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Abstract. Given a single RGB image our goal is to label every pixel
with an affordance type. By affordance, we mean an object’s capability
to readily support a certain human action, without requiring precursor
actions. We focus on segmenting the following five affordance types in
indoor scenes: ‘walkable’, ‘sittable’, ‘lyable’, ‘reachable’, and ‘movable’.
Our approach uses a deep architecture, consisting of a number of multi-
scale convolutional neural networks, for extracting mid-level visual cues
and combining them toward affordance segmentation. The mid-level cues
include depth map, surface normals, and segmentation of four types of
surfaces – namely, floor, structure, furniture and props. For evaluation,
we augmented the NYUv2 dataset with new ground-truth annotations
of the five affordance types. We are not aware of prior work which starts
from pixels, infers mid-level cues, and combines them in a feed-forward
fashion for predicting dense affordance maps of a single RGB image.
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1 Introduction

This paper addresses the problem of affordance segmentation in an image, where
the goal is to label every pixel with an affordance type. By affordance, we mean
an object’s capability to support a certain human action [1, 2]. For example,
when a surface in the scene affords the opportunity for a person to walk, sit
or lie down on it, we say that the surface is characterized by affordance types
‘walkable’, ‘sittable’, or ‘lyable’. Also, an object may be ‘reachable’ when some-
one standing on the floor can readily grasp the object. A surface or an object may
be characterized by a number of affordance types. Importantly, affordance of an
object exhibits only the possibility of some action, subject to the object’s rela-
tionships with the environment, and thus is not an inherent (permanent) object’s
attribute. Thus, sometimes chairs are not ‘sittable’ and floors are not ‘walkable’ if
other objects in the environment prevent performing the corresponding actions.

Affordance segmentation is an important, long-standing problem with a range
of applications, including robot navigation, path planning, and autonomous driv-
ing [3–14]. Reasoning about affordances has been shown to facilitate object and
action recognition [4, 10, 13]. Existing work typically leverages mid-level visual
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cues [3] for reasoning about spatial (and temporal) relationships among objects
in the scene, which is then used for detection (and in some cases segmentation) of
affordances in the image (or video). For example, Hoiem et. al. [15,16] show that
inferring mid-level cues – including: depth map, semantic cues, and occlusion
maps – facilitates reasoning about the 3D geometry of a scene, which in turn
helps affordance segmentation. This and other related work typically use a holis-
tic framework aimed at “closing the loop” that iteratively improves affordance
segmentation and estimation of mid-level cues, e.g., via energy minimization.

Motivated by prior work, our approach to affordance segmentation is grounded
on estimation of mid-level cues, including depth map, surface normals and coarse-
level semantic segmentation (e.g., general categories of surfaces such as walls,
floors, furniture, props), as illustrated in Fig. 1. Our key difference from prior
work is that, instead of “closing the loop”, we use a feed-forward multi-scale con-
volutional neural network (CNN) in order to predict and integrate the mid-level
cues for labeling pixels with affordance types. CNNs have been successfully used
for low-level segmentation tasks [17–23]. Multi-scale CNNs have been demon-
strated as suitable for computing hierarchical features, and successful in a range
of pixel-level prediction tasks [17–19,23,24].

Given an RGB image, we independently infer its depth map, surface normals,
and coarse-level semantic segmentation using the multi-scale CNN of Eigen et.
al. [24]. The three multi-scale CNNs produce corresponding mid-level cues at
the output, which are then jointly feed as inputs to another multi-scale CNN for
predicting N affordance maps for each of N affordance types. Our estimate of
depth map, surface normals, and semantic segmentation can be explicitly ana-
lyzed for reasoning about important geometric properties of the scene – such as,
e.g., identifying major surfaces, surface orientations, spatial extents of objects,
object heights above the ground, etc. We treat the three mid-level cues as latent
scene representations which are fused by the CNN for affordance segmentation.
Therefore, in this paper, we do not evaluate inference of the mid-level cues.

Fig. 1. An overview of our approach: Given an RGB image, we use a multi-scale con-
volutional neural network (CNN) to compute mid-level cues – including: depth map,
surface normals and segmentation of general surface categories (e.g., walls, floors, fur-
niture, props). The CNN also fuses these mid-level cues in a feed-forward manner for
predicting five affordance maps for each of the five affordance types considered: ‘walk-
able’, ‘sittable’, ‘lyable’, ‘reachable’, and ‘movable’.



A Multi-Scale CNN for Affordance Segmentation in RGB Images 3

In this paper, we focus on indoor scenes and typical affordances characterizing
objects and surfaces in such scenes. Indoor scenes represent a challenging domain,
because of relatively large variations in spatial layouts of objects affecting the
feasibility of human-object interactions, and thus affordances. We consider the
following five affordance types typical of indoor scenes:

1. Walkable: is any horizontal surface at a similar height as the ground that
has free space vertically above (i.e., not occupied by any objects), since such
a surface would afford a person to comfortably walk on it (even if soft);

2. Sittable: is any horizontal surface below a certain height from the ground
(estimated relative to the human height) that has free space around and
vertically above, as it would afford a person to comfortably sit on it;

3. Lyable: is any ‘sittable’ surface that is also sufficiently long and wide for a
person to lie on it;

4. Reachable: can be any part of the scene that is within a reachable height
for a person standing on the ground, and has free space around so that a
person can stand next to it and readily grasp it;

5. Movable: is any ‘reachable’ small object (e.g., book) that can be easily
moved by hand, and has free space around so as to afford the moving action.

In our specification, we consider that any ‘walkable’ surface is also ‘standable’;
therefore, ‘standable’ is not included in the above list. Also, we consider that the
sitting action can be performed without a back support, which might be different
from previous definitions in the literature. Note that almost everything under a
certain height can be reachable if a person is allowed to bend, crawl, climb or
perform other complex actions. In this paper, we only consider reachability by
hand while a person is standing on the floor. Regarding ‘movable’, our definition
may be too restrictive for a case when a relatively large object can be moved
(e.g., chair); but, in such cases, the moving action cannot be easily performed.

It is also worth noting that we focus on “immediate” affordances, i.e., an
object’s capability to immediately support a human action, which can be readily
executed without any precursor actions. For example, a chair is not immediately
‘sittable’ if it has to be moved before sitting on it. Therefore, we cannot resort
to a deterministic mapping between object classes and their usual affordance
types (chairs are in general sittable), since affordance types of particular object
instances depend on the spatial context.

An obstacle that we have encountered in our work is the lack of datasets with
ground truth pixel-wise annotations of affordances. Our literature review finds
that most prior work focuses on affordance prediction at the image level, where
the goal is to assign an affordance label to the entire image [4,5,9,11,25–27]. A
few exceptions [28, 29] seek to discover similar affordance types as ours in RGB
images. They estimate ground truth by hallucinating human skeletons in various
postures amidst the inferred 3D layout of the scene.

As human skeletons may provide a limited model for reasoning about certain
human-object interactions in the scene, and may not be informative for some of
our affordance types (e.g., ‘movable’), we have developed a new semi-automated
method for generating pixel-wise ground truth annotations of affordances. This
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is used to extend the NYU v2 dataset [30] with ground-truth dense affordance
annotations, and our quantitative evaluation.

Contributions:

– We extend the NYUv2 dataset [30] with pixel-wise affordance ground truth.

– A new multi-scale deep architecture for extracting and fusing mid-level cues
toward predicting dense affordance maps from an RGB image. Note that,
unlike previous approaches [9,31–34], we do not rely on any additional cues
based on human-object interaction (e.g., action, pose).

In the following, Sec. 2 reviews prior work, Sec. 3 explains our method for
generating affordance ground truth, Sec. 4 specifies our deep architecture for
affordance segmentation, Sec. 5 describes how to train our deep architecture,
and Sec. 6 presents our experimental results.

2 Prior Work

Predicting affordances has a long history in computer vision [1,2]. Early work has
typically considered a rule-based inference for affordance segmentation [35–37].
However, their hand-designed rules are too brittle for real-world indoor scenes
abounding with clutter and occlusions.

Some recent approaches reason about affordance via interpreting human ac-
tions and human-objects interactions [9,31–34]. For example, recognizing human
actions can provide informative cues for predicting affordance [31,32]. Other ap-
proaches leverage a fine-grained human pose estimation [33]. These visual cues
are also used for predicting affordance of novel objects [9]. One of our key dif-
ferences from these approaches is that they are aimed at predicting affordance
of foreground objects, whereas we aim for a dense pixel-wise labeling.

A related line of work predicts affordance by hypothesizing possible human-
object interactions in the scene [28, 38, 39]. For example, [28, 39] use human-
skeleton models in various postures. Our approach does not use human skeletons.

Another group of approaches [25–27, 40, 41] focus on affordances of small
objects, such as spoon, knife, cup, etc., which are operated by hands. Thus,
they address different affordance types from ours, including graspable, cuttable,
liftable, fillable, scoopable, etc. In contrast, we consider affordance for human
actions that involve the complete human body.

RGB and RGBD videos provide additional temporal cues for interpreting
human-object interactions, and thus allow for robust affordance prediction [4,7,
42,43]. Also, detecting objects and reconstructing a detailed 3D scene geometry
can lead to robust affordance segmentation [25,28,42,44].

We are not aware of prior work which infers and combines mid-level cues in
a feed-forward fashion using a deep architecture for predicting dense affordance
maps of a single RGB image.
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Fig. 2. For generating ground truth, we assume access to RGBD images. First, we
compute surface normals from the RGB and depth information. Then, we use the
RANSAC algorithm to fit 3D scene surfaces to a piece-wise planar approximation of
the scene. The identified surface planes and their plane normals are combined with
ground-truth object labels to decide affordance types present at every pixel.

3 Generation of Affordance Ground Truth

This section explains our semi-automated method for generating dense ground
truth affordance maps in the NYUv2 dataset [30]. Importantly, for estimating
such ground truth, we assume access to RGBD images and their pixel-wise an-
notations of object class labels. This is in contrast to our setting, where we have
no access to depth information and object class labels, i.e., our approach takes
only RGB images as input.

The NYUv2 dataset consists of 1449 indoor images with pixel-wise depth
maps and object class labels for each image. There are 40 indoor object classes
[45], including floor, wall, chair, sofa, table, bed, desk, books, bottle etc. Most of
the scenes exhibit complex layouts of objects, clutter, and prominent occlusion.
This makes affordance segmentation challenging.

Object class labels vs. affordance labels: Assigning affordance labels to
pixels cannot be done using a direct mapping from available object class labels.
This is because of two reasons. Different object parts may not support the same
affordance (e.g., back-rest of a chair may not be sittable). Also, affordance of a
particular object instance depends on the spatial context (e.g., a chair is placed
under a table is not immediately sittable by our definition).

It follows that, in addition to object class labels, we also need to consider
the spatial layout of objects in the scene for generating a reliable ground truth
affordance maps. Thus, we develop an approach to systematically extract some
essential geometrical cues from the scene, as explained below.

Understanding 3D scene geometry: We first align the RGB color and
depth data, such that the floor represents the X-Y plane and Z axis represents
height. From the RGB and depth map, we compute surface normals at every
pixel. Then, we use the RANSAC algorithm to fit 3D scene surfaces to a piece-
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wise planar approximation of the scene. This allows us to identify vertical and
horizontal surface planes relative to the ground plane, as in [30]. For robustness,
we allow some margin, such that we also account for near-horizontal and near-
vertical surfaces (±10 degrees of the surface normal). Finally, for each horizontal
and vertical surface plane, we compute its height and maximum height from the
ground plane, respectively. Also, for every surface plane, we estimate its size,
and if there is a free space around and vertically above. Surrounding clearance
is considered at a distance of 1 foot from the surface plane, where distances in
the 3D scene are estimated using the camera parameters and the depth data.

Combining scene geometry and ground-truth object labels: Given
the aforementioned estimates of horizontal and vertical surface planes in the
scene, we identify their ground-truth object class labels. This has two purposes:
(a) to constrain the set of candidate affordance types that could be associated
with each plane, and (b) to enforce smoothness in our generation of affordance
ground truth. To this end, for each affordance type, we specify a list of object
classes appearing in the NYUv2 dataset that could be characterized by that
type. For example, objects that could be ‘sittable’ are {chair, bed, sofa, desk,
table, . . . }; objects that could be ‘walkable’ are {floor, floor-mat}; objects that
could be ‘lyable’ are {bed, sofa, table, . . . }. The detailed list of NYUv2 objects
and affordances they could support is provided in the supplemental material.

After determining the object class labels of the surface planes, the above-
mentioned manually specified affordance-object pairs are used for hypothesizing
candidate affordances of each plane. The candidates are further constrained per
affordance definitions, stated in Sec. 1 and specified in Table 1, taking into
account the plane’s size, height, and surrounding and vertical clearances. Thus,
when the plane’s size, height or clearance does not satisfy the definition of a
particular candidate affordance, this candidate is removed from the solution. For
example, a horizontal plane, estimated at 3 feet from the ground and with vertical
clearance, whose majority ground-truth class is ‘bed’, could be ‘sittable’ and
‘lyable’. But if the plane’s size has been estimated as too small to comfortably
accommodate a full human body, the plane is labeled only as ‘sittable’.

Affordance type Definition
surface type height(h) size(s) clearance above clearance side

Walkable horizontal h ≤ 1/0.3 s ≥ 2.5/0.23 Yes No
Sittable horizontal 1.5/0.45 ≤ h ≤ 3.5/1 s ≥ 1/0.1 Yes Yes
Lyable horizontal 1.5/0.45 ≤ h ≤ 3.5/1 s ≥ 10/0.9 Yes Yes

Reachable horizontal/vertical 1.5/0.45 ≤ h ≤ 7/2.1 N/A No Yes
Movable horizontal/vertical 1.5/0.45 ≤ h ≤ 7/2.1 s ≤ 2.5/0.23 Either of two

Table 1. Definitions of affordance types for surfaces identified in the scene. The heights
are given in feet/meters, and sizes are given in feet2/meters2. We consider the maximum
convex area of a surface to estimate its size. For all measurements, we allow ±10%
tolerance to ensure robustness.

Note that our approach to generating ground truth differs from that pre-
sented in [28, 29]. Their approach hallucinates a human skeleton model in the
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scene to determine the ground-truth affordance labels. Specifically, they con-
volve a human skeleton corresponding to a particular human action with the
3D voxelized representation of the scene. Such an approach would not generate
ground truth which respects our affordance definitions. For example, a skeleton
representing a standing person can fit on top of a desk or a table, and as a result
these surfaces would be labeled as ‘walkable’ or ‘standable’ [28]. However, our
definition of ‘walkable’ is based on the expectation that walking on horizontal
surfaces with non-zero heights from the ground cannot be readily performed (one
needs to climb first). Also, a skeleton representing a sitting person can easily fit
on a chair even if there are small objects on the chair preventing a comfort-
able sitting action. Unlike [28,29], we explicitly consider all requirements of the
affordance definitions in order to generate affordance ground truth.

Manual Correction: The aforementioned automated generation of ground
truth is prone to error. This is due to: (a) the stochastic nature of the RANSAC
algorithm, (b) challenging elongated and thin surfaces that we fail to separate
from the background, and (c) prominent occlusions and clutter that make our
estimation of surface normals unreliable. Therefore, we have resorted to visual
inspection of our results for corrections. We have used the Amazon mechanical
turk to acquire multiple human corrections, and then applied majority voting to
determine the final ground truth. Each user has been allowed to either add new
regions to an affordance type, or remove wrongly labeled regions. The human
corrections have been in relatively small disagreement, considering that our five
affordance types are relatively complex cognitive concepts. Hence, the majority
vote has helped resolve most disagreements.

Dataset statistics: About 72% of the automatically generated affordance
labelings have been corrected by human experts. Each manual correction takes
about 30-40 seconds per affordance class. We compute the intersection over union
(IoU) measure between the automatically generated and manually corrected
ground truth to compute their similarity. The IoU value is 67%, which indicates
that the manual correction is necessary. Affordance types ‘walkable’, ‘sittable’,
‘lyable’, ‘reachable’, and ‘movable’ appear in 83%, 60%, 22%, 100%, and 93%
of the NYUv2 images, respectively. A similar pixel-level statistic estimates that
12%, 5%, 11%, 65% and 11% of pixels are occupied by the corresponding af-
fordance, if that affordance is present in the image. 18% of pixels have multiple
distinct affordance labels. We notice that pixels occupied by a particular ob-
ject instance are not all labeled with the same affordance, as desired. Thus, for
example, only 79% of pixels occupied by floors are labeled as ‘walkable’.

Some example ground truths are shown in Fig. 3. Additional examples are
presented in the supplemental material.

4 Affordance Segmentation with a Multi-Scale CNN

We use four multi-scale CNNs for affordance segmentation, as illustrated in Fig 4.
Each of these CNNs has the same architecture (e.g., number of convolutional
layers, number and size of convolutional kernels) as the deep network presented
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Fig. 3. Examples of our ground truth affordance maps: Top row represents the mid-
level cues, i.e., depth map, surface normals and semantic segmentation. The bottom
row represents the ground truth affordance maps.

in [24]. The three CNNs are aimed at extracting hierarchical features from the
RGB image, via the coarse- and fine-scale networks, for estimating depth map,
surface normals, and semantic segmentation, respectively. The coarse-scale CNN
is designed to generate feature maps representing global visual cues in the image
(e.g., large surfaces, context). The fine-scale CNN is designed to capture detailed
visual cues, such as such as small objects, edges and object boundaries. As in [24],
the outputs of the coarse-scale network is considered as inputs to the fine-scale
network. The fourth CNN also consists of the coarse- and fine-scale networks,
which serve for a multi-scale integration of the estimated mid-level cues and
pixels of the input image for predicting the five affordance maps.

For semantic segmentation, we consider four high-level categories, including:
‘floor’, ‘structure’ (e.g., walls), ‘furniture’, and ‘props’ (small objects), defined
in [30]. Note that this is in contrast to our method for generating ground truth,
where we use as input ground-truth annotations of all fine-grained object classes
(40 classes [45]). The four high-level categories allow for robust deep learning,
since they provide significantly more training examples than there are instances
for each fine-grained object class. Alternatively, we could have tried to conduct
semantic segmentation of fine-grained object classes, and used the resulting seg-
mentation for predicting affordance maps. However, such semantic scene labeling
would limit the generalizability of our approach to scenes with novel objects.

Coarse-scale network: It takes pixels of the entire image as input, and
generates feature maps as output. In this network, we use larger convolutional
kernels with higher stride length than those used in the fine-scale network. As



A Multi-Scale CNN for Affordance Segmentation in RGB Images 9

Fig. 4. Our multi-scale CNN architecture for predicting the affordance labels in the
indoor scenes. The coarse scale network captures the global features such as context
and the fine scale CNN captures finer details such as object boundaries. We combine the
mid-level cues with the low-level RGB image to predict the affordance labels. Thin lines
represent direct input and bold lines represent a convolution+pooling step, performed
on the input before merging with the feature maps [24].

the deep architecture of [46], our coarse-scale network replaces the top fully
connected layers by 1 × 1 convolution layers. The output is then upsampled in
order to generate the final feature map. After every convolution+pooling step,
the size of the output is reduced, such that the size of final output is 1/16 of the
input. This final output is then upsampled to size 1/4 of the input.

Fine-scale network: The final output feature maps of the coarse-scale net-
work and pixels of the image are jointly input to the fine-scale network for making
the final prediction of the corresponding mid-level cue. In order to match the size
of the RGB image with the size of the feature maps produced by the coarse-scale
network, we perform a single step of convolution+pooling of the RGB image, as
in [24]. For preserving fine details at the output, the convolution+pooling steps
in this network do not reduce the output size. The final output of this network
is upsampled to the size of the input RGB image, resulting either one of the
mid-level cues or the affordance maps.

Details about both the coarse-scale and fine-scale network such as number
of layers, kernel sizes, etc. are provided in the supplemental material. Note that,
instead of using the three distinct scales as in [24], we consider only first two
scales in our approach for efficiency.
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5 Training

Our training of the deep architecture presented in Sec. 4 consists of four tasks
aimed at training the four multi-scale CNNs. In each training task, the four
coarse-scale networks are initialized with the VGG Net [47]. The fine-scale net-
works are initialized randomly. After initialization, the coarse-scale and fine-scale
networks of each multi-scale CNN are trained jointly so as to minimize a suit-
able loss function, using the standard sub-gradient method with momentum.
The momentum value is set to 0.9. Learning iterations are 2M, 1.5M, 1.5M and
2M for depth prediction, surface normal estimation, semantic segmentation and
affordance segmentation respectively. Training takes 6-8 hours/per task and in-
ference takes ≈0.15 sec/per image, on a Nvidia Tesla K80 GPU. In the following,
we specify the loss functions used for training.

Multi-scale CNN-1 is trained for depth map prediction. We use a scale-
invariant and structure-aware loss function for depth prediction as in [48]. Let d
denote a difference between a predicted depth and ground truth in the log scale.
Then, this loss function is defined as

Ldepth =
1

I

∑
i

d2
i −

1

2I2

(∑
i

di

)2

+
1

I

∑
i

[(5xdi)
2 + (5ydi)

2] (1)

where i is the index of pixels, I is the total number of pixels, and 5xdi and 5ydi
denote the gradients of the depth difference d along the x and y axes.

Multi-scale CNN-2 is trained for predicting surface normals. The loss function
for normals prediction is specified as Lnorm = − 1

I

∑
i ni · n̂i, where ni and

n̂i denote the ground truth and predicted surface normals at pixel i, and the
symbol ‘·’ denotes the scalar product.

Multi-scale CNN-3 and multi-scale CNN-4 are trained for four-class seman-
tic segmentation and predicting five binary affordance maps, respectively. For
training both networks, we use the standard cross-entropy loss given the ground-
truths of the four semantic categories, and our ground-truth affordance maps.

Data Augmentation: The NYUv2 dataset provides only 795 training im-
ages. The size of this training set is not sufficient to robustly train the multi-scale
deep architecture. Therefore, we augment the training data by applying random
translations, mirror flips, small rotations and contrast modifications. We also
apply the same transformations to the corresponding ground truth maps. This
results in a three times larger training set. Such data manipulation methods for
increasing the training set are common [46,48,48].

6 Results

We first explain our experimental setup and then report our results.
Dataset. For evaluation, we use the NYUv2 dataset [30] which consists of

1449 RGBD images of indoor scenes with densely labeled object classes. Though
the depth information is available for each image, we predict affordance only
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using RGB input. Following the standard split, we use 795 images for training
and 654 images for testing. We augment the dataset with the additional five,
ground-truth, binary, dense affordance maps of: ‘sittable’, ‘walkable’, ‘lyable’,
‘reachable’ and ‘movable’.

Benchmark datasets for evaluating scene geometry and scene layout, such as
the UIUC indoor dataset [49] and geometric context [15], are not suitable for
our evaluation, because they do not provide dense ground-truth annotations of
object classes and surface normals. This, in turn, prevents us to generate ground
truth affordance maps for these datasets. The RGBD video datasets [4, 43] are
also not suitable for our evaluation, since our goal is to segment affordance in a
single RGB image. Moreover, we focus on five affordance types that are different
from those annotated in the RGBD videos of [4, 43] – specifically, our affor-
dances are defined in relation to the entire human body, whereas the RGBD
videos show affordances of small objects manipulated by hands. Also, note that
a direct comparison with the related approaches that densely predict similar (but
not the same) affordance types in indoor scenes [28, 29] would not be possible.
Their affordance labels are heuristically estimated, and their ground truth is not
yet publicly available. Although we are not in a position to conduct direct com-
parison with the state of the art, in the following, we present multiple baselines
and compare with them.

Evaluation Metric. For quantitative evaluation, we compare the binary
ground-truth affordance map with our predicted binary map. Specifically, we
compute the ratio of intersection over union (IOU) between pixel areas with value
1, i.e., where affordance is present in the binary map. This is a common metric
used in semantic segmentation [24,46]. Note that this metric is stricter than the
pixel wise precision measure or classification accuracy as used in [7, 16,29].

Baselines. The following baselines are used for our ablation studies, and
thus systematically evaluate each component of our approach.

Without predicting depth map (w/o Depth): In this baseline, we do
not estimate depth maps, and do not use them for affordance segmentation.
As shown in Tab. 2, ignoring depth cues significantly affects performance. This
indicates that depth prediction is crucial for affordance segmentation as it helps
reason about the 3D geometry of a scene.

Without predicting surface normals (w/o Surf Norm): In this base-
line, we ignore surface normals while predicting affordance. Surface normals help
estimate a surface’s orientation (i.e., horizontal or vertical), and in turn inform
affordance segmentation (e.g., a ‘walkable’ surface must be horizontal). As shown
in Tab. 2, ignoring surface normals in this baseline leads to poor performance.

Without predicting semantic labels (w/o Sem): In this baseline, we
ignore semantic labels for affordance segmentation. Tab. 2 shows that this base-
line gives relatively poor performance, as semantic cues could help constrain
ambiguities in affordance reasoning (e.g., floor is likely to be ‘walkable’).

Without predicting mid-level cues (w/o Mid-level): In this baseline,
we ignore all three mid-level cues, i.e., affordance is predicted directly from pixels
of the RGB image. Tab. 2 shows that the performance of this baseline is poor.
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This suggests that affordance maps cannot be reliably estimated directly from
pixels, and that inference of our mid-level cues is critical.

With ground truth cues (w GT): In this baseline, we directly use the
ground truth depth maps, surface normals [30] and the semantic labels instead
of predicting them from the image. This baseline amounts to an oracle predic-
tion with correct mid-level cues for predicting affordance labels. Results of this
baseline are shown in Tab. 2.

walkable sittable lyable reachable movable avg.

w/o Depth 63.23 31.44 36.10 57.24 43.84 46.37

w/o Surf Norm 64.36 32.32 37.77 57.70 44.64 47.36

w/o Sem 62.24 32.42 37.84 58.28 41.70 46.50

w/o Mid-level 58.45 24.63 31.20 50.54 34.20 39.80

w GT 70.43 37.61 43.33 63.41 51.37 53.23

Our approach 66.74 34.44 40.18 60.01 46.42 49.56
Table 2. Every baseline lacks one or more components of our approach and compered
in terms of pixel wise IOU accuracy measure on the NYUv2 affordance dataset.

Evaluation of the Network Architecture. In this section, we empirically
demonstrate the importance of multi-scale CNN architecture for affordance seg-
mentation. Tab. 3 presents our results when using only coarse- or fine-scale
network at a time, which amounts to considering features from a single scale –
namely, either global visual cues or fine visual details. Tab. 3 shows that we get
better performance when using only a coarse-scale network.

walkable sittable lyable reachable movable avg.

Coarse scale only 62.41 29.01 35.43 55.54 40.25 44.53

Fine scale only 64.67 31.58 37.74 57.86 43.67 47.10

Our approach (both) 66.74 34.44 40.18 60.01 46.42 49.56
Table 3. Comparisons of the approaches with varying the network architechture in
terms of pixel wise IOU accuracy measure on the NYUv2 affordance dataset.

Qualitative Results. Fig. 5 illustrates some of our results. As can be seen,
some affordance classes may not be present in an image, and a pixel might be
assigned multiple affordance labels. Pixels which are not assigned any affordance
labels are considered as background.

Failure case. Fig. 6 shows a failure case, where some parts of the floor –
under the table – are predicted as ‘walkable’. Here, we fail to identify that the
table is vertically above the floor, preventing the walking action. In this case, the
presence of object clutter and partial occlusion cause our incorrect estimation of
the 3D geometry, and consequently the wrong affordance map estimation.
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Fig. 5. Qualitative results of affordance segmentation for each type of affrodacne class.
For each RGB image, the top row represents the predicted affordance maps and the
bottom row represents the ground truth maps.

Fig. 6. A failure case where we fail to identify that the table is vertically above the
floor, preventing the walking action.
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7 Conclusion

We have developed and evaluated a multiscale deep architecture for affordance
segmentation in a single RGB image. Three multi-scale CNNs are applied inde-
pendently to the image for extracting three mid-level cues – namely, depth map,
surface normals and semantic segmentation of coarse-level surfaces in the scene.
An additional multi-scale CNN is used to fuse these mid-level cues for pixel-
wise affordance prediction. For evaluation, we have developed a semi-automated
method for generating dense ground-truth affordance maps in images, using
RGB and depth information along with ground-truth semantic segmentations
as input. This method has been used to augment the NYUv2 dataset of indoor
scenes with dense annotations of five affordance types: walkable, sittable, lyable,
reachable and movable. Our experiments on the NYUv2 dataset demonstrate
that each of the mid-level cues is crucial for the final affordance segmentation,
as ignoring any of them significantly downgrades performance. Also, our multi-
scale CNN architecture gives a significantly better performance than extracting
visual cues at either a coarse or fine scale.
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