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Abstract der for image smoothing and compression algorithms to be

applicable to the entire image they should account for dif-

Given an arbitrary image, our goal is to segment all dis- ferences among textured and non-textured image parts, and
tinct texture subimages. This is done by discovering distin  adjust their parameters accordingly.
cohesive groups of spatially repeating patterns, called te  This paper is about texture segmentation, i.e., delineat-
els, in the image, where each group defines the corresponding the boundaries of all distinct texture subimages in an
ing texture. Texels occupy image regions, whose photometarbitrary image. The discovered boundaries will automati-
ric, geometric, structural, and spatial-layout propegiare  cally delineate the remaining, non-texture image pariall If
samples from an unknown pdf. If the image contains texture,distinct texture and non-texture image parts have been iden
by definition, the image will also contain a large number of tified, then the decision as to which higher-level algorighm
statistically similar texels. This, in turn, will give rig® need to be invoked on which parts will become easier.
modes in the pdf of region properties. Texture segmenta- A texture may be coarse. In this case, it is characterized
tion can thus be formulated as identifying modes of this pdf. by a spatial repetition of texture elements — 2D patterns,
To this end, first, we use a low-level, multiscale segmenta-¢3jjed texels — within the image area occupied by the tex-
tion to extract image regions at all scales present. Then, wey e [L1, 2, 15, 28, 16, 18, 20, 12, 19, 3]. Alternatively,
use the meanshift with a new, variable-bandwidth, hierar- {he texture surface in the scene and imaging conditions may
chical kernel to identify modes of the pdf defined over the g g,ch that the texels appear with pixel or subpixel sizes.
extracted hierarchy of image regions. The hierarchicatker |, this case, the texture subimage has fine granularity with
nel is aimed at capturing texel substructure. Experiments 5 relatively high degree of pixel-level noise. This makes
demonstrate that accounting for the structural propertés ¢ ,ch fine-granularity texture subimages appear more simi-
texels is critical for texture segmentation, leading to €0m |5y 1o non-texture image parts than to coarse-texture dnes.
petitive performance vs. the state of the art. this paper, we focus on segmenting distinct coarse-texture
subimages, where pixels form local, distinct clumps cor-
responding to texels. After identifying these textureg th
remaining parts of the image will correspond to non-texture

Images generally consist of distinct parts representing@nd fine-granularity-texture subimages.
different surfaces in the scene. Surfaces made of an op-The Problem: Texels in natural scenes, in general, are
tically homogeneous material and under smoothly varying not identical, and their spatial repetition is not strigtig-
illumination give rise to image parts with a smooth variatio ~ riodic. Instead, texels are only statistically similar toeo
of image brightness, referred to as non-texture subimage. | another, and their placement along a surface is only statis-
contrast, surfaces with discontinuities in depth, matgitia tically uniform. Also, texels are not homogenous-intensit
lumination, etc., give rise to texture subimages. The apati regions, but may contain hierarchically embedded strectur
variation of intensity in each image part contains differen Therefore, image texture can be characterized by a prebabil
information about the scene, often requiring differenetyp ity density function (pdf) governing the (natural) stdtat
of algorithms to be invoked on these parts. Depending onVariations of the following texel properties: (1) geometri
its purpose, an algorithm may apply to either texture or non- and photometric — referred to as intrinsic properties (e.qg.
texture subimages, or both. For example, if a surface in thecolor, area, shape); (2) structural; and (3) relative gaien
scene gives rise to the texture subimage it may be betteitions and displacements of texels —referred to as placement
to estimate the surface’s shape by shape-from-texture algoThe Rationale: Given an image, suppose we used a low-
rithms than by shape-from-shading methods. Also, in or- level, multiscale segmentation to identify homogeneous-

1. Introduction
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intensity regions at all photometric scales present. Asubs
of these regions may be texels, subtexels or groups of te
els, while some other regions may not be part of any texture.
Each region is characterized by certain intrinsic propserti
and spatial layout properties relative to other region®sEh ]
properties can be used to define a descriptor vector of eacl inputimage _pdf mode detection®n
region. If the underlying joint pdf of these descriptors €on region descriptors
tains a mode, this means that the image contains many staFigure 1. Our approach: A low-level segmentation partiitime
tistically similar regions that belong to that mode. In turn image into regions, each characterized by a descriptoovett

if these similar regions belong to a certain, cohesive subim region properties. The descriptors are viewed as samplesdn
age, then, by definition, they can be interpreted as texe|s,un.known pdf..l\/.lodes of the pdf are identified using anew mean-
and the subimage can be taken as texture. It follows thatSh'_ft that explicitly accounts for str_uctural propertla‘sreg_lons.
detection of texture subimages can be formulated as identi—ThIS amounts to texture segmentation (our results markégwh
fying modes of the pdf of region descriptors. Since the pdf

is defined in terms of regions, detecting the mode snmultane-sizes’ contrasts, and topological contexts. Each regias th

ously identifies texels, and the corresponding texturemsubi obtained is characterized by a descriptor vector of inigins
age. The rest of the image consists of other homoge_neog%nd spatial-layout properties (e.g., color, area, shaye; |
regions that do not belong to any coarse texture, and is saidjo ) () The meanshiftis used to estimate modes of the pdf
to be non-texture and fine-granularity texture image parts. o o the region descriptors. For the meanshift, we derive
Contributions: As discussed in the next section, most re- a new hierarchical kernel with locally adaptive bandwidth.
lated work assumes that textures have deterministic texelsThe bandwidth is estimated via binning the feature space
with nearly periodic placement, and that size and place- of region descriptors. The bins represent Voronoi polysope
ment of texels are uncorrelatett] 12, 21, 19. A few ap- around each descriptor. (3) The set of descriptors (i.e., re
proaches allow statistical variations in texel properti&  gions) visited by all meanshift procedures converging #® on
using restrictive models and computationally intensive in of the identified modes, automatically delineates the assoc
ference algorithms{J. In contrast, we do not make any as- ated texture subimage.

sumptions about the functional form of intrinsic and place-  The paper is organized as follows. S&aeviews prior
ment properties of texel8oth appearance and placement work. Sec.3 describes the feature space of region proper-
of texels are allowed to be stochastic and correlat€édr  ties. Sec4 specifies our pdf mode estimation. Experiments

such textures, we propose unsupervised texture segmentaand concluding remarks are presented in Semd Sed.
tion based on identifying the pdf modes of image regions.

Most prior work on pdf mode detection does not account . . .
for hierarchical relationships between data poifits B, 7]. 2. Relationships to Prior Work

However, since texels typically contain substructure-cap  Thjs section reviews prior work in texture modeling and

texture segmentation

turing structural properties of regions is critical formdy-  segmentation. Methods that explicitly encode texel prop-
ing texture. To detect the pdf modes, we propose to modify erties in their models of texture typically use the follogin
and use the meanshift algorithim [/]. Unlike the original,  texe| representations: (a) salient blobs,[5]; (b) interest

our new formulation is able to explicitly account for any points within texels 8, 12, 21]; (c) combination of interest
presence of hierarchical embedding of subtexels within thepoints and Canny edgesT; or (d) user-specified templates
texels. To this end, we define a new hierarchical kernel in 3nd filter functions 7, 30, 27, 19]. In contrast, we use seg-
terms of region-subregion hierarchical properties. The ne  ments that facilitate delineating the exact texel bouredari
kernel also has a locally-varying bandwidth. This variable and thus accurate identification of texel regions. Julesz an
bandwidth is estimated by partitioning the feature space of pjg colleagues[f] have argued the use of special features
region descriptors into Voronoi polytopes. To the best of ¢ajled textons (e.g., closure, line endpoints, cornerdgo

our knowledge, texture segmentation under relatively un-t,re modeling. There have been several attempts to mathe-
restricted assumptions about statistical propertiesx@ise  matically define the notions of textons and texels. 36|

and the mentioned novel aspects of the structure-extmactin for example, texture is modeled as a superposition of Ga-
meanshift have never been reported in the literature. bor base functions which are generated by a user-specified
Overview of Our Approach: The block diagram of our  vocabulary of texton templates. The region-based, hierar-
approach is shown in Fid.. (1) A multiscale segmentation chical texel model of§] encodes only the intrinsic proper-
algorithm is used to extract homogeneous-intensity regjion ties of texels. In contrast to this approach, we additignall
at all photometric scales present. The multiscale segmen-<consider the modeling of texel placement properties.

tation does not impose any constraints on region shapes, Regarding texel placement, most approaches make the
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assumption that texels form a (near-)regular lattice in the called segmentation tree. Note that the segmenter produces
image[.2, 19, 20]. They identify texel locations by search- regions of various sizes. Since texels cannot occupy rela-
ing for the most likely affine transform that may have dis- tively large image areas (otherwise they will not occur in
torted the ideal 2D lattice of texels. Some methods allow large numbers), we discard all large-size regians>0%
random placement of texels, based on random tessellation®f image size). The remaining regions are our basic image
[24], or based on representing texels as points and thenfeatures corresponding to subtexels, texels, groups efgex
tracking similar points within heuristic pixel neighboidus textures, and other subimages.
[17]. Work on modeling the placement of random closed A descriptor vector of properties; is associated with
sets in a plane (e.g., objects in the image) as the Poissoreach image region We definex; to contain the follow-
process, i.e., the “dead leaves” model (DR) 16] is also ing intrinsic and spatial-layout properties: 1) average-co
related. However, texel orientations and relative displac trast across’s boundary; 2) area, excluding the total area
ments typically have spatially larger dependencies than th of i’'s embedded children regions; 3) standard deviation of
Poisson process, being memoryless, is capable of capturingi’s children areas; 4) displacement vector between the cen-
In addition, the DL regards the pdf of object sizes and the troids ofi and its parent region; 5) perimeteris bound-
pdf of object locations in the image as being independent,ary; 6) aspect ratio of the intercepts @ principal axes
which may not be, in general, justified for modeling texture. with the i’s boundary, where the principal axes are esti-
Most prior work on texture segmentation does not ac- mated by standard ellipse fitting tpi.e., as eigenvectors of
count for intrinsic and spatial layout properties of texels the covariance matrix of the second central shape moments
For example, filter-based statistical methods typicallmeo  of i; 7) orientation, measured as the angle between the ma-
pute filter responses over heuristically defined pixel neigh jor principal axis ofi and the x-axis of the image; and 8)
borhoods. This, in turn, may lead to mixing the statistics of (x,y) coordinates of the centroid of The descriptors of all
neighboring texture segmentsy 29, or confusing strong  regions in the image are input to the standard PCA, and the
responses in the direction of the boundary edge with themost representative (95% accuracy) subspace is used as the
texture response’f]. This is because they perform neigh- feature space of region descriptors.
borhood operations, whose results, in general, vary wighth  Unlike in [3], where the objective is texel recognition
location of the neighborhood within the texel and with re- despite changes in scale and orientation, our goals are dif-
spect to the texel boundary. Consequently, filter-based tex ferent, and thus we specify the region descriptor in terms of
ture segmentation often results in missing or hallucimatin  properties that are not scale and rotation-in-plane iawri
texture segments. Adaptive-scale filteririy¢nly partially Specifically, we seek to segment a single image based on
solves this problem, because some textures cannot be chadistinct textures present, whose perception and discamin
acterized by a single scale, especially when texels them-tion critically depend on a degree of texel variations. Any
selves are textured, as commonly encountered in real im-invariance to scale and rotation may in general lead to con-
ages. A multiscale aggregation of filter responses and shapégusing distinct textures as being identical.
elements (], or hierarchical clustering of image segments  The descriptorsg;, i=1, .. ., N, define data points in the
and texture descriptorg[ reduces, but does not eliminate feature space of region properties. Givémlescriptors, our

the aforementioned issues. Texture segmentation using acebjective is to estimate modes of their underlying pidte).
tive contours requires that at least one image texture must

be present in the imagé4], which we here relax. 4. \Joronoi-based Binned Meanshift

3. The Feature Space of Region Properties This section presents our Step 2 that introduces two mod-

ifications to the meanshift: (i) Variable-bandwidth Gaassi

This Sﬁctlon presen'_[s our Step 1.‘ Slncg, n ger:e_ral#exelﬁ(emel’ and (ii) New hierarchical kernel that uses (i). Thes
are not homogenous-intensity regions, but contain hierar-p,  yigeations will allow us to explicitly account for struc-

(r:]hicallyhgm:oedied structure,rt]heir representati(_)n Sh“”ﬁ'(;dd tural properties of texels, which is beyond the scope of the
blerarc. 'ﬁahg.]' ccr?sslto sulc_ m:age structurg IS provide original meanshift formulationd], 7]. We begin by review-
y a strictly hierarchical, multiscale segmentation aildpon ing the meanshift algorithm.

that partitions the image over a range of photometric scales
(i.e_., (_:ontra_sts_) 1 4. At _each scale, the pixel-intensity 4.1. Technical Rationale

variations within each region are smaller than those across

the region boundary at each scale. The algorithm guar- The meanshift procedure starts from a random point in
anties that regions obtained at lower contrasts will d§rict the feature spacey;, and then visits a sequence of points
merge into larger regions as the photometric scale incsease {y:}, t=1,2,..., wherey;1 = y: + m(y:), andm(y;)
Therefore, the output of the segmenter is a hierarchy of re-is the meanshift vector pointing along the density gradient
cursively embedded smaller regions within the larger ones, The meanshift procedure is usually run in parallel, stgrtin
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simultaneously from many data points. The sequgngé Following the derivation steps presented if, [we intro-
is shown to converge to a stationary point. All points in the duce the auxiliary mean bandwidth matrix
feature space visited by the meanshift along the trajexgori
toward the local maximum are taken to belong to the corre- H(z)" ' 2 ZM
sponding pdf mode.

One of the limitations of the original meanshift formu- - p;qp, immediately gives the expression of the variable-
lation is that it uses the fixed bandwidth kernel, chosen : . .

. . ) bandwidth meanshift vector (sed for details)

so as to globally balance the estimator bias and variance.
Due to the sparseness of data in higher dimensions, how- 2 H(e AT ; 5
ever, multivariate neighborhoods are generally empty, par ma(x) @)Af(@)/ (@) ®)

ticularly in the “tails” of the density. As the dimensionin-  grom (), the magnitude ofn () becomes larger where
creases, larger bandwidths are necessary to balance the egzt5 are scarce (i.e. tails and valleys), and smaller near
timator bias and variance. This in turn has negative effects,oqes as desirable. Sindéx () is Gaussian with a
of over-smoothing the density near its modes. Varying the ¢qnyex and monotonic decreaéing profile, from the theo-

amount of smoothing is widely regarded as a suitable sOlu-rem presented ir], it immediately follows that the mean-
tion in feature spaces with low to moderate dimensions. Thegpist procedure, explained in Set1, that uses oum 5 ()

meanshift can be improved by using a multivariate, sample—given by 6), converges to a stationary point.
point estimator§, 7]

anHj(w—bj) —1
; v H: 4
Jj=1 E?}Zlnj/KHj,(w—bj/) J ’ ( )

The following theorem states how to compute the op-
s N timal anisotropic matrice¢Z;, given a partitioning of the
Js(@) = 5 Zity K (@ — @), @) feature space intd/ bins, B;, j=1,...,M. This result

will be used in )-(5) to run the meanshift. We derivd ;,
under the assumption th#fx) can be approximated by a
function that is piece-wise constant in each bin. This as-
sumption seems reasonable if the bins are sufficiently small
in the areas of the feature space with high valueg (af).

As we will show, our partitioning of the feature space satis-
fies this condition.

where H;2H (x;) is a varying smoothing matrix associ-
ated with each sample poimt, and whereK g, (x—x;) is

a Gaussian kernel with mean and covariancdd;. In [g],

H; is defined to be isotropic, and only a function of the
true density ate;, H;ocf(x;)~ /21, whereI is the iden-
tity matrix, while many other characteristics ffx) (e.g.,
curvature) are ignored. Also, the estimatef@f) is not
readily available, since the meanshift estimates the gradi  Theorem: If we are given: a partition of the feature space

of f(x). In [7], statistically stable Gaussian-mixture modes INto binsB;, j=1, ..., M, representative vectols; of each
are estimated using a range of fixed bandwidths. bin, and a neighborhood system of the bingj) = {i :

While we retain the assumption thity, (+) is Gaussian, (b, bj)_eNeighbors}, gnd s, f(w_)dw_ ~ f(b;)|5;], then
in the sequel, we derive a new expression for the optimal € OptimalH; used in @) and @), is given by

H; that is anisotropic, unlike ing], and we relax the as- 3£(b:)|Bi]

sumption of [7] that a mode is Gaussian. We also derive a Hj;= > —— (bi—b;)(bi—b;)",
hierarchical Gaussian kernel for capturing hierarchiek-r ienty) J(03)1Bj 1+ , Z f(bir)|By|

tionships between region descriptors. e ©)

4.2. The New Variable-Bandwidth Matrix Proof: See Appendix.

Binned sample-point estimator (BSPE)We partition the The above theorem states thiy; of jth bin should be

feature space, defined in S8cin a number of binsj;, computed as a weighted mean of the covariances between

j=1,..., M, with volume|B;|. Then, we compute a repre- b; and the representatives of neighboring bbpsi€n ;).

sentative of each birb;, and use BSPE: It can be shown that when usind; given by @) the es-
timation bias decreases and the estimation covariance re-

fB(w) — % ij\il n;i K, (x — b)), 2) mains the same in comparison with the case when a fixed-

bandwidth kernel is used.

whereH ;2 H (b;), K, (-) is Gaussian, and is the num- Consistent with our assumption that the bins are suffi-

ber of region descriptors ijth bin. Before we derive the ex- ~ ciently small in the feature-space areas of high density, we
pression forH ;, we first show that our BSPE based mean- €xpect very small variations ifi(x) across the neighboring
shift converges to a stationary point. Note that an estimatePins. This allows us to simplify the expression &) &s

of the gradient off (x) is the gradient ofB(w)

: (bi=b;)(bi=b;)". (7)
Afp(@)=% XL i Hy (b — @)K, (x — b)) (3) ity 1Bilt Zien(y) 1B
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We use the expression iff)(to computeH ; for every bin between any two arbitrary points and =’ in the feature
j=1,..., M, which is then plugged in2j-(5) in order to space, which do not correspond to any particular regions
run the meanshift procedure, explained in Sed. Next, in the image. To this end, we use our Voronoi partitioning
we explain our approach to partitioning the feature spaceof the feature space. Specifically, suppeseelongs toB;,

into bins which satisfy the conditions of the above theorem. andz’ belongs taB;, then the hierarchical relation between
any x and«’ is equivalent to that between the descriptors
x; andzx;. This extension allows us to use the hierarchical
kerneI,K?{j (+), on all points in the feature space.

Definition of bins: To partition the feature space, we
use the Voronoi diagram of region descriptofg;},
i=1,...,N, defined in Sec.3. The Voronoi dia-

gram associates with each descriptof a polytope Given thate is in bin B;, we computekzy (x — x;)
B; which is defined by all pointsz in the feature by finding the maximum subtree isomorphism between two
space closer tar; than to any other pointr;, j#i,  Ueesrootedat; andz; as

Bi={x:xeR, Vj#i, |x;—x||>|z;—=|}. Thus, for any

h VAT (e 9 (gr—
nondegenerate distribution of data, the Voronoi diagramte X1, (2 —2;) =K, (z @;) max [ Kb (),

ij

sellates the feature space into a set of polytaBgseach (k)€ M

containing exactly one of the descriptors. Two \Voronoi Il

polytopes that share a part of their boundaries are called min g, ZW)GMM (cck—ccl)THl_l(mk—ml).
neighbors. ForV descriptors, complexity of computing the (8)
Voronoi diagram isD (NN log N). where mapping\;; includes the matching descendant sub-

For our purposes, the Voronoi polytopes are a good regionsk and/ embedded within their respective ascendant
choice to define bins in the feature space, since they captureegionsi and; in the image. To computes), we use the
the global layout of and mutual relationships between the standard tree matching algorithm described3ij fvhose
region descriptors. For example, size of the Voronoi poly- complexity isO(n?) in the number of nodes in trees.
topes is large in areas where the descriptors are sparse, and SinceKQIj(-) is computed as a product of Gaussians,
conversely, size of the polytopes is small in densely popu-it is straightforward to see that’, (-) has a convex and
lated areas. Also, the Voronoi diagram provides a natural onotonic decreasing profile. From the theorem presented
definition of the neighborhood system of the bins, which i [g] it immediately follows that the meanshift procedure,

does not require any thresholds on distances between th%xplained in Sect.1, that usesk’, (-) in (2)-(5) converges
points, or any other input parameters. to a stationary point. ’

In this paper, the representative of each bin is equal to
the descriptor generating that biby, = «;, i = 1,..., N 5. Experimental Evaluation
(M=N). Note that this does not make equatiohjsand @)
equal, since they use different bandwidth matrices. Specif ~ This section presents our quantitative and qualitative
ically, (2) uses the optimal, anisotropic bandwidth, defined evaluation on four datasets: (1) 100 collages of randomly

by the Voronoi neighborhood system. mosaicked, 111 distinct Brodatz textures, where each tex-
ture occupies at least 1/6 of the collage (Fj. (2) 180
4.3. The Hierarchical Kernel collages of randomly mosaicked, 140 distinct Prague tex-

tures from 10 thematic classes (e.qg., flowers, plants, rocks

In the previous section, we have shown that the use of theyextile, wood, etc.), where each texture occupies at last 1
Gaussian kernel with the optimal;, given by 6), yields  of the collage (Fig3, 4); (3) 100 Aerial-Produce images,
the meanshift procedure that converges. Below, we defineynere 50 aerial images show housing developments, agri-
a hierarchical kemelK?Ij(-), which can be used in the  cyjtural fields, and landscapes (Fig, and 50 images show
meanshift instead of the Gaussian o, (-). The mo-  produce aisles in supermarkets (Fi, (4) Berkeley seg-
tivation for using a hierarchical kernel is that texels, emg mentation dataset (Fi§, 7, fig:Comparisonl). Datasets (1)
eral, are not homogenous-intensity regions, but may contai and (2) provide ground truth texture segmentations. The
hierarchically embedded subregions. Therefore, the use otexture mosaics of both datasets (1) and (2) are challeng-
K}, (-) may yield a more accurate estimation of modes of ing for segmentation, because they contain complex layout
f(x). Since region descriptors represent image regions, wetopologies of subimages occupied by texture (e.g., bound-
can define hierarchical relationships between the descrip-aries of several regions meet at one point). The Prague
tors based on the embedding of corresponding smaller re-dataset verifies our performance over a wide range of tex-
gions within larger regions in the image. Formally, each de- ture types, imaged under variations in scale, rotation, and
scriptorz; defines a tree-structured graph of descriptgrs  illumination. Aerial-Produce and Berkeley present many
corresponding to subregioh®embedded within regiohin well-known challenges of real images. Quantitative evalua
the image. These hierarchical relationships can be extendetion on Berkeley dataset is impossible, since its annatatio
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|

(b) Detail from (a) (c) Results of §] (d) Results of ]

Figure 2. Segmentation results on a collage of Brodatz textuThe identified texture boundaries are marked black sedaid on the
original image. The algorithms o8] and [/] use variable bandwidth kernels, but do not account forcstinal properties of regions. In
contrast, we do so by using the hierarchical kernel. The esi®pn on this collage suggests that this is a critical faftio successful
texture segmentation. We succeed in delineating the ktoundaries even when several boundaries meet at a point.

Table 1. Unsupervised texture segmentation on Pragueatatas

andUS. Itis desired thatC'S is large and the remaining

CS 0S US ME NE . .

B 15 139% | 53 87% | 10.58% | 50.319% | 51.36% metrics small. In Tabl, we show comparison on Prague
[9] 56.37% | 11.93% | 19.79% | 11.55% | 10.29% dataset with standard meanshiit,[and the state-of-the-art
Our results | 59.13% | 10.89% | 18.79% | 10.45% | 9.93% unsupervised texture segmentatiéh [The latter approach

uses color and the standard covariance matrix as a texture

descriptor. We do not use color information, but intensity
is only for object segmentation. Other common datasets,contrasts. As can be seen, we outperform both approaches.
e.g., KTH-TIPS containing only random-pixel-field tex- Al steps of our approach, starting from a low-level seg-
tures, CUReT containing only 3D textures, and PSU con- mentation to texture segmentation, take about 5min for a

taining only near-regular textures, are aimed at testifig di 512x 512 Prague texture mosaic, in MATLAB on a 3.1GHz,
ferent aspects of texture analysis that are beyond our scopeoGB RAM PC.

Quantitative evaluation — Brodatz: Let G denote the area Qua”tative Evaluation: As can be seen in F|g§_8’

of true texture, and) denote the area of a subimage that we succeed in delineating texture boundaries even when
our approach segments. Segmentation error per texture, they form complex-layout topologies. Filter-based meth-
is estimated as = %- Averaged over all mo-  ods, or approaches based on image decimation and smooth-
saic parts, and over all 100 collages of Brodatz textures,ing would typically fail to accurately delineate topologily

we obtainé = 93.3% =+ 3.7. Next, we evaluaté when complex spots in which several texture boundaries meet.
the meanshift kernel is not hierarchical, but simply Gaus- Our texture segmentation is also successful on real-world
sian that uses the variable bandwidth matrix, givenBy ( images shown in Figb-7. For instance, despite using a
and immediate properties of the sample points. This testslow-level segmenter for feature extraction, our algoritlkm

the effect of explicitly accounting for structural propest not affected by abrupt changes in illumination or shadows
of regions vs. ignoring them. When the kernel is not hi- (see the fish’s fin in Figs), because we use the intrinsic and
erarchical z reduces t&r'7.9% + 4.1. Using the meanshift  placement properties of texels that are invariant to a wide
algorithm of [7], with a non-hierarchical kernel, in the same range of local and global illumination changes. We illus-
feature space, reduce$o 62.3% + 7.8. This indicates that  trate comparison withg] on Prague and Berkeley datasets
the Gaussian kernel that uses our variable bandwidth ma-in Figs.3 and8, and [L0] on Berkeley dataset in Fig. This

trix, given by (7), gives better meanshift performance than comparison suggests that we produce better segmentations
the kernel presented in]. in terms of identifying perceptually more valid image tex-
Quantitative evaluation — Prague: The standard metrics tures. [L(] does not report any quantitative results.

for evaluating texture segmentation on Prague dataset are:

correct-, over-, and under-segmentatioy( OS5, U S), and 6. Conclusion

missed and noise error (ME, NE), among others. Using

the above definitions ofs and D, D is declaredCsS iff We have presented a texel-based approach to segment-
GND>0.75G andGND>0.75D. OS (or US) counts ev- ing image parts occupied by distinct textures. This is done
ery G (D) that is split into smaller region® (G). ME (or by capturing intrinsic and placement properties of digtinc
NE) counts every (D) that does not belong t6'S, OS, groups of texels. The scale or coarseness of texture is{ower
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X F
r colors of fruit on the leftrhomage, and plants
on the rightmost image, we succeed in identifying percdlytwalid textures, because we account for texel placemedtsubstructure.
Color-based methods would find these examples challenging.

3

Figure 3. A mosaic from Prague dataset and segmentatiohisesu
overlaid on the original image. The results are obtainedgisi
(a) [9] without texture descriptors; (b¥] with texture descriptors;
and (c) our approach.
(a) Original image  (b) Results of { (] (c) Our results
Figure 7. Comparison on Berkeley dataset witt][ Our segmen-
tation seems to yield more perceptually valid texture suaigjes.

(2) (®) (©)
Figure 4. (a) A mosaic from Prague dataset. (b) Results mdxai
using [] with texture descriptors. (c) Our results.

(a) Original image (b) Results of [9]  (c) Our results

Figure 8. Comparison on Berkeley dataset with [Our segmen-
tation is successful on low-contrasted regions, becauseo@.int
for all photometric scales present in the image.

Appendix

Figure 6. Examples from Berkeley dataset: the texture baviesl
identified by our approach are marked black and overlaid en th
original image.

This section presents the proof of Theorem stated in &ec.
We derive H;, by minimizing the mean integrated squared error
MISE £ E{[(fs(z)— f(x))’dx} with respect taH ;. We have:

MISE= = >, E{n; [ K&, (x — bj)da}

bounded by the size of its texels. Since we define texels as +-L S E{nin, [ Ku,(z — b)Ku, (x — bj)d}
regions, we do not address pixel- or subpixel-scale tegture 3 > f?{nj [ Kj{ (@ _ bj)f(a:)da:}ik i f(a:])zda:
Experimental evaluation on texture mosaics and real-world M ’ )

images suggests that capturing structural propertieskef te |n (9), the only random variables are the numbers of data points in
els is very important for texture segmentation. To account each biny;, j=1,..., M. They can be characterized by a multi-
for texel substructure, we have derived and used a hierarchinomial distribution with parametes;= [, f(x)dx, whereB;

cal, variable-bandwidth kernel in the meanshift. denotegith bin. Since our kernel is Gaussijan, following the deriva-
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tion steps presented i §], from (9) we obtain

MISE= W Zj [p;(1 —p;) + NP?]|HJ'|71/2

+% i#] piijHi+Hj(bi - bj) (10)

—% 2, Pi | K, (x = b)) f(x)de+ [ f(z)*d.

Next, we use the condition of the Theorem tlfdtr) is piece-

wise constant within each bif;, f(x)z%,
affects only the third row of 10), [ Ku,(x—b;)f(x)dx

Zi “gﬁ fBi KHj (:U—bj)da:%ijHj (0)—

MISE= <27 3, [ps + (N — 2)p3]| H;|/?

VzeB;. This

Rtz
—7”](‘ZFJ)L/Q , yielding

i (11)
+ 852 Y pipi Kam, (b — bj)+ [ f(x)?de,

The optimalH; can be found using the derivative of the asymp-
totic MISE (AMISE), whenN — oo, as

OAMISE  —p2 |1, |5/

OKp, 41, (bi—bj)

OH,

=0.
(12)

(2m)a/2 +p; Zi;ﬁj Di oH,

From (12) and the assumption th#& s+, (bi—b;) ~ 0 when
B; and B; are not neighboring bins, we obtai) (

H. — 321-67,0)pi(bi—bj)(bi—bj)T. - (13)
! pj+ Zien(]‘) Di
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