¥! = k-1 ¢ ©.

! For simplicity, we use a singl@®. This can be trivially extended by using a number of distinct
initiator matrices of different sizes, which can be Kroneekultiplied to obtair®!*!.
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Since® € [0,1]V*N, the Kronecker power matri®@*l € [0, 1]V *¥" can be
viewed as encoding a probability distribution of Berno@tiges in an ensemble of
graphs{G} with N* nodes, as explained in Sec. 3. Suppose {fdtrepresent video
graphs of activity instances. Then, evéhcan be probabilistically sampled fro@l*!
by including edges between nodeandwv in G with corresponding probabilitie“q%.

The structure of the Kronecker product allows for an efficmmputation of each
elements!f in O(k) time, as follows. Let us look at a relationship between roWs o
© and rows of@*], Defineu,v as the indices of rows aP*!, v = 1,.... N* and
v=1,..., N*. Then, from Def. 1 and Def. 2, every rawof ©!¥! can be described with
a sequenceéus, ..., u,...,u;) of rowsl of ©, whereu; € {1,...N}, 1 =1,...,k.
Similarly, another rom of ©*! corresponds to the sequen@sg, ..., v, ..., v) Of
rows of©, wherev; € {1,..., N}, 1 = 1, ..., k. It follows that the probability that edge
(u,v) is present inG is computed agltl = Hle 6,0, Which can be equivalently
expressed as the followin@(k) time computation:

o =TI Bty (21 moty (2 )41 0= Loy NE 0 =1, NE. (1)
From the above, observable features of a video graph, remexs as nodes @f,
can be interpreted as ordered sequences of activity pvasitiSince nodes of G can
be described by sequences of rowsf(us, ..., ur), we can view the rows o as
encoding the activity primitives. From such an interprietatelements);; of © can
be viewed as probabilistic affinities between primitiveand j. This is because the
probability of an edge i1, 97%, is computed as a product bfelementd);;, as in (1).

Thus, the greater the affinitiés;, the larger the linking probabilit&%. In addition, our
use of the successive Kronecker product®dbr generating; can be interpreted as an
effective encoding of both homophily and heterophily of phienitives. For homophily,
pairs of nodesu, v) in G described by similar sequences of the primities, ..., uy)
and(vs, ..., v ), are more likely to link irg when® has high value elements on the main
diagonal. For heterophily, pairs of nodegimwith different sequences of the primitives
are more likely to link inG when® has high value elements off the main diagonal.

3 The Model

This section extends the Kronecker graph model presen{édl fny explicitly account-
ing for a video’s foreground and background. We assume kimaspace-time domain
of a video,D, is partitioned into foreground and backgroufidl,= Dty U Dyg, and
Dig N Dpg = 0. Dy is represented by a grapf,= (V, E), whereV is a set of nodes
corresponding to foreground video features &vitl = N*, andE is a set of edges
capturing neighbor relationships of foreground features|&| < N2* . We say that

G explains the foregroundyy = D(G), where every node € V' explains the corre-
sponding foreground video pafy = U,cvD,. Let p(Dyy|G) denote the foreground
likelihood. Also, letg(Dpg) denote a generic pdf of background, made implicit in our
derivation. Then, the likelihood of the video data can berdefias

p(DIG) = p(ng'g”(Dbg)Zgz; - q(D)I%’S’ =) ] e



Human Activities as Stochastic Kronecker Graphs 5

In (2), each ratio% = 9(x,) can be viewed as a confidence of a foreground-
background classifier (i.e., detector) applied to a desariectorz,, of video features
extracted from domaif,,.

Following the formalism of [6], given thé& x N initiator matrix@, our generative
model-graph assigns the likeliho@dG|©) to the video graply. To definep(G|O),
we use the following generative process. We first Kroneoheltiply © to create an
N* x N* Kronecker power matri©¥, as described in Sec. 2. Elementsf! are
viewed as probabilities of the presence of correspondiggethg. Since the assign-
ment of node IDs irg is arbitrary, it is necessary to explicitly account for trermu-
tation 7 that maps rows and columns of the adjacency matrig @b the rows and
columns of©!*l. Specifically, edgeéu, v) € E are modeled as independent Bernoulli

random variables, parameterized by the correspondingwm@ﬁm of ©l¥1, where
m,, denotesith element of random permutatian Thus, the likelihood o is

p(G1k,0.7) = Tiuyer O, Tuygn(l — 0%ir,). (3)
From (2) and (3), we define the joint pdf Bfandg as

p(D.G1k, 0) = q(D) [T,ey ¥(@0) X My Oirs Tiuayen(l — Oir, )p(w%
4
We assume that a priori all model-data correspondencesjaediglikely, i.e., the prior
distributionp(r) is uniform.
From (4), the model of each activity class A is defined by(v,, O, ka ).

4 |Inference

Suppose we are given a video showing an activity class; A, whose model-graph
has initiator matrix@,,-, of size N « x Ngx. Thele* foreground features of the video
form a spatiotemporal configuratigfy- . Edges ofj,- are sampled from the Kronecker
power matrix@gi] under a random permutation. Our inference evaluates theljg-
pdf of D andg,, given by (4), for all activity model§ (¢, O,, k,) : Va € A}, and
selects the activity* which gives the highest joint log likelihood:

a” = argmax | ey, log va(@y) + 108 3, p(Gala Ou o). 6

ac

From (5), inference consists of two computational stages\nsarized in Alg. 1 and
Alg. 2. The first stage identifie§, using the first term in (5), while the second stage
evaluates the likelihood of edges presenfjnusing the second term in (5).

In the first stage of inference, for a particular activitywe apply its foreground-
background detecto,,, to all features extracted from the video, as explained &1 6e
Then, theN* most confident foreground features are taken to form thefsedaesV/,
of G.. Inference accounts for their confidences via the . log ¥, (x,) in (5).

A subset of node pair&:, v) € V, x V, representing neighboring video features are
then linked to form the set of edgés, of G,,.

Inthe second stage of inference, we estimate the likelipaga (G, |k, O, 7)p().

To this end, we use the standard Markov Chain Monte Carlo (ME®Imulation, as
explained next.
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4.1 Probabilistic Sampling of Permutations

In this section, we drop the subscripin notation, implying that inference is conducted
for a particular activity model. As in [6], we use the stardisietropolis-Hastings (MH)
algorithm to sample permutatiofis(”) : 7 = 1, ..., T'}. These sample permutations are
then used to compute the second term in (5) as

> p(GIk, ©,m)p(r) = £ 7, p(GIk, ©,7(7). (6)
In each iteratiom, MH samplesr(™) from the posterior distribution

___pG,k0O,m)  p(G|k,O,m)p(k,O)p(m)
p(ﬂg, k,0) = Zw’ p(g, k, O, ﬂ./) - Zw’ p(g’ k,O, 7'r’)

This generates a Markov chain in which staté*!) depends only on the previous
stater®). The MH jumps between the states are reversible, and govesna proposal
distribution, which we assume is uniform. The proposal tagdrom#(7) to 7(7*1) is
accepted if the acceptance raie, U|0, 1], satisfies

(7)

- p(r"tVIGRO) Y p(G|k,©,x D)
o <min {1, Bl mgyer b = min {1, 2 g g o )

k k
II 0o I 0050 o) 8
:mm{l (u,v)EE (u,v)¢E } ( )

H oikgﬂﬂm H (1_97[Tk£ﬂﬁy>)

(u,v)EE ! (u,v)¢E

where the priorg(k, ©), p(r), and) " _, p(G, k,©, ") cancel out.

We expect that there will be a relatively small number of paiations yielding
high values op(G|k, ©, 7). To avoid sampling zero-likelihood permutations, as in [6]
we design a Markov chain which would stay longer in a higlelitkood region of the
permutation space. The Markov chain ensures that the MH guramain reversible.
To this end, we select an edgegnuniformly at random, and swap the IDs of its two
nodes. Note that this is biased toward swapping IDs of nodshigh degrees, since
they have more edgeséh This is suitable, since such nodes represent foregrodeavi
features co-occurring with many other foreground featuessulting in a more accurate
sampling of permutations over foreground features, agetbsihe balance condition
of reversible MH jumps holds as graph edges are sampledranlifat random. We call
this procedure Swap2Nodéd(

4.2 Reducing Complexity of Inference

Following the derivation of [6], evaluation of (8) and (6)rche made both computa-
tionally and memory efficient.

First, for memory efficiency, we do not store the adjacencyrim@([f] for each
activity a. Instead, we store only the initiator matric@s, Va € A, which have signif-
icantly smaller sizesv, x N,. Consequently, every time the Bernoulli probabiH{fé
is needed in (8) and (6), we use (1), which takk#) time.
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Second, note that in (8) permutation$) and=("+1) differ only at two positions.

This means that most terms in (8) cancel out, except for ewglese(wf[), mST)) #+

(77, 77D This makes complexity of samplinig permutations)(Tk).

Third, to compute (6), there is no need to evaluate eyégyk, ©, 7(7)) anew, for
7 =1,...,T.Instead, from (3), it suffices to compute the initial likedodp(G|k, @, (1)),
and then to update the subsequent likelihoods, by travgtgia rows and columns of

matrix O1%1, for edges wherér”), 7i™) # (27T, 7T,

What remains to be explained is the complexity of evaluatit@k, ©, 7(1)). A
naive evaluation of (3), which considers al?* node pairs ing, takesO(kN?*). In-
stead, as in [6], we first calculate the likelihop(|k, ©, ) for an empty graptg
with the same number of nodes@dbut zero edges, and then correct for the edges that

appear inG. From (3), and using the Taylor approximatibig(l — z) ~ —xz — %IQ,

it is straightforward to derive thabg p(Glk, ©,7) = SN SV log(1 — 01 ) ~
—( 1 0i)F — 2(3°1,_, 62)F. The Taylor approximation dbg p(G|k, ©, ) re-
duces complexity fron®(kN2*) to O(kN?). Then, we account for edgeséhas

N N
1
logp(Glk, O, m)m—(D_ 0:)" =5( > 05)*+ D (logbll, —log(1-6[1 ).
1,j=1 3,j=1 (u,v)EE
(9)

From (9), computing(G|k, ©, ) takesO(k|E|). In comparison with the naive ap-
proach (3), the approximation in (9) is efficient, sirgés typically sparse,E|< N2,
In summary, inference has complex@(k (7 + |E|)). As the number of edges in

G is of the same order as the number of nodes, inference isr linegae number of
extracted video features. Inference is summarized in AEnd Alg. 2.

Algorithm 1: Inference Algorithm 2: MCMC
Input: Models{(¢a, Oa, ka) : a € A}; Input: Initiator matrix@; video graphg;
Descriptors of video featurese., } number of iterationg”
Output: Activity *; Foregroundg- Output: Permutationd«(™:7=1,..., T}
1 for a € Ado 1 Initialize random node IDs™);
2 Detect foreground featurgs, ()} ; 2 Computep(G|O, 7)) using (9) and (1);
3 Formg, from N* most confident gforr=1:T—-1do
foreground features; 4 repeat
4 Sample permutationgr(™} asin Alg. 2; |5 Sampler("t") by Swap2Nodes));
5 ComputelP:9alta-9) jn (4) ysing (6); |6  Samplea ~ U0, 1];
a(D) L .
6 end 7 Update the ratio in (8);
7 Finda* using (5); 8 until o < Theratioin (8) ;
9 end
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5 Learning

Suppose we are given a set of grafgths- {G; = (V;, E¢) : t = 1,2, ...}, representing
foreground features of training videos of an activity clase assume thatt, |V;| =
N*, for a positive integef:. For now, we will assume thaV andk are known, and
then later relax this assumption. The goal of learning isstoveate anV x N initiator
matrix ©. We learn® by maximizing the log-likelihood of the training grapl@; =
argmaxg Lo, WhereLg = Zthl log [~ p(Gi|k, ©, m)p(m)]. Thus, we extend the
learning of©* from a single network, presented in [6], to learning from eodgraphs.
We compute the gradient dfo as

) 9p(Ge|k,0,m)

0Lo T 26 p(m) dlog p(Gi|k, O, )

- = k. Gr, O).
96 ztjzﬁp(gﬂk,@,ﬂ)p(ﬁ) ;; 00 p(7lk, G, O)
(10)

Note that (10) has a convenient form that allows for the MCM@\pling of permuta-
. - . . - o T  8logp(Gilk,0,x(")
tions,7(™),7=1, ..., T, asin Alg. 2, and estimatingke ~ 3", 4 S°7_ | 2loap(GukO.m )

T=1

To computed log p(G; |k, ©, (7)) /06, we use the Taylor approximation given by
(9). From (9), this gradient entails computiﬂga—zm] for all pairs of activity primitives

iandj, wherei, j € {1,..., N}, and for all ordered sequences= (u1, ..., u, ..., ux)

andv = (vi,...,v,...,v;), whereu;, v, € {1,..., N} (see Sec. 2). Lef;i” denote

a frequency that the pair of activity primitiveésand ; appear in the pair of ordered
log 0[¥]

sequences andv, wheredl, v; = i andv; = j. Then, we derive thatp~ =
iJ

J;Zj (ﬁ). This closed-form solution of log p(G;|k, ©,7(7)) /06 allows efficient

computation of the gradient for a given permutatiof.

As explained in Sec. 4.2, we efficiently computéog p(G:|k, ©,7(7)) /06 over
a number of probabilistically sampled permutations by eitjplg the fact that two
consecutive permutations™ and #("1) differ only at two positions. Thus, given
the gradien® log p(G: |k, ©,7(7)) /06, we account for the swap of the two rows and
columns of@!*!| and thus only update the gradients of these individualmpaters in
dlog p(Gi|k, ©,7(7+1)) /96. Since the space of permutations dif nodes is(N*)!,
we will be able to explore only a small fraction of that spamed thus may converge
to a local maximum. As we empirically show in Sec. 7, we are swotsitive to this:
multiple restarts result in equivalent estimate®6f(permuted).

Next, we consider how to determirkeand N, and thus the right size of matrix
©. As in [6], we use the standard Bayes Information CriteriBiC). This is justified
because, our likelihoog(G|k, ©, ) is an exponential 1 family distribution, for which
BIC holds. Since the categorical number of our model pararaég N2*, BIC(N, k) =
— Loz, +3N?log N**. As most model-selection methods, we exhaustively exathime
valuesN = 4 : 10, andk = 2 : 6, and find the minimum BICV*, £*) with the best
tradeoff between model complexity and quality of the fit.
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6 Feature Extraction

This section presents our feature extraction. Since owsfdere is on modeling a
spatiotemporal graph of video features — not on partic@atures — we use two recent,
easy-to-implement approaches that were thoroughly etedua the literature [1, 18].

Our first approach uses KLT tracks of Harris corners [1]. The kracks are de-
scribed using the standard, log-polar, 24-bin, Shape Qb(B€) descriptor. We break
each track into a number of consecutive, straight-linerfragts connecting high-curvature
points of the track. The number of line fragments is autocadlii estimated, so that an
average error of the piece-wise linear approximation oheltis sufficiently low ¢ < 2
pixels). For example, for a KLT track of length 50 frames, &pproximation typically
yields 10-20 straight line fragments (or just 1, when the Kilack is a straight line).
The orientation and magnitude of the motion vector alondghdeagment is then en-
coded into one of 24 bins of the SC.

Our second approach uses Lagrangian particle (LP) trajestof the foreground
motions in the video [18]. The LP tracks are obtained by atinga@ense optical flow
over time. They capture the ensemble motions of a scenaydimg both camera-
induced and object-induced components. The LP tacks thed¢smond to moving ob-
jects are separated from those arising from the camera masing a low rank op-
timization, presented in [18]. The resulting LP tacks of ingvobjects are described
using a descriptor of the chaotic invariants [18], aimednaoeling underlying dynam-
ics of each track. These descriptors are then clusterediaitieans, and the clusters’
centroids are taken as the representative LP trajectories.

We associate with the extracted track-based featuresipsorectorsY = {x. :

z = 1,2,...}. The tracks are classified as belonging to the foregroungokdround
(see Sec. 3) with a linear SVMj, (x.), with the complexity parameter = 1. The
SVM is learned on tracks that fall within annotated boundioges in training videos
for each activity class € .A. Note that our feature extraction is simpler than that
of recent methods, e.g., [11] ( [16]), which run part-basetspn or object detectors
(or sophisticated multi-target trackers), and then useatet responses (or multi target
tracks) as input for activity recognition.

The margin-based confidence of the linear SVM is used to seléatal of N«
most confident foreground features, and link them into awiglaph,G, = (V,, F,)
for activity classa € A. An edge(u,v) € E, links the corresponding foreground
tracks if they are neighbors in the space-time volume of thdea: We say that the
tracks are neighbors in two cases: if they overlap in timee,(€o-occur in some of their
subintervals), or follow each other byframes. We empirically set = 5 to handle
accidental breaks of tracks due to noise. This produces @egaaphg, where the
number of edgel”, | is of the order of V| = NFa.

7 Results

Evaluation is conducted on collective activities and indiial activities.
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The collective activities dataset consists of videos showing six activity classes:
Crossing, Waiting, Queuing, Talking, Dancing, and Joggirygs dataset tests our per-
formance on the behaviors of groups of people under realisthditions, including
background clutter, and mutual occlusions of actors. Fainitng and testing, we use
the standard split df/3 and1/3 of the videos from each class, respectively. Labels of
every 10th frame are provided in terms of bounding boxesratqeople performing
the activity, their pose, and activity class.

UCF-YT, UCF50: UCF-YT® and UCF58 show punctual or repetitive activities oc-
curring in challenging YouTube videos with large variagan camera motion, object
appearance and pose, object scale, viewpoint, cluttergdybaund, and illumination.
UCF-YT consists of 1600 videos, of approximately 150 frarash, showing 11 ac-
tivity classes (mostly various sports). There are about df$ per action. We use
the recommended split of UCF-YT into 2/3 training set andt@& set [11], as well as
Leave-One-Out (LOO) validation. UCF50 consists of 668®wislof 50 activity classes,
mostly including sports activities. Each activity is repeated by more than 100 videos.
For training and testing on UCF50, we use 2/3 and 1/3 of theoddrom each class,
respectively.

Olympic dataset [14] consists of 50 YouTube videos for each of 1&iactilasses.
ing, landing, and standing-up). As in [14], we use 80% of eglérom the dataset for
training, and the rest for testing. Challenges of this datagse from very similar, and
thus hard-to-discriminate temporal structures of thevagtclasses.

Metrics: We evaluate video classification accuracy on all datasatsrecall and
precision of localizing foreground video parts on the Cdlilee dataset. Localization
error is estimated only on accurately classified instangdgrie positive is declared if
the intersection of a bounding box that we place around tedoreground features,
and the ground-truth bounding box is larger than 50% of theion.

Variants: To evaluate sensitivity to certain design choices, we defar® as our
default approach, and then make changes in one computdiepaat a time, resulting
in variants Varl and Var2. Var0 uses Lagrangian particlg {tatks as features (Sec. 6),
and a linear SVM to classify the tracks as foreground or bamkgd, where the SVM is
learned on the annotated foreground tracks of trainingogdeor UCF-YT and UCF50,
we train the SVM on “positive” tracks that fall in a boundingxbcentered at the im-
age center, since the datasets do not provide ground-touttiding boxes of activities.
Typically, we extract on the order af)® foreground features. From our experiments,
this preprocessing step is sufficiently reliable to yieldghirecall of true foreground
tracks. On all Collective videos, the SVM gives on averagd®2recall and 32.7% pre-
cision of foreground LP tracks. This preprocessing resuliniproved by our inference
in Alg. 1. Fig. 1 illustrates the results of foreground (ma@g vs. background (cyan)
classification of LP tracks in an example frame from a Kaygkildeo of UCF50 (only
a subset of LP tracks is shown for visibility). The white bding box in Fig. 1 encloses
all tracks estimated as foreground. As can be seen, thisquegsing step is capable of
addressing very challenging YouTube videos with large camwtions, and dynamic

2 http://lwww.eecs.umich.edu/vision/activity-datasehh
% http:/lvision.eecs.ucf.edu/datasetsActivities.html
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Inference

log-likelihood

-3 —Alg. 1
—4 H S [ Ground truth

2000 4000 6000 8000 10000
number of sampling permutations

Fig. 1. UCF50 Kayaking: SVM detection of fore- Fig.2. 10 restarts of Alg. 1 for the
ground (magenta) and background (cyan) LP tracks; video shown in Fig. 1.
only a subset of LP tracks is shown for clarity

backgrounds. In learning and inference, Var0 samples 10* permutations. Fig. 2
shows how Alg. 1 maximizes the log-likelihood in (9), for léstarts, on an example
Kayaking video from UCF50. As can be seen, multiple restaftsampling permu-
tations result in the same, accurate inference. We emfyrichserve the same trend
across all datasets used. Even in cases when restarts iffetet log-likelihoods, the
highest log-likelihood value typically gives accuratesslification. Since our learning
uses the same Alg. 2, we also empirically observe that nieltgstarts of learning in
most cases yield the same model paramefeigarl uses KLT tracks as features. Var2
does not classify tracks into foreground and background;dnsstructs the video graph
from all features.

Quantitative Results: On UCF50, Var0 achievesl.03 + 4.7% average per-class
accuracy, demonstrating our scalability, i.e., that we saccessfully handle a large
number of activity classes, under extreme YouTube condti®We outperform the
76.2+11.7% average per-class accuracy of the action-bank approachB]improve-
ment is significant, considering that [8] uses a manuallyifigel bank of elementary
actions, whose detector responses are more sophistiesttads than our LP tracks.

In Tab. 1, we compare our performance on UCF-YT with the sifitlee art [10,12],
using the standard LOO validation, as well as with [11] udimgir setup of 2/3-1/3
dataset split for training and testing. Tab. 1 also showg#réormance of Global bag-
of-words—a baseline that uses an SVM classifier on the glubtdgram of STIP code-
words [19]. As can be seen in Tab. 1, VarO outperforms Var@gsesting that the LP
tracks and associated descriptors are better low-levelovigpresentation than KLT
tracks for our approach. Also, classifying features inteefwound and background
yields more than 4% gain in accuracy relative to Var2 whei® ¢tassification is not
done. Var0 outperforms the state of the art by more than 5%0@ Isetting, and 8% in
the dataset-split setting. Also, all our variants are siopéo existing methods, which
suggests that the main power of our approach does not commegasticular features
used, or their preprocessing, but from the Kronecker graptiating of activities.

Tab. 3 shows our superior performance to [2,14,19] on Olgmijgieos. Both Tab. 1
and Tab. 3 demonstrate that we are effective at classifyidiyidual activities with
complex temporal structures in unscripted real-world gide
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Method |Accuracy LOQAccuracy Splits Sport |VarQ| [2] ([14]|[19]
VarO 921+14 | 86.8+2.2 high-jump|79.1/75.868.952.4
Varl 88.4+ 1.8 83.9+ 2.6 long-jump|81.4|78.674.866.8
Var2 89.0 £ 1.9 82.6 £ 1.9 triple-jump| 72.3|69.7/52.3 36.1
[11] 83.7 78.6 pole-vault| 86.2/85.582.047.8
[12] N/A 76.5 g-vault |92.2/89.4/86.188.6
[10] 87.3 N/A shot-put | 74.3|65.962.1/56.2

global BOW 81.9 63.1 snatch [83.372.1/69.241.8
clean-jerk|91.3|86.2/84.183.2

Table 1. Average per-class accuracy in [%] javelin 186.7/77.874.661.1
on UCF-YT for LOO validation, and 2/3-1/3 hammer |81.2|79.477.565.1
dataset split. discus |72.3/62.258.537.4
: diving-pl. |90.2/89.987.291.5

Crosg Wait |Queug Talk [Dance Jog diving-sp.| 89.1/82.277.480.7
Cross86.873.15] 0 | 0 | 0 1998 basketbal| 88.379.777.975.8
Wait | 2.08(89.09 8.02| 0 |0.82| O bowling |85.9|78.772.766.7
Queug 0 |13.1086.90] 0 | 0 | © tennis |73.2/63.849.139.6
Talk | 0.59| 3.03| 3.33(93.04 O 0 Average |82.9]77.371.162.0

Danceg 6.73|2.29| 0.67| 0 |90.31 O

Jog |2.76] O 0 0 0 197.24 Table 3. Classification accuracy in [%]
on Olympic data.

Table 2. Confusion table of VarQ's accuracy in
[%] on Collective activities.

Tab. 2 presents VarQ’s confusion table on Collective. Owaimpeer-class accuracy is
90.57 £ 3.6%, which improves the reces.0 + 6.4% accuracy of [16]. This improve-
ment is significant, considering that [16] uses part-bagmple detections as input to
their MRF-based approach, which are more sophisticatédriesathan our LP tracks.

Fig. 3 illustrates our localization results on two exampbteos from the Collective
dataset. Fig. 4 shows that VarO achieves the average me@$i69.5% and recall of
76.2% at the point of equal error rate on Collective datddds ROC plot is generated
by manually varying the number of most confident foregroweatires N*, selected
to form the video grapld in inference. The use of the learnddand i values gives
average precision of 72.8% and recall of 70.3%. This suggleat Alg. 1 conservatively
selects low-level features toward improving precisioncifaty localization.

Running time: The computation time of our MATLAB implementation of infer-
ence is less than 15s on an Intel Core i7-2600, 8GB RAM PC on-YTWideos, for
T = 10* N = 7, k = 4. Our learning additionally optimizes ovéf = 4 : 10, and
thus has the computation time of about 20min for 100 trainidgos from UCF-YT.

8 Conclusion

Capturing spatiotemporal layouts of video features has laegued as instrumental
for accurate activity recognition. While graph based repntations are capable of ef-
fectively encoding feature layouts, they are typically switable for applications with
stringent requirements in terms of time complexity andauitity. This is typically due
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Fig. 3.Examples of Crossing and Waiting from the Collec- -
tive activities dataset. A subset of foreground (magenta) .
and background (cyan) KLT tracks is shown for claritfj!9-4- Average ROC on Collective

The bounding box encloses the estimated foreground. dataset with marked equal error rate

to their prohibitively expensive inference and learningthis paper, we have addressed
this fundamental problem by exploiting the recursive stritesof human activities.

We have formulated an activity as a spatiotemporal layowtrdéred sequences of
activity primitives. The primitives are stochasticallyogped into ordered sequences
to generate observable video features. Such a formulaifumdamentally efficient in
both memory and time, because videos of activity instanaesbe compactly repre-
sented by a relatively small set of activity primitives, itherobabilistic affinities for
grouping into video features, and the grouping operatorh@fe used the Kronecker
product as the grouping operator. Building upon recent vasrknodeling social net-
works [6], we have exploited the structure of the Kroneckedpct to specify the in-
ference and learning algorithms with linear-time compgiexi the number of video
features.

Our formulation has enabled detection and localizationifiéieint types of activ-
ities — including individual, structured, and collectivetiaities — within a unified
framework. This advances prior work which typically addes only a single activ-
ity type. Our results demonstrate good scalability and sapperformance to that of
the state of the art on benchmark datasets, including UGBEE, YouTube, Olympic,
and Collective activities datasets. Evaluation of our glesihoices suggests that the
main power of our approach does not come from particulaufeatused, or their pre-
processing, but from the compositional modeling of adéegit operationalized by the
Kronecker product.
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