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Abstract

Complex human activities occurring in videos can be
defined in terms of temporal configurations of primitive
actions. Prior work typically hand-picks the primitives,
their total number, and temporal relations (e.g., allow only
followed-by), and then only estimates their relative signif-
icance for activity recognition. We advance prior work by
learning what activity parts and their spatiotemporal rela-
tions should be captured to represent the activity, and how
relevant they are for enabling efficient inference in realis-
tic videos. We represent videos by spatiotemporal graphs,
where nodes correspond to multiscale video segments, and
edges capture their hierarchical, temporal, and spatial rela-
tionships. Access to video segments is provided by our new,
multiscale segmenter. Given a set of training spatiotempo-
ral graphs, we learn their archetype graph, and pdf’s as-
sociated with model nodes and edges. The model adap-
tively learns from data relevant video segments and their
relations, addressing the “what” and “how.” Inference and
learning are formulated within the same framework – that
of a robust, least-squares optimization – which is invari-
ant to arbitrary permutations of nodes in spatiotemporal
graphs. The model is used for parsing new videos in terms
of detecting and localizing relevant activity parts. We out-
perform the state of the art on benchmark Olympic and UT
human-interaction datasets, under a favorable complexity-
vs.-accuracy trade-off.

1. Introduction

Interpreting videos that show interesting, complex hu-
man activities (e.g., human interactions, sports) typically
requires reasoning about the spatiotemporal arrangement of
relevant activity parts at multiple scales. Without such a rea-
soning these activities could be easily confused, since they
generally have very similar photometric and motion prop-
erties, at both local and global scales. For example, two
videos of thelong jumpandtriple jumpmight be easily con-
fused if we do not account for their different temporal con-
figurations, since both sharerunning, hopping, and jump-

ing. Also, without considering multiple scales, it would be
difficult to distinguish between the3-man-blockandshort-
seam-passin volleyball, since they share the same primitive
actions of each player (e.g., jumping, spiking) and the same
temporal ordering of the primitives, at the finest scale, but
differ in interactions between the players, at a coarser scale.

To enable such reasoning, graphical models have been
used with great success to concisely capture thestructure
of an activity in terms of the hierarchy and spatiotempo-
ral arrangement of its subactivities [1]. For example, ac-
tivity structure has been modeled by HMMs [26], dynamic
Bayesian nets [25], prototype trees [13], spatiotemporal
graphs [14], context-free (AND-OR) grammars [10, 9],
CRFs [16], and compilations of first-order logic to graph-
ical models [24, 3]. These approaches, however, typically
define an activity in terms of pre-selected primitive actions,
and manually specify their space-time relationships. A few
methods learn relevant activity parts from data (e.g., [16]),
but they fix their total number, and allow only the relation
followed-by. More formally, they typically pre-specify the
number of random variables (nodes) representing primitive
actions, and their statistical dependences (edges), referred
to as the model structure. Due to this heuristic model spec-
ification, in training, significant resources could be wasted
on learning hand-picked parts and relations which may not
be the most relevant for representing and recognizing the ac-
tivity. These issues have recently been addressed by learn-
ing relevant contextual relations between individual actions
of people in a group activity [11]. However, their model
encodes a fixed number of primitive actions.

In this paper, we seek to learnwhat activity parts and
their spatiotemporal relations should be captured to repre-
sent complex human activities, andhow relevant they are
for enabling efficient inference in realistic videos. This ad-
vances prior work that typically ignores the “what” ques-
tion. The goal of our learning is twofold. We learn the
structure of the activity model, and the pdf’s associated with
nodes and edges of the model. This model is then used for
parsing new videos in terms of localizing relevant activity
parts, present at multiple scales.

To address the “what”, we partition training videos of
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a given activity class into spatiotemporal tubes at multiple
scales, and then discover similar and frequently repeating
tube configurations. The tubes provide rich visual cues for
recognition, since they represent spatiotemporal extentsof
moving objects in the video. Different hierarchical, spa-
tial, and temporal relationships can be easily established
between 2D+t tubes, as illustrated in Fig.1. For example,
a tube occupied by a basketball player holding the ball can
be viewed as a parent of two children tubes corresponding
to the player and the ball. Also, temporal relations (e.g.,
before, overlap) can be easily encoded between the tubes.

The goal of our learning will be to identify the most rel-
evant tubes and their most relevant relations for represent-
ing the activity. We expect that videos of the same class
will give rise to many similar configurations of similar 2D+t
tubes. The other tubes are likely to belong to random back-
ground video parts. The discovered similar tube configu-
rations will define the structure of our activity model, and
allow for robust probabilistic learning of pdf’s associated
with nodes and edges of our model.

When a new image is encountered, its spatiotemporal
graph is parsed using the learned activity model. To ac-
count for potential errors in extracting video tubes, our in-
ference is made invariant to arbitrary permutations of nodes
in spatiotemporal graphs. We formulate both inference and
learning within a unified framework. This has many advan-
tages, including that we ensure a principled handling of the
“what,” since our activity model is learned using the same
objective as that employed for video parsing.

Related work – Volumetric video representations have
been used for exemplar based activity recognition [8, 13].
We are not aware of any work on learning their structural
model. Learning the model structure has been addressed in
the context of Bayesian networks [6]. These methods com-
monly use greedy searches that incrementally modify the
model structure by adding (or deleting) and appropriately
re-connecting random variables. They typically make the
restrictive assumption that correspondences between data
and random variables of the model are given. The problem
that we address here is more difficult, because our video
representations are graphs with unknown correspondences
to the nodes and edges of our graphical model. These cor-
respondences must be estimated by graph matching. The
most related to ours is recent work on 2D shape recognition
based on learning structural archetypes of graphs – such
as, e.g., super-graph [4], mixture of trees [23], and gen-
erative Delaunay graph [22]. These approaches typically
make restrictive assumptions (e.g., model edges are inde-
pendent and have Bernoulli distribution [22]), and cannot
handle weights associated with both nodes and edges. We
also extend the tree-union models for object recognition and
texture analysis, presented in [21, 2], by accommodating ar-
bitrary permutations of nodes in our spatiotemporal graphs.

Contributions – To our knowledge, this is the first
volumetric-based approach to activity recognition that seeks
to learn the structure and pdf’s of activities from videos.
We formulate learning and inference within a unified frame-
work, that of a robust least-squares optimization, and show
that it can be reduced to the quadratic assignment problem
(QAP). Finally, we present a new, fast, multiscale approach
to spatiotemporal video segmentation.

Figure 1. Our Steps 1–2: (a) Videos are represented by spatiotem-
poral graphs. (b) Nodes represent 2D+t tubes, and directed edges
capture hierarchical, temporal, and spatial relationships between
the tubes. (c) The video graphs are used to learn a graph model.

In the sequel, Sec.2 gives an overview of our approach;
Sec.3–5 formalize the graph model and its learning and
inference; Sec.6 specifies the spatiotemporal segmentation;
and Sec.7 presents our experimental evaluation.

2. Overview

Our approach consists of three steps, illustrated in Fig.1.
Step 1: Feature extraction. Given a video, we use a

multiscale, spatiotemporal segmentation to obtain homoge-
neous subvolumes (tubes) of the video’s space-time (2D+t)
volume. Homogeneity is defined in terms of both pixel in-
tensity and motion properties, at multiple scales. The re-
sulting tubes are organized in a weighted directed graph,
referred to as spatiotemporal graph. Nodes represent the
tubes, and directed edges encode their three types of rela-
tionships. Hierarchical (ascendant-descendant) edges cap-
ture the nesting of smaller tubes within larger ones. Tem-
poral edges represent the Allen’s relations between time in-
tervals associated with the tubes (e.g., before, meet). Spa-
tial edges capture spatial layout relations between the tubes
(e.g., left, up). The number of nodes and their connectivity,
referred to as graph structure, are data-driven. The graph
structure is specified by three distinct adjacency matrices,
one for each edge type. Weights are associated with both
nodes and edges. Node weights (descriptors) capture pho-
tometric and motion properties of the corresponding tubes.
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Edge weights encode the strength of the corresponding hi-
erarchical, temporal, and spatial relationships.

Step 2: Learning. Given a set of training spatiotemporal
graphs of an activity class, we learn their weighted least-
squares graph model. The model has three distinct adja-
cency matrices, one per each edge type. Each is learned
as the closest matrix to the corresponding adjacency matri-
ces of training graphs, in the weighted least-squares sense,
under a matrix permutation. The weighted least squares is
also used to learn descriptor vectors associated with model
nodes, under a permutation of nodes in training graphs. Our
formulation addresses the well-known instability of low-
level segmentation algorithms, including ours, producing
spurious nodes and edges in the spatiotemporal graphs.

Step 3: Recognition and Segmentation. A new video
is represented by the spatiotemporal graph. The video is
parsed by matching its graph with the closest activity model
in the weighted least squares sense, under a arbitrary permu-
tation of their adjacency matrices.

3. The Graph Model

This section specifies our graph model. We begin by in-
troducing some notation. A weighted directed graph is a
tuple G = (V, {A1,A2, ...,AL},F), whereV is a set of
nodes,n = |V |, andF is a matrix ofd-dimensional descrip-
tors associated withn nodes,F ∈ [0, 1]n×d. The set ofn×n
adjacency matrices{Al : Al ∈ [0, 1]n×n, l = 1, ..., L},
compactly representL types of directed edges inG. For
example,(Al)ij = 0.7 means that nodesi andj are in rela-
tionshipl (e.g., “ascendant-descendant”), with strength0.7.

The graph model,G = (V , {Al : l = 1, ..., L},F), can
be learned from a given set of graphs{Gk : k = 1, ..., K}.
We expect that only a subset of nodes and edges in{Gk}
are relevant. We assume that eachAl is m × m matrix,
wherem = maxk nk. To learnG, we need to find corre-
spondences between nodes and edges of{Gk} andG. These
correspondences can be encoded by the permutation matrix,
P ∈ {0, 1}n×m, which has exactly one 1 in each row, and
each ofn columns (n ≤ m), and 0’s elsewhere. Multiplying
P with Al produces a permutation in the rows and columns
of Al. This leads to a generative probabilistic model:

∀l, Al = PAlP
T + ηAl

, F = PF + ηF , (1)

whereηAl
andηF are stochastic, capturing natural varia-

tions of the activity class. We defineηAl
andηF as zero-

mean Gaussian noise.
Note that (1) defines the generative process of sampling

activity occurrences. Similar to HMMs, the generative sam-
pling traverses through different types of spatiotemporal
and hierarchical relationships,A, and mixes them in the re-
sulting instance,A. As different activity styles can be de-
fined by different graph connectivities, our model is capable
of encoding many different styles and natural variations.

Also note that we do not require one-to-one correspon-
dence between the model and instances. Since the adja-
cency matrices{Al} of video graphs are smaller than the
matrices{Al} of the model, the permutation matrixP must
have many all-zero columns. Therefore, many of the model
nodes and edges are not matched to an instance graph.

4. Learning

Our goal is to learn the model,G = ({Al},F), from
K training graphs,{Gk = ({Akl},Fk) : k = 1, ..., K},
so as to minimizeG’s variance under permutations{Pk :
k = 1, ..., K}. This formulation naturally lends itself to the
least-squares optimization.

We expect that our training graphs will be character-
ized by many spurious nodes and edges. Since the least
squares is sensitive to outliers, we here use the weighted
least squares, which estimates and downweights outliers in
the training data. LetWF denote anm × d matrix of node
weights which estimate if the corresponding nodes of train-
ing graphs are outliers. Also, let{WAl

: l = 1, ..., L}
denotem × m matrices of edge weights estimating if the
corresponding edges of training graphs are outliers. Then,
learning can be formulated as

min
{Al,WA

l
}

F ,WF ,{Pk}

K∑

k=1

(
α

2

L∑

l=1

∥∥WAl
◦ (PT

kAklPk −Al)
∥∥2

2

+
(1 − α)

2

∥∥WF ◦ (PT
kFk −F)

∥∥2

2

)

s.t. ∀ k, PkP
T
k = I, (Pk)ij ∈ {0, 1}

(2)

where ◦ denotes the element-wise product,α ∈ [0, 1]
weights the relative significance of nodes vs. edges.

The convex optimization problem in (2) is hard to solve.
We resort to an iterative procedure that consists of the fol-
lowing three steps: (1) Given{Pk}, {WAl

}, andWF , we
find G; (2) GivenG and{Pk}, we estimate{WAl

}, WF ;
and (3) GivenG, {WAl

}, andWF , we compute{Pk}. Ini-
tially, all elements of{WAl

} andWF are set to 1, and all
elements of{Pk} are randomly set to 1 or 0, such that
∀k, PkP

T
k = I. The steps are iterated until convergence,

i.e., when changes of the objective in (2) become less than
ǫ = 10−3. Below, we explain each step.

4.1. Estimating the Model

Given permutations{Pk} and outlier weights{WAl
}

andWF , we findG. LetL denote the objective of (2). From
∂L
∂Al

= 0 and ∂L
∂F = 0, we have:

∀l,Al = 1
K

∑K

k=1 PT
kAklPk, F = 1

K

∑K

k=1 PT
kFk. (3)

4.2. Estimating the Outlier Weights

To compute{WAl
} andWF , we use the standard Hu-

ber’s M-estimation. Specifically, the M-estimation speci-
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fies that the outlier node and edge weights should be in-
versely proportional to the standard deviation of the cor-
responding nodes and edges in the training data. Thus,
given correspondences between model nodesi, and nodes
i′ in the training set, and their associated descriptor vec-
tors (F)ib and (Fk)i′b, whereb = 1, ..., d, we compute
(WF)ib = 1/STD({(Fk)i′b : k = 1, ..., K}). Similarly,
given correspondences between model edges(i, j) and
edges(i′, j′) in the training set, we compute∀l, (WAl

)ij =
1/STD({(Ak)i′j′ : k = 1, ..., K}).

4.3. Graph Matching

GivenG and{WAl
} andWF , we wish to compute per-

mutation matrices,Pk, of each training graph,Gk, k =
1, ..., K, that jointly minimize the weighted least squares in
(2). Estimating{Pk} amounts to finding a subgraph iso-
morphism betweenG and eachGk. Below, we show that
this problem can be reduced to the Quadratic Assignment
Problem (QAP). We begin by re-writing the convex opti-
mization of (2) in a more suitable form.

Define auxiliary matrices∀l, k, Ŵkl = PkWAl
PT

k and
Ŵk = PkWF . To computeŴkl andŴk, we use{Pk}
estimated in the previous iteration. Also, define auxiliary
matricesÃl=WAl

◦Al, Ãkl=Ŵkl◦Akl, F̃=WF◦F , and
F̃k=Ŵk◦Fk. Then, the first and second terms in (2) can
be more conveniently written asWAl

◦(PT
kAklPk−Al) =

PT
kÃklPk−Ãl, andWF◦(P

T
kFk−F) = PT

kF̃k − F̃ .
Since for any matrixM we have‖M‖2 = Tr(MTM),

and permutation matrices satisfyPkP
T
k = I, it is straight-

forward to show that the formulation of (2) reduces to the
following K independent problems:

max
Pk

α

L∑

l=1

Tr(PT
kÃ

T
klPkÃl) + (1 − α)Tr(F̃F̃

T
kPk)

s.t. PkP
T
k = I, (Pk)ij ∈ {0, 1}.

(4)

The problem in (4) is the NP-hard QAP. The major difficulty
comes from the quadratic constraintPkP

T
k = I, (Pk)ij ∈

{0, 1}. Next, we describe how to handle this constraint.

4.4. Vector Optimization Formulation

This section presents our approach to solving the NP-
hard QAP, given by (4). Existing work (e.g., [15]) typi-
cally relaxes a QAP to a semi definite program (SDP). In
our case, this would amount to relaxing0 ≤ (Pk)ij ≤ 1,
and replacing the constraintPkP

T
k = I with ‖Pk‖∞ = 1.

However, an SDP requires that the quadratic term in a QAP
be defined by a positive semidefinite (PSD) matrix. We can-
not meet this requirement, because our adjacency matrices
in (4) are not symmetric, and thus not PSD.

Instead of using the common SDP relaxation, we di-
rectly seek a solution of (4) by reformulating the constraint
PPT = I into an equivalent, but more convenient quadratic

constraintxTBx = 0. Here,x is an nm × 1 concate-
nation vector of all columns ofP, x = vec(P). Also,
thenm × nm matrix B encodes the basic property of the
permutation matrix to have exactly one entry 1 in each
row and each column, and 0’s elsewhere. The computa-
tion of elements ofB has a closed form, as follows. Note
that xTBx =

∑nm

u=1

∑nm

v=1(x)u(x)v(B)uv, so elements
(B)uv should be set to 1, whenever setting vector elements
(x)u = (x)v = 1 could violate the basic property of the
permutation matrix, and thus producexTBx 6= 0. That is,
we set(B)uv = 1 whenever(x)u and(x)v correspond to
the elements ofP that share the same row or column; and
(B)uv = 0 otherwise.

Unlike the original constraint on permutation matrices
PPT = I, the equivalent quadratic constraintxTBx = 0
allows us to efficiently solve (4) using standard optimization
software tools (e.g., cvx). Below, we give an equivalent
formulation of (4) that immediately follows from replacing
Pk with xk=vec(Pk), and the constraintPkP

T
k = I with

xT
kBkxk = 0. DefineQk = −

∑L

l=1

(
ÃT

l ⊗ Ã
T
kl

)
, where

⊗ is the Hadamard product, andck = vec(−F̃kF̃
T). Then,

the problem (4) can be equivalently written as

min
xk

αxT
kQkxk + (1 − α)cT

kxk

s.t.xT
kBkxk = 0, 1Txk = nk, (xk)i ∈ {0, 1} (5)

The equivalence between the two optimization problems is
more formally stated in the following theorem.

Theorem: The optimization problems (4) and (5) are equiv-
alent when the constraintPPT = I of (4) is replaced with
the constraintsx = vec(P), xTBx = 0, and1Tx = n.

The problem in (5) is our final formulation. It can be
readily solved by standard software tools. We use publicly
available cvx (http://cvxr.com/cvx/).1 The cvx tool is suit-
able for our purposes, because it makes use of the sparsity
of Q andB in (5). Note that the large size ofQ andB

effectively does not increase complexity, because most el-
ements ofQ andB are zero. In our experiments, cvx can
easily handle (5), even when the input graphs have 2000+
nodes (see Sec.7 for running times).

After finding vectors{xk} from (5), they are mapped to
the corresponding permutation matrices{Pk}. This con-
cludes the three steps of our iterative learning ofG. The
learned outlier weights{WAl

} andWF can be used for a
robust model selection, i.e., the selection of model nodes
and edges with small variance in the training data. We ex-
pect that at least 10% of nodes and edges in the training
data belong to the background. Thus, we discard 10% of

1The objective and constraint of (5) can be easily convexified by sub-
tracting from the main diagonal ofQ and B their respective minimum
eigenvalues. A lower bound of the minimum eigenvalue can be found effi-
ciently using the Gerschgorin circle theorem.
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the learned model nodesi and edges(i, j) with the lowest
weights‖(WF)i‖2 and(WAl

)ij .

5. Inference

Given a new video, its spatiotemporal graph,G, is
matched to the available set of graph models{Gr}. G is as-
signed the class label of the closest model, in the weighted
least squares sense. Similar to (4), using the notation and
definitions from Sec.4.3, we formulate inference as

min
r

max
P

α

L∑

l=1

Tr(PTÃ
T
l PÃrl) + (1 − α)Tr(F̃rF̃

T
P)

s.t.PPT = I, (P)ij ∈ {0, 1} (6)

As in Sec.4.4, we reformulate (6) into an equivalent, but
simpler quadratic program, similar to (5). Then, we use the
cvx software tool to efficiently solve it.

6. Extracting the Spatiotemporal Graph

The literature presents many successful approaches to
spatiotemporal video segmentation, including those based
on tracking interest points [7], clustering pixels from all
frames [5], and variational estimation of active surfaces
[17]. Their code is typically not publicly available. Since
our focus in this paper is not on the problem of low-level
video segmentation, we specify and use a simple, blocky
segmenter, which can process long videos in nearly real
time, and produce spatiotemporal graphs of sufficient accu-
racy to robustly learn the graph models of human activities.

We initially oversegment the video into space-time
blocks with data-driven shapes and sizes. A block is a ho-
mogeneous group of pixels from a few consecutive frames,
where variations of photometric and motion properties (e.g.,
color, optical flow) within the block are smaller than varia-
tions of its surround. We then agglomeratively group simi-
lar, adjacent blocks into a hierarchy of clusters, where each
cluster represents a blocky spatiotemporal tube, as illus-
trated in Fig.2. While the extracted tubes are blocky, their
2D+t shapes are able to capture the motions and spatial ex-
tent of the corresponding objects in the video (see Sec.7).
The tubes are used to build the video spatiotemporal graph.
Oversegmentation: The video is recursively split top-
down into 2D+t blocks along thex, y, andt axes. The split-
ting is done greedily by selecting blockb whose partition
into subblocksb1 andb2 maximally increases the compres-
sion gain relative to the other descendants. The compression
gain is defined asγb1b2 = |ǫb1 + ǫb2 − ǫb|, where the com-
pression errorǫb =

∑
p∈b ‖fp −fb‖

2 is a sum of Euclidean

distances of pixels’ feature vectorsfp from the meanfb.
fp consists of HSV color values, and Lucas-Kanade optical
flow at pixelp. We use integral volumes to efficiently com-
puteγb1b2 in O(1) when searching for the optimal split of a

Figure 2. Multiscale spatiotemporal segmentation. The redarrows
show corresponding video parts and their volumetric representa-
tions. The shape of the tube accurately captures the actor’strajec-
tory. We show only a part of the extracted spatiotemporal graph
with only hierarchical relations between 2D+t tubes, for clarity.
One level of segmentation is shown on the right.

visited block along one ofx, y, andt axes. Finding the best
split in each iteration takes at mostO(width+height+length)
of the video. The recursion ends when the splitting yields
two children blocks whose volumes are smaller than a cer-
tain size (we set 10 frames). Finally, we take the smallest
blocks as our result of video oversegmentation.
Agglomerative clustering: Analogously to finding MSER
regions, we agglomeratively merge neighboring (touching)
and most similar video blocks of the aforementioned over-
segmentation. Similarity, i.e., distance between blocks is
computed as∆ = |ǫb1∪b2 − ǫb1 − ǫb2 |, and recorded in
each merging iterationτ . The merging stops when varia-
tions of the gradientg(t) ≈ |∆(τ+1) − ∆(τ)| become suf-
ficiently large. At that moment, all mergers differ signif-
icantly in their compression errors, and thus are taken to
represent 2D+t tubes of a plausible spatiotemporal video
segmentation. Our experiments agree with the well-known
practice with MSER regions that gradient changes are typi-
cally small except at a few critical iteration steps, which can
be robustly identified. The agglomerative merging of blocks
is continued until the next significant jump in the gradient
values. This gives multiscale 2D+t tubes at different levels
of homogeneity. The tubes are organized in the spatiotem-
poral graph. Depending on a video, the resulting graph may
have 1000–2000 nodes. Note that the number of nodes does
not directly depend on the length, but contents of the video.
Features of graph nodes:Each 2D+t tube is described by a
descriptor vector representing a concatenation of four types
of 10-bin histograms of: (i) 2D areas of the tube’s intersec-
tions with video frames, normalized relative to the corre-
sponding 2D areas of the parent tube, for scale invariance;
(ii) contrastsσi = ǫ− ǫi between compression errors of the
tube and its neighboring (touching) tubesi, for illumination
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invariance; and (iii)-(iv) Lucas-Kanade optical flows along
x andy axes, computed relative to the corresponding optical
flows of the parent tube, for invariance to camera motion.
Features of graph edges:The 2D+t tubes are connected
with following three types of directed edges: (i) hierarchi-
cal – ascendant, descendant; (ii) temporal –before, after,
overlap, meet; and (iii) spatial –top, bottom, left, andright.
Each edge is characterized by a strength of the correspond-
ing relationship. The strength of hierarchical edges is es-
timated as the ratio of ascendant and descendant volumes.
The strength of temporal edges is computed as the number
of frames relative to the video’s length. The strength of spa-
tial edges takes binary values for present or absent.

7. Results

Different aspects of our approach are evaluated on both
synthetic data, and real benchmark datasets.
Synthetic data. These experiments serve to test our graph
matching (i.e., the core of our graph learning and inference
algorithms) in the face of different types and levels of noise.
Given a model graph with 2000 nodes and 10000 edges
from all the three edge types, we create 100 new graphs
by randomly (i) removing or adding nodes and edges, and
(ii) changing descriptors associated with nodes and edges.
Then, we match the model and resulting graphs, as in
Eq. (6). Error is estimated as the percentage of wrongly
matched pairs of nodes out of a total number of matches
(note that our recall is always 1). Error is then averaged
over 100 distinct models with the same number of nodes
and edges, but with different connectivity. Fig.3 shows
our results when the synthetic graphs are generated by ran-
domly: (a) Permuting a percentage of rows and columns of
the model adjacency matrix; (b) Removing a percentage of
edges from (or adding new edges to) the model; when edges
are removed (or added), their corresponding elements of the
model adjacency matrix are set to zero (or probabilistically
sampled from the uniform distribution in [0,1]); (c) Remov-
ing a percentage of nodes from (or adding new nodes to)
the model by deleting (or inserting) new rows and columns
from (in) the mode adjacency matrix; elements of the in-
serted rows and columns of the resulting adjacency matri-
ces are probabilistically sampled from the uniform distribu-
tion in [0,1]); and (d) Adding uniform noise from interval
[0, η], 0≤η≤1, to descriptors associated with model nodes.
In all these cases, we observe generous degradation of per-
formance when noise levels increase. Next, we also test
sensitivity to a specific choice of parameterα, in Fig. 3e,
when the synthetic graphs are generated from the model by
randomly permuting a 50% of model nodes, and removing
20% of model nodes, and adding uniform noise withη=0.2
to the node features. Fig.3e shows that the optimal value
of α has a relatively wide margin around 0.3, which we use
in our experiments with real data. Fig.3f shows our run-

ning times of graph matching when the number of nodes
in the synthetic graphs changes by randomly removing (or
adding) nodes from (to) the model, as in (c).

(a)

(c)

(e)

(b)

(d)

(f)
Figure 3. Our error of matching a model graph to synthetic graphs
generated from the model by randomly: (a) permuting rows and
columns of the model adjacency matrix; (b) removing or adding
edges; (c) removing or adding nodes; (d) adding uniform noise
from interval [0, η], 0≤η≤1 to node features; (e) 50% of rows
and columns of the model adjacency matrix are permuted, 20% of
model nodes are removed, and uniform noise withη=0.2 is added
to node features; (f) Running times of our graph matching forthe
same setting as in (c).

Real data. Activity recognition is evaluated on UT inter-
action dataset [18], Olympic sports dataset [16], and Wiez-
mann dataset [8]. UT dataset contains 60 videos showing
six types of two-person interactions: hand-shaking, hug-
ging, kicking, pointing, punching, and pushing. The dataset
is composed of 10 sets, where each set contains videos of
a pair of different persons performing all six interactions.
This dataset is challenging, because it involves complex,
structured interactions between people that are composed of
a number of distinct, non-periodic, atomic-level actions,in-
cluding stretch-arm, withdraw-arm, stretch-leg, lower-leg,
and lean-forward. Also, the UT videos show multiple co-
occurring activities of interest, and thus evaluate if we can
parse even non-prominent activity instances. For training
and testing we use the same set-up as in [18] – namely, 20%
of the data is used for training and 80% for testing. The
Olympic sports dataset [16] consists of 50 YouTube videos
for each of 16 activity classes. Each activity is performed
only by a single subject, and represents a temporal sequence
of primitive actions (e.g., running, jumping, landing, and
standing-up). As in [16], we use 80% of videos from the
dataset for training, and the rest for testing. Challenges of
this dataset arise from low resolution, background clutter,
and complex sequence of primitive actions. In training, for
both datasets, we only have access to the activity-class label

6



in Proc. 13th International Conference on Computer Vision (ICCV), Barcelona, Spain, 2011

Our nCuts [20]
Accuracy 77.3% 78.7%

Running Time 14.2s 243.6s

Table 1. Average classification accuracy, and average running time
per video for computing the spatiotemporal graph on the Olympic
Sports Dataset [16].

hand
shaking hugging kicking pointing punching pushing

Our 81.7% 89.6% 68.6% 66.4% 84.5% 82.7%
[18] 75% 87.5% 62.5% 50% 75% 75%

Table 2. We outperform the approach of [18], in terms of average
classification accuracy on six human-human interactions from the
UT dataset, by 8.1% on average.

of the entire video. We do not require any human trackers
and detectors.
Blocky vs. Ncuts: We evaluate our activity recognition
on the Olympic Sports dataset, when the videos are seg-
mented by our blocky spatiotemporal segmentation, and by
the 2D+t Ncuts approach [5]. The initial Ncut segments are
agglomeratively merged, using the same procedure as ours
(see Sec.6) to build the hierarchical graph. We vary the
number of initial Ncut segments, 100:100:500, and report
the best activity recognition results in Table1. As can be
seen, despite blockiness, our approach gives similar perfor-
mance to that or Ncuts, while our computation of the spa-
tiotemporal graph is 20 times faster.
Relevance of capturing activity structure: We use all
three datasets to evaluate the influence of our choice of
parameterα on activity recognition. On the Wiezmann
dataset, our average classification accuracy is 98.2% for the
optimal value ofα = 0.1. This value is lower than the
one obtained on the synthetic data in Fig.3e. This sug-
gests that for simple actions, such as those in the Wiezmann
dataset, appearance and motion properties associated with
nodes of our activity model are more important than the
structure of the model for recognition. On more complex
Olympic sports and UT videos, we find the optimal values
of α = 0.3 andα = 0.4, respectively. This suggests that
the structure of the model becomes increasingly important
for recognizing more complex activities.
The value of hierarchical edges: When all hierarchical
edges are removed from the spatiotemporal graphs and the
model, and the other edges kept intact, our average clas-
sification accuracy drops: (i) from 98.2% to 93.2% on the
Wiezmann dataset; from 77.3% to 71.4% on the Olympic
sports dataset; and from 78.9% to 70.1% on the UT dataset.
This suggests that the hierarchical relationships between
video subvolumes provide important contextual informa-
tion for recognition.
Comparison: Tables2 and3 show that we outperform the
state of the art on UT and Olympic sports datasets.
Localization: Our inference localizes spatiotemporal tubes
in the video by matching the video’s graph with the graph

Sport class Our [16] [12]
high-jump 75.8% 68.9% 52.4%
long-jump 78.6% 74.8% 66.8%
triple-jump 69.7% 52.3% 36.1%
pole-vault 85.5% 82.0% 47.8%

gymnastics-vault 89.4% 86.1% 88.6%
shot-put 65.9% 62.1% 56.2%
snatch 72.1% 69.2% 41.8%

clean-jerk 86.2% 84.1% 83.2%
javelin-throw 77.8% 74.6% 61.1%

hammer-throw 79.4% 77.5% 65.1%
discus-throw 62.2% 58.5% 37.4%

diving-platform 89.9% 87.2% 91.5%
diving-springboard 82.2% 77.2% 80.7%
basketball-layup 79.7% 77.9% 75.8%

bowling 78.7% 72.7% 66.7%
tennis-serve 63.8% 49.1% 39.6%

Average classification accuracy 77.3% 71.1% 62.0%

Table 3. We outperform both [16] and [12] in terms of average
classification accuracy on the Olympic sports dataset.

model. The UT dataset is annotated with bounding boxes
around a group of people performing the activity in each
frame. We compute the localization accuracy on the UT
dataset as a ratio of intersection and union of the ground
truth bounding boxes and the tubes matched by our algo-
rithm. The average localization accuracy is 78%.
Qualitative results: The UT and Olympic datasets do not
provide ground-truth segmentation masks of actors per-
forming the activity, and the Weizmann dataset is too trivial.
Therefore, we are not in a position to quantitatively evaluate
our blocky spatiotemporal segmentation. Fig4 shows and
example which illustrates that our inference simultaneously
provides segmentation, i.e., localization of 2D+t tubes oc-
cupied by the activity. As can be seen, while matching the
model graph with the spatiotemporal graph of this video,
in inference, the weights are correctly localized as relevant
video parts for activity recognition.
Typical failure cases: The proposed spatiotemporal seg-
mentation produces many spurious tubes for video parts
corresponding to structured, spatially repeating back-
grounds (e.g., city scenes with similar buildings), and dy-
namic textures (e.g., crowds of people). Since such spurious
tubes have high frequency and similarity across the video,
by definition of dynamic texture, our weighted least-squares
formulation typically fails to exclude them from the activity
model. As a result, we may learn dynamic textures in the
background as relevant activity parts.
Implementation: On average, matching the model with
about 1000 nodes to a spatiotemporal graph with about
2000+ nodes, in inference given by (6), takes less than 10s
in MATLAB on a 2.66GHz, 3.49GB RAM PC.

8. Conclusion

We have presented a new, volumetric-based approach to
activity recognition and video parsing. Our approach au-
tomatically learns the structure of complex human activi-
ties, in terms of relevant subactivities and their hierarchical,
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Figure 4. Example of graph alignment on clean-jerk videos from
the Olympic Sports Dataset [16]. Weight tubes are matched cor-
rectly.

temporal, and spatial relations. We have formulated infer-
ence and learning of a structural activity model within the
same framework, that of weighted least-squares. Our learn-
ing is efficient, allowing for fast training (in seconds) from
videos which are segmented into more than 2000 space-
time tubes at multiple scales. The presented experimen-
tal results demonstrate that our activity recognition down-
grades gracefully in the face of increasing noise levels.
Under reasonable running times, our recognition rates on
benchmark datasets outperform the state of the art. We be-
lieve that this is because existing work manually specifies
relevant activity parts and their temporal relations.
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