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Abstract

This paper presents an approach to localizing func-
tional objects in surveillance videos without domain knowl-
edge about semantic object classes that may appear in the
scene. Functional objects do not have discriminative ap-
pearance and shape, but they affect behavior of people in
the scene. For example, they “attract” people to approach
them for satisfying certain needs (e.g., vending machines
could quench thirst), or “repel” people to avoid them (e.g.,
grass lawns). Therefore, functional objects can be viewed
as “dark matter”, emanating “dark energy” that affects
people’s trajectories in the video. To detect “dark mat-
ter” and infer their “dark energy” field, we extend the La-
grangian mechanics. People are treated as particle-agents
with latent intents to approach “dark matter” and thus sat-
isfy their needs, where their motions are subject to a com-
posite “dark energy” field of all functional objects in the
scene. We make the assumption that people take glob-
ally optimal paths toward the intended “dark matter” while
avoiding latent obstacles. A Bayesian framework is used to
probabilistically model: people’s trajectories and intents,
constraint map of the scene, and locations of functional ob-
jects. A data-driven Markov Chain Monte Carlo (MCMC)
process is used for inference. Our evaluation on videos of
public squares and courtyards demonstrates our effective-
ness in localizing functional objects and predicting people’s
trajectories in unobserved parts of the video footage.

1. Introduction

This paper considers the problem of localizing functional
objects and scene surfaces in surveillance videos of public
spaces, such as courtyards and squares. The functionality
of objects is defined in terms of force-dynamic effects that
they have on human behavior in the scene. For instance,
people may move toward certain objects (e.g., food truck,

vending machines, and chairs), where they can satisfy their
needs (e.g., satiate hunger, quench thirst, or have rest), as
illustrated in Fig.1. Also, while moving, people will tend
to avoid non-walkable areas (e.g., grass lawns) and obsta-
cles. In our low-resolution surveillance videos, these func-
tional objects and surfaces cannot be reliably recognized by
their appearance and shape. But their presence noticeably
affects people’s trajectories. Therefore, by analogy to cos-
mology, we regard these unrecognizable functional objects
as sources of “dark energy”, i.e., “dark matter”, which exert
attraction and repulsion forces on people.

Recognizing functional objects is a long standing prob-
lem in vision, with slower progress in the past decade,
in contrast to impressive advances in appearance-based
recognition. One reason is that appearance features gen-
erally provide poor cues about the functionality of objects.
Moreover, for low-resolution, bird’s-eye-view surveillance
videos, considered in this paper, appearance features are not
sufficient to support robust object detection. Instead, we an-
alyze human behavior in the video by predicting people’s
intents and motion trajectories, and thus localize sourcesof
“dark energy” that drive the scene dynamics.

To approach this problem, we leverage the Lagrangian
mechanics (LM) by treating the scene as a physical system.
In such a system, people can be viewed as charged particles
moving along a mixture of repulsion and attraction energy
fields generated by “dark matter”. The classical LM, how-
ever, provides a poor model of human behavior, because it
wrongly predicts that people always move toward the clos-
est “dark matter”, by the principle of least action.

We extend the classical LM to agent-based LM (ALM),
which accounts for human latent intents. Specifically, we
make the assumption that people intentionally approach
functional objects (to satisfy their needs). This amounts to
enabling the charged particles in ALM to become agents
who can personalize the strengths of “dark energy” fields
by appropriately weighting them. In this way, every agent’s
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Figure 1. An example video where people driven by latent needs (e.g., hunger, thirst) move toward “dark matter”, where these needs can be
satisfied (e.g., food truck, vending machine). We analyze human latent intents and trajectories to localize “dark matter”. For some people
(bottom right person) we observe only an initial part of their trajectory (green). (Right) Our actual results of: (a) inferring a given person’s
latent intent; (b) predicting the person’s full trajectory(red); (c) locating one source of “dark energy” (vending machine); (d) estimating
the constraint map of non-walkable areas; and (e) estimating the force field affecting the person (edge thickness indicates magnitude, and
below is another visualization of the same force field with “holes” corresponding to our estimates of non-walkable areas).

motion will be strongly driven by the intended “dark mat-
ter”, subject to “dark energy” fields of the other sources.

Since our focus is on videos of wide public spaces, we
expect that people know the layout of obstacles, walkable,
and non-walkable areas in the scene, either from previous
experience or simply by observing the scene. This allows
the agents to globally optimize their trajectories in the at-
traction energy field of their choice.

Overview: Given a short video excerpt, providing only
partial observations of people’s trajectories, we predict:

• Locations of functional objects (“dark matter”),S,

• Goals of every person,R,

• People’s full trajectories in unobserved video parts,Γ

To facilitate our prediction ofS, R, andΓ, we also infer
latent constraint map of non-walkable areas,C, and latent
“dark energy” fields,~F . Note that providing ground-truth
annotations ofC and ~F is fundamentally difficult, and thus
we do not evaluate the inferredC and ~F .

Our first step is feature extraction, which uses the state-
of-the-art multitarget tracker of [17] for detecting and track-
ing people, as well as the low-level 3D scene reconstruction
of [24]. While the tracker and 3D scene reconstruction per-
form well, they may yield noisy results. These noisy obser-
vations are used as input features to our model. Uncertainty
is handled within the Bayesian framework, which specifies
a joint distribution of observable and latent random vari-
ables, where observables are input features, and latent vari-
ables include locations of “dark matter”, people’s goals and
trajectories, constraint map, and “dark energy” fields. A
data-driven Monte Carlo Markov Chain (MCMC) is used
for inference [21, 13]. In each iteration, MCMC samples

the number and locations of functional objects and people’s
goals. This, in turn, uniquely identifies “dark energy” fields.
Since people are assumed to know the scene layout, every
person’s full trajectory can be predicted as a globally opti-
mal Dijkstra path on the scene lattice. These predictions are
considered in the next MCMC iteration for the probabilistic
sampling of the latent variables.

We present experimental evaluation on surveillance
videos from the VIRAT [14] and UCLA Courtyard [3]
datasets, as well as on our two webcam videos of public
squares. The experiments demonstrate high accuracy in lo-
cating “dark matter” in various scenes. We also compare
our predictions of human trajectories with those of exist-
ing approaches. The results show that we improve upon a
number of baselines, and outperform the state of the art.

In the sequel, Sec.2 reviews prior work, Sec.3 presents
our agent-based Lagrangian mechanics, Sec.4 formulates
our model, Sec.5 specifies our MCMC inference, and Sec.6
presents our empirical evaluation.

2. Related Work and Our Contributions

Our work is related to three research streams.
Functionality . Recent work focuses on improving ob-

ject recognition by identifying their functionality. Calcula-
tors or cellphones are recognized in [6, 9], and chairs are
recognized in [8], based on the close-body context. [22] la-
bels functional scene elements,e.g., parking spaces, by ex-
tracting local motion features. We instead predict a person’s
goal and full trajectory to localize functional objects.

Event prediction and simulation. The work on early
prediction of human activities uses dynamic programming



[18], grammars [15], and max-margin classification [10].
For prediction of human trajectories, [11] uses a determin-
istic vector field of people’s movements, while our “dark
energy” fields are stochastic. A linear dynamic system
of [25, 26] models smoothtrajectories of pedestrians in
crowded scenes, and thus cannot handle sudden turns and
detours caused by obstacles, as required in our setting. In
graphics, relatively simplistic models of agents are used to
simulate people’s trajectories in a virtual crowd [16].

Human tracking and planning. The Lagrangian par-
ticle dynamics of crowd flows [1, 2] and the optical-flow
based dynamics of crowd behaviors [20] do not account for
individual human intents. [7] reconstructs an unobserved
trajectory part between two observed parts by finding the
shortest path. [5] constructs a numeric potential field for
robot path planning. Optimal path search of [19], and re-
inforcement learning and inverse reinforcement learning of
[4, 12] explicitly reason about people’s goals for predicting
human trajectories. However, these approaches critically
depend on domain knowledge. For example, [12] estimates
a reward of each semantic object class, detected using an
appearance-based object detector. These approaches are not
suitable for our problem, since instances of the same seman-
tic class (e.g., two grass lawns in Fig.1) may have different
functionality (e.g., people may walk on one grass lawn, but
are forbidden to step on the other).

Our contributions:
• Agent-based Lagrangian Mechanics (ALM) for mod-

eling human behavior in an outdoor scene without ex-
ploiting high-level domain knowledge.

• We are not aware of prior work on modeling and esti-
mating the force-dynamic functional map of a scene.

• We distinguish human activities in the video by the as-
sociated latent human intents, rather than use the com-
mon semantic definitions of activity classes.

3. Background: Lagrangian Mechanics

The Lagrangian mechanics (LM) studies particles with
mass,m, and velocity,ẋ(t), in time t, at positionsx(t) =

(x(t), y(t)) in a force field ~F (x(t)) affecting the motion
of the particles. The Lagrangian function,L(x, ẋ, t), sum-
marizes the kinetic and potential energy of the entire phys-
ical system, and is defined asL(x, ẋ, t) = 1

2mẋ(t)2 +
∫

x

~F (x(t)) ~dx(t). Action is a key attribute of the physi-

cal system, and defined as:Γ(t1, t2) =
∫ t2

t1
L(x, ẋ, t)dt.

The Lagrangian mechanics postulates that the motion of
a particle is governed by the Principle of Least Action:
Γ̂(t1, t2) = arg minΓ

∫ t2

t1
L(x, ẋ, t)dt.

The classical LM is not directly applicable to our prob-
lem, because it considers inanimate objects. We extend LM
in two key aspects, deriving the Agent-based Lagrangian
mechanics (ALM). In ALM, the physical system consists

of a set of force sources. Our first extension enables the
particles to become agents with free will to select a partic-
ular force source from the set which can drive their motion.
Our second extension endows the agents with knowledge
about the layout map of the physical system. Consequently,
they can globally plan their trajectories so as to efficiently
navigate toward the selected force source, by the Principle
of Least Action, avoiding known obstacles along the way.
These two extensions can be formalized as follows.

Let ith agent choosejth source from the set of sources.
Then,ith agent’s action,i.e., trajectory is

Γij(x(t1),x(t2))

= argmin
Γ

∫ t2

t1

[1

2
mẋ(t)2+

∫

x

~Fij(x(t)) ~dx(t)
]

dt. (1)

In our setting (people in public areas), it is reasonable to
assume that every agent’s speed is upper bounded by some
maximum speed. Consequently, from (1), we derive:

Γij(t1, t2)=arg min
Γ

∫ t2

t1

||~Fij(x(t))|| · || ~∆x(t)||dt. (2)

Given ~Fij(x(t)), we use the Dijkstra algorithm for finding
a globally optimal solution of (2), since the agents can glob-
ally plan their trajectories. Note that the end location of the
predictedΓij(x(t1),x(t2)) corresponds to the location of
the selected sourcej. It follows that estimating the agents’
intents and trajectories can be readily used for estimating
the functional map of the physical system.

4. Problem Formulation

This section specifies our probabilistic formulation of the
problem in a “bottom-up” way. We begin with the defini-
tions of observable and latent variables, and then specify
their joint probability distribution.

The video shows agents,A = {ai : i = 1, ...,M},
and sources of “dark energy”,S = {sj : j = 1, ..., N},
occupying locations on a 2D lattice,Λ = {x = (x, y) :
x, y ∈ Z+}. The locationsx ∈ Λ may be walkable or non-
walkable, as indicated by a constraint map,C = {c(x) :
∀x ∈ Λ, c(x) ∈ {−1, 1}}, wherec(x) = −1, if x is non-
walkable, andc(x) = 1, otherwise. The allowed locations
of agents in the scene areΛC = {x : x ∈ Λ, c(x)=1}. Be-
low, we define the priors and likelihoods of these variables
that are suitable for our setting.

Constraint map. The prior P (C) enforces spa-
tial smoothness using the standard Ising random field:
P (C)∝ exp[β

∑

x∈Λ,x′∈∂x∩Λ c(x)c(x′)], β > 0.
Dark Matter. The sources of “dark energy”,sj ∈ S,

and characterized bysj = (µj ,Σj), whereµj ∈ Λ is the
location ofsj, andΣj is a2 × 2 spatial covariance matrix
of sj ’s force field. The distribution ofS is conditioned on



C, where the total numberN = |S| and occurrences of the
sources are modeled with the Poisson and Bernoulli pdf’s:

P (S|C)∝
ηN

N !
e−η

N
∏

j=1

ρ
c(µj )+1

2 (1 − ρ)
1−c(µj )

2 (3)

where parametersη > 0, ρ ∈ (0, 1), andc(µj) ∈ {−1, 1}.
Agent Goals. Each agentai ∈ A can pursue only one

goal, i.e., move toward one sourcesj ∈ S, at a time. The
agents cannot change their goals until they reach the se-
lected source. Ifai ∈ A wants to reachsj ∈ S, we spec-
ify that their relationshiprij = r(ai, sj) = 1; otherwise,
rij = 0. Note thatrij is piecewise constant over time. The
end-moments of these intervals can be identified whenai

arrives at or leaves fromsj . The set of all relationships is
R = {rij}. The distribution ofR is conditioned onS, and
modeled using the multinomial distribution with parameters
θ = [θ1, ..., θj , ..., θN ],

P (R|S) =
∏N

j=1 θ
bj

j , (4)

whereθj is viewed as a prior of selectingsj ∈ S, and each
sj ∈ S can be selectedbj times to serve as a goal destina-
tion, bj =

∑M
i=1 1(rij = 1), j = 1, ..., N .

Repulsion Force. Every non-walkable location
c(x)=−1 generates a repulsion Gaussian vector field, with
large magnitudes in the vicinity ofx, but rapidly falls to
zero. The sum of all these Gaussian force fields onΛ forms
the joint repulsion force field,~F−(x).

Attraction Forces. Eachsj ∈ S generates an attraction
Gaussian force field,~F+

j (x), where the force magnitude,

|~F+
j (x)| = G(x; µj ,Σj), is the Gaussian. Whenai ∈ A

selects a particularsj ∈ S, ai is affected by the correspond-
ing cumulative force field:

~Fij(x) = ~F−(x) + ~F+
j (x). (5)

Note that by the classical LM, all the agents would be af-
fected by a sum of all force fields:~Fclassic(x) = ~F−(x) +
∑N

n=1
~F+

j (x), instead of~Fij(x).
Note that an instantiation of latent variablesC, S,R

uniquely defines the force field~Fij(x), given by (5).
Trajectories. If rij = 1 thenai moves towardsj along

trajectoryΓij = [xi, ...,xj ], wherexi is ai’s starting loca-
tion, andxj is sj ’s location. Γij represents a contiguous
sequence of locations onΛC . The set of all trajectories is
Γ = {Γij}. As explained in Sec.3, the agents can glob-
ally optimize their paths, because they are familiar with the
scene map. Thus trajectory,Γij , can be estimated from (2)
using the Dijkstra algorithm:

Γij = arg min
Γ⊂ΛC

∑

x∈Γ ||~Fij(x(t))|| · || ~∆x(t)||. (6)

The likelihoodP (Γij |C, S, rij=1) is specified in terms of
the total energy thatai must spend by walking alongΓij as

P (Γij |C, S, rij=1) = P (Γij |~Fij(x)),

∝ exp
[

−λ
∑

x∈Γij
||~Fij(x(t))|| · || ~∆x(t)||

] (7)

whereλ > 0. Note that the least action, given by (6), will
have the highest likelihood in (7). But other hypothetical
trajectories in the vector field may also get non-zero like-
lihoods. Whenai is far away fromsj, the total energy
needed to cover that trajectory is bound to be large, and
consequently uncertainty aboutai’s trajectory is large. Con-
versely, asai gets closer tosj, uncertainty about the trajec-
tory reduces. Thus, (7) corresponds with our intuition about
stochasticity of people’s motions. We maintain the proba-
bilities for all possiblerij , j ∈ S.

Video Appearance Features.We are also find useful
to model appearance of walkable surfaces asP (I|C) =
∏

x∈Λ P (φ(x)|c(x)=1), whereφ(x) is a feature vector
consisting of: i) RGB color atx, and ii) Binary indi-
cator if x belongs to the ground surface of the scene.
P (φ(x)|c(x)=1) is specified as a two-component Gaussian
mixture model, with parametersψ. ψ and estimated on
our given (single) video with latentc(x), not using train-
ing data.

The Probabilistic Model. Given a video, observable
random variables include a set of appearance features,I,
and a set of partially observed, noisy human trajectories
Γ(0). Our objective is to infer the latent variablesW =
{C, S,R,Γ} by maximizing the posterior distribution ofW

P (W |Γ(0), I) ∝ P (C, S,R)P (Γ,Γ(0), I|C, S,R), (8)

P (C, S,R) = P (C)P (S|C)P (R|S),

P (Γ,Γ(0), I|C, S,R) = P (Γ,Γ(0)|C, S,R)P (I|C),

P (Γ,Γ(0)|C, S,R) =
∏M

i=1

∑N
j=1 P (Γij |C, S, rij=1).

(9)
The bottom line of (9) sums all partially observed trajecto-
ries Γ

(0)
ij , and predicted trajectoriesΓij . We use the same

likelihood (7) for P (Γij |·) andP (Γ
(0)
ij |·).

5. Inference

Given{I,Γ(0)}, we inferW = {C, S,R,Γ} – namely,
we estimate the constraint map, the number and layout of
dark matter, hidden human intents, and predict human full
trajectories until they reach their goal destinations in the un-
observed video parts. To this end, we use the data-driven
MCMC process [13, 21], which provides theoretical guar-
antees of convergence to the optimal solution. In each step,
MCMC probabilistically samplesC, S, andR. This iden-
tifies { ~Fij(x)} and the Dijkstra trajectories, which are then
used for proposing newC, S, andR. Our MCMC inference
is illustrated in Figures2–3.



Figure 2. Top view of the scene from Fig.1 with the overlaid il-
lustration of the MCMC inference. The rows show in raster scan
the progression of proposals of the constraint mapC (the white
regions indicate obstacles), sourcesS, relationshipsR, and trajec-
tory estimates (color indicatesP (Γij |C, S, R)) of the same person
considered in Fig.1. In the last iteration (bottom right), MCMC
estimates that the person’s goal is to approach the top-leftof the
scene, and finds two equally likely trajectories to this goal.

Figure 3. Top view of the scene from Fig.1 with the overlaid tra-
jectory predictions of a person who starts at the top-left ofthe
scene, and wants to reach the dark matter in the middle-rightof the
scene (the food truck). A magnitude of difference in parameters
λ = 0.2 (on the left) andλ = 1 (on the right) of the likelihood
P (Γij |C, S, R) gives similar trajectory predictions. The predic-
tions are getting more certain as the person comes closer to the
goal. Warmer colors represent higher probability.

For stochastic proposals, we use Metropolis-Hastings
(MH) reversible jumps. Each jump proposes a new solu-
tion Y ′={C′, S′, R′}. The decision to discard the current
solution,Y={C, S,R}, and acceptY ′ is made based on

the acceptance rate,α = min
(

1, Q(Y →Y ′)
Q(Y ′→Y )

P (Y ′|Γ(0),I)

P (Y |Γ(0),I)

)

where the proposal distribution is defined asQ(Y→Y ′) =
Q(C→C′)Q(S→S′)Q(R→R′) and the posterior distribu-
tion P (Y |Γ(0), I) ∝ P (C, S,R)P (Γ,Γ(0), I|C, S,R) is
given by (8) and (9). If α is larger than a number uniformly
sampled from[0, 1], the jump toY ′ is accepted.

The initialC is proposed by settingc(x) = 1 at all lo-
cations covered byΓ(0), and randomly settingc(x) = −1
or c(x) = 1 for all other locations. The initial numberN
of sources inS is probabilistically sampled from the Pois-
son distribution of (3), while their layout is estimated asN

most frequent stopping locations inΓ(0). GivenΓ(0) andS,
we probabilistically sample the initialR using the multino-
mial distribution in (4). In the next iteration, the jump step
sequentially proposesC′, S′, andR′.

The Proposal of C’ randomly choosesx ∈ Λ, and re-
verses its polarity,c′(x) = −1 ·c(x). The proposal distribu-
tionQ(C→C′) = Q(c′(x)) is data-driven.Q(c′(x) = 1) is
defined as the normalized average speed of people observed
atx, andQ(c′(x) = −1) = 1 −Q(c′(x) = 1).

The Proposal of S’ includes the “death” and “birth”
jumps. The birth jump randomly choosesx ∈ ΛC and
adds a new sourcesN+1 = (µN+1,ΣN+1) to S, result-
ing in S′ = S ∪ {sN+1}, whereµN+1 = x andΣN+1 =
diag(n2, n2), wheren is the scene size (in pixels). The
death jump randomly chooses an existing sourcesj ∈ S and
removes it fromS, resulting inS′ = S \ {sj}. The ratio of

the proposal distributions is specified asQ(S→S′)
Q(S′→S) = 1, indi-

cating no preference to either ‘death” or “birth” jumps. That
is, the proposal ofS′ is exclusively governed by the Poisson
prior of (3), and trajectory likelihoodsP (Γij |C

′, S′, R),
given by (7), when computing the acceptance rateα.

The Proposal of R’ randomly chooses one personai ∈
A with goal sj , and randomly changesai’s goal to sk ∈
S. This changes the corresponding relationshipsrij , rik ∈
R, resulting inR′. The ratio of the proposal distributions
is Q(R→R′)

Q(R′→R) = 1. This means that the proposal ofR′ is
exclusively governed by the multinomial priorP (R′|S′),
given by (4), and trajectory likelihoodsP (Γij |C

′, S′, R′),
given by (7), when computing the acceptance rateα.

From the accepted jumpsC′, S′ andR′, we can readily
update the force fields{ ~F ′

ij}, given by (5), and then com-
pute the Dijkstra paths of every person{Γ′

ij} as in (6).

6. Experiments

Our method is evaluated on toy examples and 4 real out-
door scenes. We present three types of results: (a) localiza-
tion of “dark matter”S, (b) estimation of human intentsR,
and (c) trajectory predictionΓ. Annotating ground truth of
constraint mapC in a scene is difficult, since human anno-
tators provide inconsistent subjective estimates. Therefore,
we do not estimate our inference ofC. Our evaluation ad-
vances that of related work [12], which focuses only on de-
tecting “ exits” and “ vehicles” in the scene, and predicting
human trajectories. Note that a comparison with existing
approaches to object detection would be unfair, since we
only have the video as our input and do not have access
to annotated examples of the objects, as most appearance-
based methods for object recognition.

Metrics. Negative Log-Likelihood (NLL ) and Modified
Hausdorff Distance (MHD ) are measured to evaluate tra-
jectory prediction.P (x(t+1)|x(t)) is given by (7), NLL of a



true trajectoryX = {x(1), · · · , x(T )} is defined as

NLLP (X) = −
1

T − 1

T−1
∑

t=1

log(P (x(t+1)|x(t))) (10)

MHD between true trajectoryX and our sampled trajectory
Y = {y(1), · · · , y(T )} is defined as

MHD(X,Y) = max(d(X,Y), d(Y,X))
d(X,Y) = 1

|X|

∑

x∈X miny∈Y ||x − y|| (11)

We present the average MHD between the true trajectory
and our 5000 trajectory prediction samples. For evaluat-
ing detection ofS, we use the standard overlap criterion
of our detection and ground-truth bounding box around the
functional object of interest. When the ratio of intersec-
tion over union of our detection and ground-truth bounding
box is larger than 0.5, we deem the detection true positive.
For evaluation of predicting human intentsR, we allow our
inference access to an initial part of the video footage, in
which R is not observable, and then compare our results
with ground-truth outcomes ofR in the remaining (unob-
served) video parts.

Baselines. Our baseline for estimatingS is an ini-
tial guess of “dark matter” based on partial observations
{Γ(0), I}, before our DDMCMC inference. This baseline
declares every location in the scene as “dark matter” at
which the observed people trajectories inΓ(0) ended, and
people stayed still at that location longer than 5sec be-
fore changing their trajectory. The baseline of estimating
R is a greedy move (GM) algorithmP (rij |{Γ

(0,··· ,t)
i }) ∝

exp{τ(||xj − Γ
(t)
i || − ||xj − Γ

(0)
i ||)}. We also use the fol-

lowing three naive methods as baselines. (1) Shortest path
(SP) estimates the trajectory as a straight line, disregarding
obstacles in the scene. (2) Random Walk (RW). (3) La-
grangian Physical Move (PM) under the sum of all forces
from multiple fields,~Fclassic(x), as defined in Sec.4, as by
the classical LM.

Comparison with Related Approaches. We are not
aware of prior work on estimatingS andR in the scene
without access to training labels of objects. So we compare
only with the state-of-the-art method for trajectory predic-
tion [12].

Parameters. In our setting, the first50% of a video is
observed, and human trajectories in the entire video is to be
predicted. We use the following model parameters:β =
.05, λ = .5, ρ = .95. From our experiments, varying these
parameters in intervalsβ ∈ [.01, .1], λ ∈ [.1, 1], andρ ∈
[.85, .98] does not change our results, suggesting that we
are relatively insensitive to the specific choices ofβ, λ, ρ

over certain intervals.η is known. θ andψ are fitted from
observed data.

Figure 4. Two samples of toy examples.

|S|
S, R NLL

10 20 50 100 10 20 50 100
2 0.95 0.97 0.96 0.96 1.35 1.28 1.17 1.18
3 0.87 0.90 0.94 0.94 1.51 1.47 1.35 1.29
5 0.63 0.78 0.89 0.86 1.74 1.59 1.36 1.37
8 0.43 0.55 0.73 0.76 1.97 1.92 1.67 1.54

Table 1. Results of toy example. Left is accuracy ofS&R, it’s
counted correct only if both S and R are correct. Right is NLL.
Second row is number of agents|A|, first column is number of
sources|S|.

Dataset |S| Source Name

1© Courtyard 19
bench/chair,food truck, bldg,

vending machine, trash can, exit
2© SQ1 15 bench/chair, trash can, bldg, exit
3© SQ2 22 bench/chair, trash can, bldg, exit
4© VIRAT 17 vehicle, exit

Table 2. Summary for datasets

6.1. Toy example

The toy example allows us to methodologically test our
approach with respect to each dimension of the scene com-
plexity, while fixing the other dimensions. The scene com-
plexity is defined in terms of the number of agents in the
scene and the number of sources. These parameters are var-
ied to synthesize the toy artificial scenes. The toy example
is in a rectangle random layout, the ratio of obstacle pix-
els over all pixels is about15%, the ratio of observed part
of trajectories is about50%. We vary|S| and|A|, and we
have 3 repetitions for each setting. Tab.1 shows that our
approach can handle large variations in each dimension of
the scene complexity.

6.2. Real scenes

Datasets. We use 4 different real scenes for evaluation:
1© Courtyard dataset [3]; and our new video sequences of
two squares2© SQ1 and3© SQ2 annotated by VATIC [23];
4© VIRAT ground dataset [14]. SQ1 is 20min,800 × 450,
15 fps. SQ2 is 20min,2016 × 1532, 12 fps. We use the
same scene A of VIRAT as in [12]. We allow initial (partial)
observation of 50% of the video footage, which for example
gives about 300 trajectories in1©.



Figure 5. Qualitative experiment results for 4 scenes. Eachrow is one scene. The 1st column is the reconstructed 3D surfaces of each scene.
The 2nd column is the estimated layout of obstacles (the white masks) and dark matter (the Gaussians). The 3rd column is anexample of
trajectory prediction by sampling, we predict the future trajectory for a particular agent at some position (A, B, C, D) in the scene toward
each potential source inS, the warm and cold color represent high and low probability of visiting that position respectively.

Dataset
S R NLL MHD

Our Initial Our GM Our [12] RW Our RW SP PM
1© 0.89 0.23 0.52 0.31 1.635 - 2.197 17.4 243.1 43.2 207.5
2© 0.87 0.37 0.65 0.53 1.459 - 2.197 11.6 262.1 39.4 237.9
3© 0.93 0.26 0.49 0.42 1.621 - 2.197 21.5 193.8 27.9 154.2
4© 0.95 0.25 0.57 0.46 1.476 1.594 2.197 16.7 165.4 21.6 122.3

1©Courtyard 45% 40%

S 0.85 0.79
R 0.47 0.41

NLL 1.682 1.753
MHD 21.7 28.1

Table 3. Left: Results of 4 real scenes. The results show thatour approach outperform the baselines. The accuracy ofS verifies that these
dark matter can be recognized through human activities. Intent predictionR by our method is better than GM, and the accuracy is higher
whenS is smaller. The trajectory prediction (NLL and MHD) is more accurate is constrained scene (1© 2©) than free scenes (3© 4©). Right:
Results of scene1©Courtyard with different observed ratio. The performance downgrades gracefully with smaller observed ratio.

Results. The qualitative results for real scenes are shown
in Fig. 5 and the quantitative evaluation is presented in Tab.
3. As can be seen: (1) We are relatively insensitive to the
specific choice of model parameters. (2) We handle chal-
lenging scenes with arbitrary layouts of dark matter, both
in the middle of the scene and at its boundaries. From Tab.
3, the comparison with the baselines demonstrates that the
initial guess of sources based on partial observations gives
very noisy results. These noisy results are significantly im-

proved in our DD-MCMC inference. Also, our method is a
slightly better than the baseline GM if there are a few ob-
stacles in the middle of the scene. But we get a huge perfor-
mance improvement over GM if there are complicated ob-
stacles in the scene. This shows that our global plan based
relation prediction is better than GM. We are also superior
to the random walk. The baselines RW and PM produce
bad trajectory prediction. While SP yields good results for
scenes with a few obstacles, it is brittle for more complex



scenes which we successfully handle. When the size ofS

is large (e.g., many exists from the scene), our estimation
of human goals may not be exactly correct. However, in
all these error cases, the goal that we estimate is not spa-
tially far away from the true goal. Also, in these cases, the
predicted trajectories are also not far away from the true
trajectories measured by MHD and NLL. Our performance
downgrades gracefully with the reduced observation time.

We outperform the state of the art [12]. Note that the
MHD absolute values produced by our approach and [12]
are not comparable, because this metric is pixel based and
depends on the resolution of reconstructed 3D surface.

Our results show that our method successfully addresses
surveillance scenes of various complexities.

7. Conclusion

We have addressed a new problem, that of localiz-
ing functional objects in surveillance videos without using
training examples of objects. Instead of appearance fea-
tures, human behavior is analyzed for identifying the func-
tional map of the scene. We have extended the classical
Lagrangian mechanics to model the scene as a physical sys-
tem wherein: i) functional objects exert attraction forceson
people’s motions, and ii) people are not inanimate particles
but agents who can have intents to approach particular func-
tional objects. Given a small excerpt from the video, our
approach estimates the constraint map of non-walkable lo-
cations in the scene, the number and layout of functional
objects, and human intents, as well as predicts human tra-
jectories in the unobserved parts of the video footage. For
evaluation we have used the benchmark VIRAT and UCLA
Courtyard datasets, as well as our two 40min, webcam
videos of public squares.
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