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Abstract. This paper specifies a new deep architecture, called Recur-
rent Temporal Deep Field (RTDF), for semantic video labeling. RTDF
is a conditional random field (CRF) that combines a deconvolution neu-
ral network (DeconvNet) and a recurrent temporal restricted Boltzmann
machine (RTRBM). DeconvNet is grounded onto pixels of a new frame
for estimating the unary potential of the CRF. RTRBM estimates a
high-order potential of the CRF by capturing long-term spatiotemporal
dependencies of pixel labels that RTDF has already predicted in previ-
ous frames. We derive a mean-field inference algorithm to jointly predict
all latent variables in both RTRBM and CRF. We also conduct end-
to-end joint training of all DeconvNet, RTRBM, and CRF parameters.
The joint learning and inference integrate the three components into a
unified deep model – RTDF. Our evaluation on the benchmark Youtube
Face Database (YFDB) and Cambridge-driving Labeled Video Database
(Camvid) demonstrates that RTDF outperforms the state of the art both
qualitatively and quantitatively.

Keywords: Video Labeling, Recurrent Temporal Deep Field, Recurrent
Temporal Restricted Boltzmann Machine, Deconvolution, CRF

1 Introduction

This paper presents a new deep architecture for semantic video labeling, where
the goal is to assign an object class label to every pixel. Our videos show natural
driving scenes, captured by a camera installed on a moving car facing forward,
or indoor close-ups of a person’s head facing the camera. Both outdoor and
indoor videos are recorded in uncontrolled environments with large variations
in lighting conditions and camera viewpoints. Also, objects occurring in these
videos exhibit a wide variability in appearance, shape, and motion patterns, and
are subject to long-term occlusions. To address these challenges, our key idea
is to efficiently account for both local and long-range spatiotemporal cues using
deep learning.

Our deep architecture, called Recurrent Temporal Deep Field (RTDF), lever-
ages the conditional random field (CRF) [4] for integrating local and contextual
visual cues toward semantic pixel labeling, as illustrated in Fig. 1. The energy
of RTDF is defined in terms of unary, pairwise, and higher-order potentials.
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Fig. 1. (a) Our semantic labeling for a Youtube Face video [1] using RTDF. Given a
frame at time t, RTDF uses a CRF to fuse both local and long-range spatiotemporal
cues for labeling pixels in frame t. The local cues (red box) are extracted by DeconvNet
[2] using only pixels of frame t. The long-range spatiotemporal cues (blue box) are
estimated by RTRBM [3] (precisely, the hidden layer of RTDF) using a sequence of
previous RTDF predictions for pixels in frames t−1, t−2, . . . , t−γ. (b) An illustration
of RTDF with pixel labels yt in frame t, unary potentials xt, and top two layers rt−1

and ht belonging to RTRBM. The high-order potential is distributed to all pixels in
frame t via the full connectivity of layers ht and yt, and layers rt−1 and ht.

As the unary potential, we use class predictions of the Deconvolution Neural
Network (DeconvNet) [2] for every pixel of a new frame at time t. DeconvNet
efficiently computes the unary potential in a feed-forward manner, through a
sequence of convolutional and deconvolutional processing of pixels in frame t.
Since the unary potential is computed based only on a single video frame, Decon-
vNet can be viewed as providing local spatial cues to our RTDF. As the pairwise
potential, we use the standard spatial smoothness of pixel labels. Finally, as the
higher-order potential, we use hidden variables of the Recurrent Temporal Re-
stricted Boltzmann Machine (RTRBM) [3] (see Fig. 1b). This hidden layer of
RTRBM is computed from a sequence of previous RTDF predictions for pixels
in frames {t−1, t−2, . . . , t−γ}. RTRBM is aimed at capturing long-range spa-
tiotemporal dependencies among already predicted pixel labels, which is then
used to enforce spatiotemporal coherency of pixel labeling in frame t.

We formulate a new mean-field inference algorithm to jointly predict all latent
variables in both RTRBM and CRF. We also specify a joint end-to-end learning
of CRF, DeconvNet and RTRBM. The joint learning and inference integrate the
three components into a unified deep model – RTDF.

The goal of inference is to minimize RTDF energy. Input to RTDF inference
at frame t consists of: (a) pixels of frame t, and (b) RTDF predictions for pixels
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in frames {t− 1, . . . , t− γ}. Given this input, our mean-field inference algorithm
jointly predicts hidden variables of RTRBM and pixel labels in frame t.

Parameters of CRF, DeconvNet, and RTRBM are jointly learned in an end-
to-end fashion, which improves our performance over the case when each com-
ponent of RTDF is independently trained (a.k.a. piece-wise trained).

Our semantic video labeling proceeds frame-by-frame until all frames are
labeled. Note that for a few initial frames t ≤ γ, we do not use the high-order
potential, but only the unary and pairwise potentials in RTDF inference.

Our contributions are summarized as follows:

1. A new deep architecture, RTDF, capable of efficiently capturing both local
and long-range spatiotemporal cues for pixel labeling in video,

2. An efficient mean-field inference algorithm that jointly predicts hidden vari-
ables in RTRBM and CRF and labels pixels; as our experiments demon-
strate, our mean-field inference yields better accuracy of pixel labeling than
an alternative stage-wise inference of each component of RTDF.

3. A new end-to-end joint training of all components of RTDF using loss back-
propagation; as our experiments demonstrate, our joint training outperforms
the case when each component of RTDF is trained separately.

4. Improved pixel labeling accuracy relative to the state of the art, under com-
parable runtimes, on the benchmark datasets.

In the following, Sec. 2 reviews closely related work; Sec. 3 specifies RTDF
and briefly reviews its basic components: RBM in Sec. 3.1, RTRBM in Sec. 3.2,
and DeconvNet in Sec. 3.3; Sec. 4 formulates RTDF inference; Sec. 5 presents
our training of RTDF; and Sec. 6 shows our experimental results.

2 Related Work

This section reviews closely related work on semantic video labeling, whereas the
literature on unsupervised and semi-supervised video segmentation is beyond our
scope. We also discuss our relationship to other related work on semantic image
segmentation, and object shape modeling.

Semantic video labeling has been traditionally addressed using hierarchical
graphical models (e.g., [5–10]). However, they typically resort to extracting hand-
designed video features for capturing context, and compute compatibility terms
only over local space-time neighborhoods.

Our RTDF is related to semantic image segmentation using CNNs [12–
20]. These approaches typically use multiple stages of training, or iterative
component-wise training. Instead, we use a joint training of all components of
our deep architecture. For example, a fully convolutional network (FCN) [13]
is trained in a stage-wise manner such that a new convolution layer is progres-
sively added to a previously trained network until no performance improvement
is obtained. For smoothness, DeepLab [14] uses a fully-connected CRF to post-
process CNN predictions, while the CRF and CNN are iteratively trained, one
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at a time. Also, a deep deconvolution network presented in [21] uses object pro-
posals as a pre-processing step. For efficiency, we instead use DeconvNet [2],
as the number of trainable parameters in DeconvNet is significantly smaller in
comparison to peer deep networks.

RTDF is also related to prior work on restricted Boltzmann machine (RBM)
[22]. For example, RBMs have been used for extracting both local and global
features of object shapes [23], and shape Boltzmann machine (SBM) can generate
deformable object shapes [26]. Also, RBM has been used to provide a higher-
order potential for a CRF in scene labeling [24, 25].

The most related model to ours is the shape-time random field (STRF)
[27]. STRF combines a CRF with a conditional restricted Boltzmann machine
(CRBM) [28] for video labeling. They use CRBM to estimate a higher-order
potential of the STRF’s energy. While this facilitates modeling long-range shape
and motion patterns of objects, input to their CRF consists of hand-designed
features. Also, they train CRF and CRBM iteratively, as separate modules, in a
piece-wise manner. In contrast, we jointly learn all components of our RTDF in
a unified manner via loss backpropagation.

3 Recurrent Temporal Deep Field

Our RTDF is an energy-based model that consists of three components – De-
convNet, CRF, and RTRBM – providing the unary, pairwise, and high-order
potentials for predicting class labels yt = {ytp : ytp ∈ {0, 1}L} for pixels p
in video frame t, where ytp has only one non-zero element. Labels yt are pre-
dicted given: (a) pixels It of frame t, and (b) previous RTDF predictions y<t =
{yt−1,yt−2, . . . ,yt−γ}, as illustrated in Fig. 2.

DeconvNet takes pixels It as input, and outputs the class likelihoods xt =
{xtp : xtp ∈ [0, 1]L,

∑L
l=1 x

t
pl = 1}, for every pixel p in frame t. A more detailed

description of DeconvNet is given in Sec. 3.3. xt is then used to define the unary
potential of RTDF.

RTRBM takes previous RTDF predictions y<t as input and estimates values
of latent variables r<t = {rt−1, . . . , rt−γ} from y<t. The time-unfolded visu-
alization in Fig. 2 shows that rt−1 is affected by previous RTDF predictions
y<t through the full connectivity between two consecutive r layers and the full
connectivity between the corresponding r and z layers.

The hidden layer rt−1 is aimed at capturing long-range spatiotemporal de-
pendences of predicted class labels in y<t. Thus, ht and rt−1 are used to define
the high-order potential of RTDF, which is distributed to all pixels in frame t
via the full connectivity between layers ht and zt, as well as between layers ht

and rt−1 in RTRBM. Specifically, the high-order potential is distributed to each
pixel via a deterministic mapping between nodes in zt and pixels in yt. While
there are many options for this mapping, in our implementation, we partition
frame t into a regular grid of patches. As further explained in Sec. 3.1, each node
of zt is assigned to a corresponding patch of pixels in yt.
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Fig. 2. Our RTDF is an energy-based model that predicts pixel labels yt for frame t,
given the unary potential xt of DeconvNet, the pairwise potential between neighboring
pixel labels in frame t, and the high-order potential defined in terms of zt, ht and rt−1 of
RTRBM. The figure shows the time-unfolded visualization of computational processes
in RTRBM. RTRBM takes as input previous RTDF predictions {yt−1, . . . ,yt−γ} and
encodes the long-range and high-order dependencies through latent variables rt−1. The
high-order potential is further distributed to all pixels in frame t via a deterministic
mapping (vertical dashed lines) between yt and zt.

The energy of RTDF is defined as

ERTDF(yt,ht|y<t, It)=−
∑
p

ψ1(xtp,y
t
p)−

∑
p,p′

ψ2(ytp,y
t
p′)+ERT(yt,ht|y<t). (1)

In (1), the first two terms denote the unary and pairwise potentials, and the
third term represents the high-order potential. As mentioned above, the mapping
between yt and zt is deterministic. Therefore, instead of using zt in (1), we can
specify ERT directly in terms of yt. This allows us to conduct joint inference of
yt and ht, as further explained in Sec. 4.

The unary and pairwise potentials are defined as for standard CRFs:

ψ1(xtp,y
t
p) = W 1

ytp
· xtp, ψ2(ytp,y

t
p′) = W 2

ytp,y
t
p′
· exp(−|xtp − xtp′ |), (2)

where W 1
y ∈ RL is an L-dimensional vector of unary weights for a given class

label at pixel p, and W 2
y,y′ ∈ RL is an L-dimensional vector of pairwise weights

for a given pair of class labels at neighboring pixels p and p′.
Before specifying ERT, for clarity, we first review the restricted Boltzmann

machine (RBM) and then explain its extension to RTRBM.

3.1 A Brief Review of Restricted Boltzmann Machine

RTRBM can be viewed as a temporal concatenation of RBMs [3]. RBM [22] is an
undirected graphical model with one visible layer and one hidden layer. In our
approach, the visible layer consists of L-dimensional binary vectors z = {zi : zi ∈
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{0, 1}L} and each zi has only one non-zero element representing the class label
of the corresponding patch i in a given video frame. The hidden layer consists
of binary variables h = {hj : hj ∈ {0, 1}}. RBM defines a joint distribution of
the visible layer z and the hidden layer h, and the energy function between the
two layers for a video frame is defined as:

ERBM(z,h) = −
∑
j

∑
i

L∑
l=1

Wijlhjzil −
∑
i

L∑
l=1

zilcil −
∑
j

bjhj (3)

where W is the RBM’s weight matrix between z and h, and b and c are the bias
vectors for h and z, respectively. RBM has been successfully used for modeling
spatial context of an image or video frame [24, 25, 27].

Importantly, to reduce the huge number of parameters in RBM (and thus
facilitate learning), we follow the pooling approach presented in [27]. Specifically,
instead of working directly with pixels in a video frame, our formulation of RBM
uses patches i of pixels (8 × 8 pixels) as corresponding to the visible variables
zi. The patches are obtained by partitioning the frame into a regular grid.

Recall that in our overall RTDF architecture RBM is grounded onto latent
pixel labels yp through the deterministic mapping of zi’s to pixels p that fall
within patches i (see Fig. 2). When predicted labels y<t are available for video
frames before time t, we use the following mapping zi = 1/|i|

∑
p∈i yp, where |i|

denotes the number of pixels in patch i. Note that this will give real-valued zi’s,
which we then binarize. Conversely, for frame t, when we want to distribute the
high-order potential, we deterministically assign potential of zi to every pixel
within the patch.

3.2 A Brief Review of RTRBM

RTRBM represents a recurrent temporal extension of an RBM [3], with one vis-
ible layer z, and two hidden layers h and r. As in RBM, h are binary variables,
and r = {rj : rj ∈ [0, 1]} represents a set of real-valued hidden variables. In the
time-unfolded visualization shown in Fig. 2, RTRBM can be seen as a tempo-
ral concatenation of the respective sets of RBM’s variables, indexed by time t,
{zt,ht, rt}. This means that each RBM at time t in RTRBM has a dynamic bias
input that is affected by the RBMs of previous time instances. This dynamic bias
input is formalized as a recurrent neural network [29], where hidden variables rt

at time t are obtained as

rt = σ(Wzt + b +W ′rt−1), (4)

where {b,W,W ′} are parameters. Note that b + W ′rt−1 is replaced by bint
for time t = 1, σ(·) is the element-wise sigmoid function, and W ′ is the shared
weight matrix between rt−1 and ht and between rt−1 and rt. Consequently,
the recurrent neural network in RTRBM is designed such that the conditional
expectation of ht, given zt, is equal to rt. RTRBM defines an energy of zt and
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ht conditioned on the hidden recurrent input rt−1 as

ERT(zt,ht|rt−1) = ERBM(zt,ht)−
∑
j

∑
k

W
′

jkh
t
jr
t−1
k . (5)

From (3), (4) and (5), RTRBM parameters are θRT = {bint,b, c,W,W
′}.

The associated free energy of zt is defined as

FRT(zt|rt−1)=−
∑
j

log(1 + exp(bj+
∑
i,l

Wijlzil+
∑
k

W
′

jkr
t−1
k ))−

∑
i,l

zilcil. (6)

RTRBM can be viewed as capturing long-range and high-order dependen-
cies in both space and time, because it is characterized by the full connectivity
between consecutive r layers, and between the corresponding r, z, and h layers.

Due to the deterministic mapping between zt and yt for frame t, we can
specify ERT given by (5) in terms of yt, i.e., as ERT(yt,ht|rt−1). We will use
this to derive a mean-field inference of yt, as explained in Sec. 4.

3.3 DeconvNet

As shown in Fig. 2, DeconvNet [2] is used for computing the unary potential of
RTDF. We strictly follow the implementation presented in [2]. DeconvNet con-
sists of two networks: one based on VGG16 net to encode the input video frame,
and a multilayer deconvolution network to generate feature maps for predicting
pixel labels. The convolution network records the pooling indices computed in
the pooling layers. Given the output of the convolution network and the pooling
indices, the deconvolution network performs a series of unpooling and deconvo-
lution operations for producing the final feature maps. These feature maps are
passed through the softmax layer for predicting the likelihoods of class labels
of every pixel, xp ∈ [0, 1]L. Before joint training, we pre-train parameters of
DeconvNet, θDN, using the cross entropy loss, as in [2].

4 Inference of RTDF

Pixel labels of the first γ frames of a video are predicted using a variant of our
model – namely, the jointly trained CRF + DeconvNet, without RTRBM. Then,
inference of the full RTDF (i.e., jointly trained CRF + DeconvNet + RTRBM)
proceeds to subsequent frames until all the frames have been labeled.

Given a sequence of semantic labelings in the past, y<t, and a new video
frame, It, the goal of RTDF inference is to predict yt as:

ŷt = arg max
yt

∑
ht

exp(−ERTDF(yt,ht|y<t, It)). (7)

Since the exact inference of RTDF is intractable, we formulate an approxi-
mate mean-field inference for jointly predicting both ŷt and ĥt. Its goal is to mini-
mize the KL-divergence between the true posterior distribution, P (yt,ht|y<t, It)
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Fig. 3. Key steps of the mean-field inference overlaid over RTDF which is depicted as
in Fig. 1b. (a) Initialization of µ(0). (b) Initialization of ν(0). (c) Updating of µ(k+1).
(d) Updating of ν(k+1). The red arrows show the information flow.

= 1
Z(θ) exp(−ERTDF(yt,ht|y<t, It)), and the mean-field distribution Q(yt,ht) =∏
pQ(ytp)

∏
j Q(htj) factorized over pixels p for yt and hidden nodes j for ht.

To derive our mean-field inference, we introduce the following two types of
variational parameters: (i) µ = {µpl : µpl = Q(ytpl = 1)}, where

∑L
l=1 µpl = 1 for

every pixel p; (ii) ν = {νj : νj = Q(htj = 1)}. They allow us to express the mean-
field distribution as Q(yt,ht) = Q(µ,ν) =

∏
p µp

∏
j νj . It is straightforward

to show that minimizing the KL-divergence between P and Q amounts to the
following objective

µ̂, ν̂ = arg max
µ,ν
{
∑
yt,ht

Q(µ,ν) lnP (yt,ht|y<t, It) +H(Q(µ,ν))}, (8)

where H(Q) is the entropy of Q.

Our mean-field inference begins with initialization: µ
(0)
pl =

exp(W 1
µpl
·xp)∑

l′ exp(W
1
µ
pl′
·xp) ,

ν
(0)
j = σ(

∑
l

∑
i

∑
p∈i

1
|i|µ

(0)
pl Wijl + bj +

∑
j′W

′

jj′r
t−1
j′ ) and then proceeds by

updating µ
(k)
pl and ν

(k)
j using the following equations until convergence:

µ
(k+1)
pl =

exp(W 1

µ
(k)
pl

· xp +
∑
jWijlν

(k)
j + cil + β

(k)
p′→p)∑

l′ exp(W 1

µ
(k)

pl′
· xp +

∑
jWijl′ν

(k)
j + cil′ + β

(k)
p′→p)

, (9)

ν
(k+1)
j = σ(

∑
l

∑
i

∑
p∈i

1

|i|
µ
(k+1)
pl Wijl + bj +

∑
j′

W
′

jj′r
t−1
j′ ), (10)

where β
(k)
p′→p =

∑
p′
∑
l′W

2

µ
(k)
pl ,µ

(k)

p′l′
· exp(−|xp − xp′ |) denotes a pairwise term

that accounts for all neighbors p′ of p, W 1 and W 2 denote parameters of the
unary and pairwise potentials defined in (2), and Wijl and W

′

jj′ are parameters
of RTRBM. Also, the second and the third terms in (9) and the first term in
(10) use the deterministic mapping between patches i and pixels p ∈ i (see
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Algorithm 1: Joint Training of RTDF

input : Training set: {It,yt, t = 1, 2, · · · }, where yt is ground truth
output: Parameters of RTDF
repeat

1. For every training video, conduct the mean-field inference, presented in
Sec.4, and calculate the free energy associated with yt using (12);
2. Compute the derivative of 4(θ) given by (11) with respect to:

2.1. Unary term xp, using (11) and (2),
2.2. Pairwise term exp(−|xtp − xtp′ |), using (11) and (2);

3. Update CRF parameters W 1, W 2, using the result of Step 2;
4. Backpropagate the result of Step 2.1. to DeconvNet using the chain rule
in order to update θDN ;

5. Compute ∂4
∂θRT

using (11), (12), (6) and (4) for updating θRT;

until stopping criteria;

Sec. 3.1). Fig. 3 shows the information flow in our mean-field inference, overlaid
over RTDF which is depicted in a similar manner as in Fig. 1b.

After convergence at stepK, the variational parameter µ(k), k ∈ {0, 1, · · · ,K}
associated with minimum free energy as defined in (12) is used to predict the
label of pixels in frame t. The label at every pixel p is predicted as l for which

µ
(k)
pl , l ∈ {1, 2, · · · , L} is maximum. This amounts to setting ŷtpl = 1, while all

other elements of vector ŷtp are set to zero. Also, the value of ĥtj is estimated by

binarizing the corresponding maximum ν
(k)
j .

5 Learning

Parameters of all components of RTDF, θ = {W 1,W 2, θDN, θRT}, are trained
jointly. For a suitable initialization of RTDF, we first pretrain each component,
and then carry out joint training, as summarized in Alg. 1.

Pretraining. (1) RTRBM. The goal of learning RTRBM is to find pa-
rameters θRTRBM that maximize the joint log-likelihood, log p(z<t, zt). To this
end, we closely follow the learning procedure presented in [3], which uses the
backpropagation-through-time (BPTT) algorithm [29] for back-propagating the
error of patch labeling. As in [3], we use contrastive divergence (CD) [30] to
approximate the gradient in training RTRBM. (2) DeconvNet. As initial pa-
rameters, DeconvNet uses parameters of VGG16 network (without the fully-
connected layers) for the deep convolution network, and follows the approach of
[2] for the deconvolution network. Then, the two components of DeconvNet are
jointly trained using the cross entropy loss defined on pixel label predictions.
(3) CRF. The CRF is pretrained on the output features from DeconvNet using
loopy belief propagation with the LBFGS optimization method.

Joint Training of RTDF. The goal of joint training is to maximize the
conditional log-likelihood

∑
t log p(yt|y<t, It). We use CD-PercLoss algorithm
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[31] and error back-propagation (EBP) to jointly train parameters of RTDF
in an end-to-end fashion. The training objective is to minimize the following
generalized perceptron loss [32] with regularization:

4(θ) =
∑
t

(F (yt|y<t, It)−min
ŷt

F (ŷt|y<t, It)) + λθT θ (11)

where λ > 0 is a weighting parameter, and F (yt|y<t, It) denotes the free energy
of ground truth label yt of frame t, and ŷt is the predicted label associated with
minimum free energy. The free energy of RTDF is defined as

F (yt|y<t, It) = −
∑
p

ψ1(xtp,y
t
p)−

∑
p,p′

ψ2(ytp,y
t
p′) + FRT(yt|rt−1) (12)

where the first two terms denote the unary and pairwise potentials, and the
third term is defined in (6). In the prediction pass of training, the pixel label
is obtained by the mean-field inference, as explained in Sec.4. In the updating
phase of training, the errors are back-propagated through CRF, DeconvNet and
RTRBM in a standard way, resulting in a joint update of θ.

6 Results

Datasets and Metrics: For evaluation, we use the Youtube Face Database
(YFDB) [1] and Cambridge-driving Labeled Video Database (CamVid) [33].
Both datasets are recorded in uncontrolled environment, and present challenges
in terms of occlusions, and variations of motions, shapes, and lighting. CamVid
consists of four long videos showing driving scenes with various object classes,
whose frequency of appearance is unbalanced. Unlike other available datasets
[34–36], YFDB and CamVid provide sufficient training samples for learning
RTRBM. Each YFDB video contains 49 to 889 roughly aligned face images with
resolution 256 × 256. We use the experimental setup of [27] consisting of ran-
domly selected 50 videos from YFDB, with ground-truth labels of hair, skin, and
background provided for 11 consecutive frames per each video (i.e., 550 labeled
frames), which are then split into 30, 10, and 10 videos for training, validation,
and testing, respectively. Each CamVid video contains 3600 to 11000 frames at
resolution 360 × 480. CamVid provides ground-truth pixel labels of 11 object
classes for 700 frames, which are split into 367 training and 233 test frames. For
fair comparison on CamVid with [2], which uses significantly more training data,
we additionally labeled 9 consecutive frames preceding every annotated frame
in the training set of CamVid, resulting in 3670 training frames.

For fair comparison, we evaluate our superpixel accuracy on YFDB and pixel
accuracy on Camvid. For YFDB, we extract superpixels as in [27] producing 300-
400 superpixels per frame. The label of a superpixel is obtained by pixel majority
voting. Both overall accuracy and class-specific accuracy are computed as the
number of superpixels/pixels classified correctly divided by the total number of
superpixels/pixels. Evaluation is done for each RTDF prediction on a test frame
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Table 1. Superpixel accuracy on Youtube Face Database [1]. Error reduction in overall
superpixel accuracy is cacluated w.r.t the CRF. The mean and the standard derivation
are given from a 5-fold cross-validation.

Model Error Redu Overall Accu Hair Skin Background Category Avg

CRF [4] 0.0 0.90 ± 0.005 0.63 ± 0.047 0.89 ± 0.025 0.96 ± 0.005 0.83 ± 0.009

GLOC [25] 0.03 ± 0.025 0.91 ± 0.006 0.61 ± 0.038 0.90 ± 0.023 0.96 ± 0.003 0.82 ± 0.008

STRF [27] 0.12 ± 0.025 0.91 ± 0.006 0.72 ± 0.039 0.89 ± 0.025 0.96 ± 0.004 0.86 ± 0.010

RTDF† 0.11 ± 0.027 0.91 ± 0.008 0.70 ± 0.043 0.89 ± 0.024 0.96 ± 0.004 0.85 ± 0.011

RTDF∗ 0.17 ± 0.028 0.92 ± 0.008 0.76 ± 0.049 0.88 ± 0.025 0.96 ± 0.003 0.87 ± 0.012

RTDF 0.34 ± 0.031 0.93 ± 0.010 0.80 ± 0.037 0.90 ± 0.026 0.97 ± 0.005 0.89 ± 0.014

after processing 3 and 4 frames preceding that test frame for YFDB and Camvid,
respectively.

Implementation Details: We partition video frames using a 32×32 regular
grid for YFDB, and a 60 × 45 regular grid for CamVid. For YFDB, we specify
RTRBM with 1000 hidden nodes. For CamVid, there are 1200 hidden nodes
in RTRBM. Hyper-parameters of the DeconvNet are specified as in [2]. The
DeconvNet consists of: (a) Convolution network with 13 convolution layers based
on VGG16 network, each followed by a batch normalization operation [42] and
a RELU layer; (b) Deconvolution network with 13 deconvolution layers, each
followed by the batch normalization; and (c) Soft-max layer producing a 1 × L
class distribution for every pixel in the image. We test λ ∈ [0, 1] on the validation
set, and report our test results for λ with the best performance on the validation
dataset.

Runtimes: We implement RTDF on NVIDIA Tesla K80 GPU accelerator.
It takes about 23 hours to train RTDF on CamVid. The average runtime for
predicting pixel labels in an image with resolution 360× 480 is 105.3ms.

Baselines: We compare RTDF with its variants and related work: 1) RTDF†:
RTDF without end-to-end joint training (i.e., piece wise training); 2) RTDF∗:
jointly trained RTDF without joint inference, i.e., using stage-wise inference
where the output of RTRBM is treated as fixed input into the CRF. 3) CRF
[4]: spatial CRF inputs with hand-engineered features; 4) GLOC [25]: a jointly
trained model that combines spatial CRF and RBM; and 5) STRF [27]: a piece-
wise trained model that combines spatial CRF, CRBM and temporal potentials
between two consecutive frames.

6.1 Quantitative Results

YFDB: Tab. 1 presents the results of the state of the art, RTDF and its vari-
ant baselines on YFDB. As can be seen, RTDF gives the best performance,
since RTDF accounts for long-range spatiotemporal dependencies and performs
joint training and joint inference. It outperforms STRF [27] which uses local
hand-engineered features and piece-wise training. These results suggest that ac-
counting for object interactions across a wide range of spatiotemporal scales is
critical for video labeling. We also observe that RTDF† achieves comparable re-
sults with STRF [27], while RTDF∗ outperforms both. This suggests that our
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Table 2. Pixel accuracy on Cambridge-driving Labeled Video Database [33].
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Dense Depth Maps [37] 85.3 57.3 95.4 69.2 46.5 98.5 23.8 44.3 22.0 38.1 28.7 55.4 82.1
Super Parsing [38] 87.0 67.1 96.9 62.7 30.1 95.9 14.7 17.9 1.7 70.0 19.4 51.2 83.3

High-order CRF [39] 84.5 72.6 97.5 72.7 34.1 95.3 34.2 45.7 8.1 77.6 28.5 59.2 83.8
CRF + Detectors [40] 81.5 76.6 96.2 78.7 40.2 93.9 43.0 47.6 14.3 81.5 33.9 62.5 83.8

Neural Decision Forests [41] N/A 56.1 82.1
Deeplab [14] 82.7 91.7 89.5 76.7 33.7 90.8 41.6 35.9 17.9 82.3 45.9 62.6 84.6

CRFasRNN [20] 84.6 91.3 92.4 79.6 43.9 91.6 37.1 36.3 27.4 82.9 33.7 63.7 86.1
SegNet [2] 73.9 90.6 90.1 86.4 69.8 94.5 86.8 67.9 74.0 94.7 52.9 80.1 86.7

RTDF† 81.8 87.9 91.5 79.2 59.8 90.4 77.1 61.5 66.6 91.2 54.6 76.5 86.5
RTDF∗ 83.6 89.8 92.9 78.5 61.3 92.2 79.6 61.9 67.7 92.8 56.9 77.9 88.1
RTDF 87.1 85.2 93.7 88.3 64.3 94.6 84.2 64.9 68.8 95.3 58.9 80.5 89.9

end-to-end joint training of all components of RTDF is more critical for accu-
rate video labeling than their joint inference. Also, as RTDF∗ gives an inferior
performance to RTDF, performing joint instead of stage-wise inference gives an
additional gain in performance. Finally, we observe that RTDF performance can
be slightly increased by using a larger γ. For fair comparison, we use the same
γ as in [27].

CamVid: Tab. 2 presents the results of the state of the art, RTDF and its
variants on CamVid. In comparison to the state of the art and the baselines,
RTDF achieves superior performance in terms of both average and weighted ac-
curacy, where weighted accuracy accounts for the class frequency. Unlike RTDF,
SegNet [2] treats the label of each pixel independently by using a soft-max clas-
sifier, and thus may poorly perform around low-contrast object boundaries. On
the other hand, SegNet has an inherent bias to label larger pixel areas with a
unique class label [2] (see Fig. 4), which may explain its better performance than
RTDF on the following classes: sign-symbol, column-pole, pedestrian and fence.
From Tab. 2, RTDF† achieves comparable performance to that of SegNet, while
RTDF∗ outperforms RTDF†. This is in agreement with our previous observation
on YFDB that joint training of all components of RTDF is more critical than
their joint inference for accurate video labeling.

6.2 Qualitative Evaluation

Fig. 4 illustrates our pixel-level results on frame samples of CamVid. From the
figure, we can see that our model is able to produce spatial smoothness pixel
labeling. Fig. 6 shows superpixel labeling on sample video clips from YFDB. As
can be seen, on both sequences, STRF [27] gives inferior video labeling than
RTDF in terms of temporal coherency and spatial consistency of pixel labels.
Our spatial smoothness and temporal coherency can also be seen in Fig. 5 which
shows additional RTDF results on a longer sequence of frames from a sample
CamVid video.
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Fig. 4. Frame samples from CamVid. The rows correspond to original images, ground
truth, SegNet [2], and RTDF.

Fig. 5. Sequence of frames from a sample CamVid video. The rows correspond to input
frames and RTDF outputs.
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Fig. 6. Frame sequences from two CamVid video clips. The rows correspond to original
video frames, ground truth, STRF[27], and RTDF.

Empirically, we find that RTDF poorly handles abrupt scale changes (e.g.,
dramatic camera zoom-in/zoom-out). Also, in some cases shown in Fig. 4 and
Fig. 5, RTDF misses tiny, elongated objects like column-poles, due to our deter-
ministic mapping between patches of a regular grid and pixels.

7 Conclusion

We have presented a new deep architecture, called Recurrent-Temporal Deep
Field (RTDF), for semantic video labeling. RTDF captures long-range and high-
order spatiotemporal dependencies of pixel labels in a video by combining condi-
tional random field (CRF), deconvolution neural network (DeconvNet), and re-
current temporal restricted Boltzmann machine (RTRBM) into a unified frame-
work. Specifically, we have derived a mean-field inference algorithm for jointly
predicting latent variables in both CRF and RTRBM, and specified an end-to-
end joint training of all components of RTDF via backpropagation of the predic-
tion loss. Our empirical evaluation on the benchmark Youtube Face Database
(YFDB) [1] and Cambridge-driving Labeled Video Database (CamVid) [33]
demonstrates the advantages of performing joint inference and joint training
of RTDF, resulting in its superior performance over the state of the art. The
results suggest that our end-to-end joint training of all components of RTDF is
more critical for accurate video labeling than their joint inference. Also, RTDF
performance on a frame can be improved by previously labeling longer sequences
of frames preceding that frame. Finally, we have empirically found that RTDF
poorly handles abrupt scale changes and labeling of thin, elongated objects.
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