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Abstract

In this paper, we address the problem of semantic scene
segmentation of RGB-D images of indoor scenes. We pro-
pose a novel image region labeling method which augments
CRF formulation with hard mutual exclusion (mutex) con-
straints. This way our approach can make use of rich and
accurate 3D geometric structure coming from Kinect in a
principled manner. The final labeling result must satisfy
all mutex constraints, which allows us to eliminate configu-
rations that violate common sense physics laws like plac-
ing a floor above a night stand. Three classes of mu-
tex constraints are proposed: global object co-occurrence
constraint, relative height relationship constraint, and lo-
cal support relationship constraint. We evaluate our ap-
proach on the NYU-Depth V2 dataset, which consists of
1449 cluttered indoor scenes, and also test generalization
of our model trained on NYU-Depth V2 dataset directly on
a recent SUN3D dataset without any new training. The ex-
perimental results show that we significantly outperform the
state-of-the-art methods in scene labeling on both datasets.

1. Introduction
This paper addresses the fundamental problem of seman-

tic scene segmentation of indoor scenes. Assigning class
labels to every pixel in real-world images is challenging, as
objects may be heavily occluded, appear in a wide range
of configurations, and viewed from different camera view-
points and distances. In addition, indoor scenes typically
consist of a relatively large number of alike objects that are
often cluttered and in disorder, reflecting various lifestyles.
Our goal is to partition the image by identifying subimage
ownership among occurrences of distinct object classes.

The recent advent of Microsoft Kinect alleviated some
of these challenges, and thus enabled an exciting new
direction of approaches to semantic scene segmentation
[1, 2, 3, 4, 9, 11, 12, 17]. Equipped with an active infrared
structured light sensor, Kinect is able to provide the depth

information of objects in the scene which is aligned syn-
chronously with their color images. Since indoor scenes are
typically characterized by large planar surfaces (e.g., floor,
walls, table tops), and objects can often be interpreted in re-
lation to those surfaces, semantic scene segmentation can be
largely facilitated by properly integrating visual cues with
detailed and accurate geometric structure of the scene sur-
faces provided by Kinect.

Recent work has demonstrated that the depth informa-
tion can be readily used to leverage rich geometric struc-
ture of indoor scenes toward their robust semantic segmen-
tation. The SLAM technology was used to merge multiple
RGBD images into a single point cloud and densely label
it with Markov Random Field (MRF) [17]. Scenes were la-
beled by incorporating SIFT features and 3D location priors
into a Conditional Random Field (CRF) [4]. A CRF with
higher order cliques was used to encourage all regions in
them to take the dominant label [11]. [1] extended the Ker-
nel Descriptors (KDES) [18] by introducing depth gradient
and spin normal descriptors, and labeled scenes by combin-
ing MRF with segmentation tree. In [3], geometric features
were integrated with traditional visual features through sup-
port vector machines, or with high level features from object
detection [12]. Instead of designing hand crafted features, a
multiscale convolutional network was used to learn features
directly from RGBD images [9].

Although designing distinct features from RGBD images
has achieved much progress for indoor semantic segmenta-
tion, how to jointly model local and long range object spa-
tial configurations by taking advantage of available geomet-
ric structure of indoor scenes is not fully explored. We find
that there is still room for improvement.

In this paper, we propose a holistic framework for
reasoning about object classes and their co-occurrences,
and spatial layouts based on geometric structure of indoor
scenes as well as on common sense knowledge. We model
the scene by a CRF grounded to regions of the low-level
generalized gPb-UCM segmenter [3]. Geometric and visual
information of objects are integrated into unary potentials.
The pairwise potentials encode local object configurations



based on several typical geometric patterns. In this way, we
pose semantic scene segmentation as the problem of assign-
ing class labels to image regions in the CRF inference. As
common, we cast CRF inference as a quadratic program-
ming (QP) problem.

As our key contribution, we incorporate in our QP qual-
itative common-sense constraints from domain knowledge
in a principled manner. We focus on mutual exclusion (mu-
tex) constraints that specify negation (inconsistency) rules
about object configurations in the real physical world. For
example, a chair should not be on top of a TV, and a floor
should not occur above a dishwasher. In scene labeling,
mutex constraints are binary relations specifying inconsis-
tent class label assignments to pairs of image regions, and
can be expressed without any higher-order potentials. Also,
model expressiveness is significantly increased as they can
enforce long-range consistency constraints on the solution.
With mutex constraints, our approach can make use of rich
and accurate geometric structure coming from Kinect in a
principled manner.

Prior works have already demonstrated the importance
of domain constraints, in general, as they help resolve com-
peting hypotheses when visual cues are not sufficient for
scene interpretation. Constraints are typically incorporated
in CRFs as features of the pairwise potentials [5, 6, 2]. More
sophisticated methods use higher-order constraints, beyond
pairwise [7, 8, 11]. Instead of working our way through
higher-order constraints, we focus on exclusion common-
sense rules, i.e., hard rules that exclude nonsense configu-
rations.

In this paper, we show that mutex constraints can be
compactly expressed in a quadratic equality form, and rig-
orously enforced in a principled manner. As smoothness
and constraints are typically combined in the pairwise po-
tential, traditional formulations of CRF inference may not
guarantee that hard constraints are all satisfied. This could
yield non-sensical results. We address this problem by ex-
pressing the mutex constraints as quadratic constraints of
our QP. The most closely related works are [10] and [14],
both of which utilize mutex relations to constrain the CRF
inference. However, both [10] and [14] work with 2D im-
ages only. The goal of [10] is foreground object segmen-
tation in videos, while [14] is focused on scene labeling.
In contrast, the focus of our work is on 3D mutex relations
representing common sense knowledge. Since understand-
ing RGB-D indoor scenes is an arguably more complex task
[1, 19], in addition, we utilize 3D geometric patterns and
spatial object correlation for edge potential estimation, in-
stead of the standard Potts model in [10]. Moreover, we are
using a sparsely connected CRF model.

In this paper, we empirically demonstrate that enforc-
ing qualitative mutex constraints can significantly improve
quantitative measures of performance. The effectiveness of

our approach is evaluated on the indoor scene NYU dataset
V2 [2] and a recent SUN3D dataset [16]. Our labeling ac-
curacy significantly outperforms the state of the art [3, 12].

In the rest of this paper: Sec. 2 formulates our CRF
model and CRF inference as QP for semantic segmentation;
Sec. 3 specifies unary and pairwise potentials that are used
to compute the affinity matrix for our QP; Sec. 4 describes
how to estimate mutex constraints from training data; and
Sec. 5 presents experimental results and related discussion.

2. CRF for Semantic Segmentation

This section formulates our CRF model of a scene
grounded on low-level segments (also called superpixels),
and casts semantic segmentation as the MAP assignment
of class labels to superpixels. We begin by specifying the
quadratic objective of the MAP assignment problem, and
then extend that formulation to include mutex constraints,
resulting in our integer QP with quadratic constraints.

2.1. CRF and the MAP Assignment as QP

As in [2, 3, 12], we partition an image, I(x, y), into a set
of segments S = {si : i = 1, . . . , N}, |S| = N , using vari-
ants of the gPb-UCM hierarchical segmentation algorithm
[13]. Each segment, si ∈ S, can take one object class label,
li, from the set of labels li ∈ L, |L| = L. Each label assign-
ment to a superpixel, (si, li), can be represented as a node
of the association graph G = (V,E, A), where V = S × L
is the set of nodes, |V| = N · L, and E ⊂ V × V is the
set of graph edges. We define ((si, li), (sj , lj)) ∈ E if si
and sj are spatially adjacent, which means that their shared
boundary in I(x, y) contains at least one pixel and the min-
imal 3D distance between point clouds projecting to si and
sj is very close. A is the adjacency matrix (or the affinity
matrix) of G, with size (N · L)× (N · L).

We define a CRF over G. To this end, we associate a
latent binary random variable Xsi,li ∈ {0, 1} with every
node (si, li) ∈ V. When Xsi,li is instantiated to value
xsi,li = 1 then the CRF assigns class label li ∈ L to
superpixel si ∈ S. The column vector of all instanti-
ations of the assignment random variables is denoted as
x = [. . . , xsi,li , . . . ]

> ∈ {0, 1}N ·L.
We use the affinity matrix A to specify the unary and

pairwise potentials of the conditional log-likelihood of the
CRF. In particular, the diagonal elementsA((si, li), (si, li))
encode the unary potentials corresponding to log-
likelihoods of label assignments xsi,li = 1. The off-
diagonal elements A((si, li), (sj , lj)) encode the pairwise
potentials corresponding to joint log-likelihoods of label as-
signments xsi,li = 1 and xsj ,lj = 1.

From above, the conditional log-likelihood of the CRF is



specified as

logP (x|G) =
∑

(si,li)∈V

A((si, li), (si, li))xsi,li

+
∑

((si,li),(sj ,lj))∈E

A((si, li), (sj , lj))xsi,lixsj ,lj − Z(G),

(1)
where Z(G) is the partition function.

From (1), it follows that the semantic scene segmentation
problem can be formulated as finding the MAP assignment
x∗ = arg maxx∈Ω P (x|G), where Ω is the space of allowed
solutions. Note that the MAP assignment is independent of
Z(G). Thus, we can compactly express the MAP assign-
ment problem as the following integer QP with linear con-
straints:

QP-L : maximize x>Ax

s.t. for all si ∈ S,
∑
li∈L

xsi,li = 1, x ∈ {0, 1}N ·L . (2)

The linear constraints in the QP-L, given by (2), ensure that
every superpixel in the image gets assigned a unique class
label. In the following, we extend QP-L such that the re-
sulting QP encodes mutex constraints.

2.2. QP with Mutex Constraints

This section formulates mutex constraints in a quadratic
equality form, combines them with the linear constraints of
QP-L, and thus expresses the MAP assignment problem as
an integer QP with quadratic equality constraints.

Mutex constraints are aimed at prohibiting certain non-
sensical label assignments to superpixels in the image. We
eliminate this hypothesis by enforcing xsi,li ·xsj ,lj=0. That
is, only one of the two label assignments is allowed. If
one is accepted as a solution then it automatically prevents
the other one. Using the notation introduced in Sec. 2.1, it
follows that all mutex constraints can be compactly repre-
sented as

Quadratic mutex constraints (QMC) : x>Mx = 0, (3)

where M is a (N · L) × (N · L) binary mutex ma-
trix. Note that when matrix elements are set to one,
M((si, li), (sj , lj)) = 1, then the corresponding assign-
ments are prohibited and hence xsi,li = 0 and/or xsj ,lj = 0
in order to enforce xsi,li ·1·xsj ,lj=0. Conversely, when
M((si, li), (sj , lj)) = 0 then superpixels si and sj may be
assigned any class labels, because xsi,li · 0 · xsj ,lj = 0. If
the sum of each row of M is at least one, then M repre-
sents global mutex constraints. This means that at least one
constraint applies to each variable.

Further, it is convenient to merge the set of linear
constraints of QP-L — namely that for all si ∈ S,∑
li∈L xsi,li = 1 — with the quadratic mutex constraints

(QMC) in (3). For every superpixel si, we set all matrix
elements M((si, li), (si, l

′
i)) = 1, if li 6= l′i. This prohibits

illegal assignments of two (or more) distinct labels to a sin-
gle superpixel.

From (2) and (3), we finally derive the MAP assignment
problem as the integer QP with quadratic constraints:

QP-Q : maximize xTAx

subject to xTMx = 0 , x ∈ {0, 1}N ·L.
(4)

For solving QP-Q in (4), we follow the line search algo-
rithm of [14] by relaxing QP-Q to the continuous domain

x∗ = arg max
x

x>(A− λM)x subject to x ∈ [0, 1]N ·L

(5)
where λ > 0 is a sufficiently large regularization parameter.

Let f(x) = x>(A− λM)x denotes the target function.
The algorithm in [14] seeks binary solutions in each step.
For a given initial vector x0 with f(x0) > 0, it increases
f in each iteration until it converges to a MAP assignment
x∗. Although the formulation is relaxed the returned solu-
tions x∗ are binary in all experiments in [14] and in all our
experiments.

Now we show that a binary solution x∗ implies that
all mutex constraints are satisfied, i.e., (x∗)>(M)x∗ =
0. Suppose that this fact is not true, i.e., there exists
i with x∗i = 1 that violates a mutex constraint. Then
(x∗)>Mx∗ ≥ 1. Let λ be equal to the sum of all elements
of A. Because then (x∗)>Ax∗ ≤ λ, we obtain

f(x∗) = (x∗)>Ax∗ − λ(x∗)>Mx∗ ≤ 0.

A contradiction, since f(x∗) ≥ f(x(0)) > 0.
In the following two sections, we explain how to com-

pute the affinity matrixA, and estimate the mutex matrixM
from training data. In the experimental section we discuss
our initialization strategy of selecting initial vectors x0.

3. The affinity matrix A

This section explains how to compute the unary and pair-
wise potentials organized in the affinity matrix A.

3.1. The Unary Potential

Recall that elements of the affinity matrix A encode the
unary and pairwise potentials of our CRF (see Sec. 2.1).

We specify the unary potential of each label assignment
(si, li) as follows:

A((si, li), (si, li))=

{
P (li|F,m), if m = 1
P (li|F, a, h, pt), otherwise (6)

where F are appearance and geometric features of region si
used in [3], a is the angle between normal vector of si and



gravity direction ([0, π]), h is the estimated absolute height
above ground, pt is detected plane type P (pt|li) [2] (verti-
cal boundary, horizontal boundary, vertical plane, horizon-
tal plane, plane, non-plane), and the binary variable m indi-
cates if a majority of depth information is missing in si. For
simplicity, we ignore denotation si in the following formu-
las. Assume these observations are independent from each
other, then (6) can be further decomposed based on Chain
Rule:

A((si, li), (si, li))=

{
P (li|F )P (m|li), if m = 1
P (li|F )P (a|li)P (h|li)P (pt|li), o.w.

(7)

Probability Estimation: The posterior probability P (li|F )
is the output of Multi-Class Logistic Regression in [3]. The
likelihoods of P (pt|li) and P (m|li) are estimated directly
as corresponding histograms on training dataset. For the es-
timation of likelihood P (h|li), it is worth noting that the
absolute height h is different from the relative height in pre-
vious works such as [2, 3], where it is defined as the height
above the lowest point in the image. Typically, the rela-
tive height information becomes misleading when the floor
doesn’t show up in the image. As shown in the left image of
Fig.1, the horizontal plane is very close to the lowest point
of the 3D scene, but actually it is a counter instead of a
floor. To solve this problem, we assume that indoor images
are captured by human in a natural way. We firstly extract
statistical distribution of absolute camera height hcam and
for each object class from a training set. We plot the nor-
malized histogram of absolute camera height of training set
in the right image of Fig.1. It is observed that it roughly
obeys a Gaussian distribution. Since height is continuous,
the probability density of object li, fli(h), is derived by Ker-
nel Density Estimation:

fli(h) =
1

nb

n∑
i=1

K(
h− hi
b

) (8)

where K is a Gaussian kernel smoother and b is bandwidth.
Then the likelihood P (h|li) is computed as follows:

P (h|li) =

∫ µc−h′+3σc

µc−h′−3σc

fli(h) dh (9)

where µc and σc are mean and variance of absolute camera
height respectively, and h′ is a relative height difference
between object and camera. The likelihood P (a|li) is
estimated in a similar way.

3.2. The Pairwise Potential

Further, for all edges in the association graph G,
((si, li), (sj , lj)) ∈ E, we encode the pairwise potentials

Figure 1. Left image: an example of indoor scene (point cloud
attached with colors). Camera position and orientation are rep-
resented by three orthogonal color sticks. Right image: the nor-
malized histogram of absolute camera height on training set of
NYU-V2. The mean value of camera height is around 131 cm.

Figure 2. Geometric pairwise patterns. Red arrow represents nor-
mal vector direction. Blue or green planes indicate that the super-
pixel is covered by one detected plane structure.

as the off-diagonal elements of the affinity matrix A. Con-
sider the available 3D geometric information, we define five
special pairwise patterns, as is shown in Fig 2. While de-
tected edges in 2D image often indicate object boundaries,
pairwise patterns imply certain local configurations in 3D
space. For example, ”cabinet” and ”counter” usually satisfy
the first pattern, while the fourth pattern implies ”table” or
”counter” supports other ”props”.
Co-occurrence Probability Estimation: Except for the
five defined patterns above, the other pairwise pat-
terns are considered as one category. We compute ad-
jacency co-occurrence probabilities of the two classes
Ψ(k)(li, lj), k = 1, 2, ...6 from training data as

Ψ(k)(li, lj) =
N (k)(li, lj)

N (k)(li) +N (k)(lj)−N (k)(li, lj)
(10)

where N (k) is a function that counts the total number of
training images where the event shows up in pattern k. It
is worth noting that the first five adjacency co-occurrence
probabilities are asymmetric. They also differ from mutex
constraints in that the latter captures long-range inconsis-
tency constraints, whereas the former are treated as “soft”
constraints that only favors certain pairs of labels at spa-
tially adjacent locations, but in no way strictly prohibit any
particular pair.

4. Mutex Constraints for Scene Labeling
This section defines the mutex constraints and describes

how to estimate them. We use three types of mutex con-
strains.



Global object co-occurrence constraints encode which
objects cannot occur together in a scene. They are called
global, because these constraints do not account for a par-
ticular spatial layout of co-occurrence. For example, under
normal conditions, it is impossible to see both toilet and
white board in the same room. In [8], similar co-occurrence
constraints are incorporated into the energy function as neg-
ative logarithmic potential. Instead, we formulate them as
hard constraints using the (NL)× (NL) binary matrix mu-
tex Mco for each pair vi = (si, li) and vj = (sj , lj):

Mco(vi, vj) =

 1, if regions si and sj with labels
li and lj never co-exist in a scene

0, otherwise
(11)

Relative height relationship constraints: We observe
that relative height relationships typically hold in most
indoor scenes. For example, the floor should be lower
than chairs, and the ceiling should be higher than pictures.
Thanks to Kinect technology, we can easily access depth
data for each pixel. Given raw depth data, we align 3D
points with gravity direction so that the floor plane lies in
X − Z plane, and Y axis represents the height informa-
tion. The relative height relationship is represented as the
(NL)× (NL) binary matrix Mrh:

Mrh(vi, vj) =


1, if estimated height relation between

regions si and sj contradicts true
relative locations of objects li and lj .

0, otherwise
(12)

Object local support relationship constraints encode
basic physical configuration rules of indoor scenes. For
instance, counters are usually supported by cabinets, and
televisions are supported by dressers. The inverse of these
support relations would contradict common-sense knowl-
edge about the real world. We call these constraints local,
since they only regulate support relationship between two
spatially adjacent regions. In order to evaluate the support
relationship of two neighboring regions, we first project 3D
points of both regions onto the X-Z plane. If these two pro-
jected regions have overlapping area, a support relationship
does exist between them. We use a variant of Jaccard Index
to measure a ratio of the overlapping area. Let α(s′i) denote
the area of the projected region si onto the ground plane.
Then, we define the variant of Jaccard Index as

αratio(s
′
i, s
′
j) =

α(s′i
⋂
s′j)

min(α(s′i), α(s′j))
(13)

In practice, considering errors from Kinect depth measure-
ment [15] and low level segmentation, we relax the condi-
tion to tolerate small overlaps that αratio is below certain

threshold θ. We set θ = 0.1 in all experiments. The support
relation constraints are then encoded into the (NL)×(NL)
binary matrix Msup:

Msup(vi, vj) =

 1, if si cannot support sj w.r.t. real
support relation of objects li and lj

0, otherwise
(14)

Generally, we say region si can support sj when the corre-
sponding αratio > θ, and the centroid height of si is lower
than that of sj , given object li can support object lj in the
real world.

Finally, the aforementioned three mutex matrices are
merged into the unique mutex matrix M as

M(vi, vj) = Mco(vi, vj) ∨Mrh(vi, vj) ∨Msup(vi, vj)
(15)

To merge the set of linear constraints of QP-L in (2), we set
all matrix elements M((si, li), (si, l

′
i)) = 1, if li 6= l′i.

Mutex constrains learning: Denote a pair of nodes as
vi = (si, li) and vj = (sj, lj). We make the assump-
tion that the training set is sufficiently large. For global
object co-occurrence constraints, if object class li and lj
have been observed present together in at least one training
image, then Mco(vi, vj) = 0, otherwise Mco(vi, vj) = 1.

For relative height constraints, we use two auxiliary ma-
trices MauxH and MauxL obtained from training images
to encode height relationship rules w.r.t highest point and
lowest point respectively. For example, MauxH(li, lj) = 1
means the highest point of class li always is higher than
that of class lj , while MauxL(li, lj) = 1 indicates the
lowest point of class li always is lower than that of class
lj . Otherwise, no height relative constraint applies to class
pair (li, lj). Therefore, Mrh(vi, vj) = 0 when observed
height relationship between node vi and vj does not violate
any one of rules encoded in auxiliary matrices, otherwise
Mrh(vi, vj) = 1.

For local support constraints, we compute the probabil-
ity of class li support class lj , Ps(li, lj), as the number of
positive instances divided by the total number of spatially
adjacent regions assigned with labels li and lj . Here,two
regions are spatially adjacent if their shared boundary con-
tains at least one pixel and the minimal 3D distance between
point clouds is less than 5cm. Class li can not support class
lj if Ps(li, lj) < 5%.

5. Experiments
We evaluate our framework on the New York Univeristy

(NYU) Depth dataset (v2) and Princeton University
SUN3D dataset [16]. The NYU dataset contains 1449 pairs
of aligned RGB and depth images which are captured from
27 different indoor scene categories, such as bedrooms,
classrooms, kitchens, furniture stores and so forth. In [2]



894 subclasses were grouped into four super-categories:
ground, furniture, props and structure for sematic segmen-
tation. [3] extended the total number of object classes for
sematic segmentation task from four to 40 classes. In our
experiments we follow the settings in [3]. Since only a
small portion of images has been labeled in the SUN3D
dataset, we use the officially released eight annotated
sequences and extract 65 keyframes that cover the content
of sequences as much as possible.

Inference settings: As is described in section 3.1 ,
the number of nodes in the weighted graph is relevant
to both over-segmentation and class labels. For some
extremely complex scenes, the number of regions in the
over-segmentation is around 600. But typically the number
is around 140. We sort the unary potentials in decreasing
order and choose the first k labels as candidates for each
superpixel in graph construction stage. If k is too large, it
will increase the computational cost and reduce the chance
of selecting a correct label. If k is too small, it has a high
probability that correct label is not in the candidate list. In
the experiment, we set k = 5.

As the solver for finding maximum weight subgraph
[14] usually converges to a local optimum, multiple
initializations are needed to obtain a better performance.
We train a SVM classifier by taking unary potentials as
features for predicting confidence of each region and
rank regions in decreasing order according to it. Then a
weighted sampling mechanism is adopted to select a triple
of regions as initializations each time. In other words, we
set x(0)(i) = 1 if region vi is selected as one of the three
initialization regions. Otherwise, x(0)(i) = 0. Start from
x(0), we obtain a subgraph denoted by the indicator vector
x∗. In order to enforce the final solution always satisfies
the mutex constraints x>Mx = 0, the parameter λ is set
to 1000. We compute x∗ in (5) t times and select the one
with highest energy score as the best solution according to
f(x∗) = x∗>Ax∗. In our experiment, t is set to 1000.

Performance on NYU dataset: We present both quali-
tative and quantitative evaluation of our semantic segmen-
tation algorithm. In order to compare our performance di-
rectly with the state of the art results in [3, 20, 12], we use
the same three metrics: pixel frequency weighted average
Jaccard Index, average Jaccard Index and pixel accuracy.
We present the quantitative evaluation results in Table. 1.
We list the best labeling result from [3, 20, 12] in the first
three rows of the table respectively. [20] is a journal version
of [3]. [12] improved the performance of [3] by using ob-
ject detections to compute additional features for superpix-
els. The last row contains labeling results of our inference
with mutex constraints. We achieve the best performance
in the 40-class segmentation task. In particular, we outper-
form [3] by 3.4% (fwavacc), 5.4% (avacc) and 5.9% (pix-

NYUV2 SUN3D
fwavacc avacc pixacc fwavacc avacc pixacc

no co-occur 47.2 28.9 61.9 49.4 27.1 64.1
no rel-h 48.0 30.6 63.2 49.8 27.3 64.5

no support 48.4 31.0 63.6 50.9 28.0 65.3
full 48.5 31.5 63.8 51.0 28.2 65.7

Table 3. Ablation Study: We remove the different mutex con-
straints from the full system and study how the performance de-
grades.

acc), and outperform [12] by 1.5% (fwavacc), 3.1% (avacc)
and 3.5% (pixacc).

In order to demonstrate the effectiveness of mutex con-
straints, we list the corresponding labeling results obtained
by removing mutex constraints from our CRF model in the
forth row. In addition, we replace our unary potential in (6)
with the output of multi-class logistic regression from [3]
while keeping the rest of our model unchanged. As shown
in fifth row, the performance is slightly worse than our best
performance. It indicates that the proposed unary potential
formulation in Sec. 3.1 is useful for the CRF inference.

Performance on SUN3D dataset: It is worth noting
that all 65 images are only used as test set, since we used
the system trained on the NYU dataset. In other words, all
the parameters and classifiers are exactly the same as those
used in the NYU dataset. As only 33 classes are present
in the labeled images based on the definition of 40 classes
task above, after we obtain the semantic segmentation re-
sults for original 40 classes, we project unseen 7 labels into
33 classes. ”floor mat” merges to ”floor” class, ”dresser”
merges to ”other furniture” and the other five merge to
”other props”. As is shown in Table.2, our model out-
performs [3] by 2.8% (fwavacc), 3.4% (avacc) and 5.6%
(pixacc). This results clearly demonstrate the generaliza-
tion power of the proposed model with mutex constraints.
We can observe that there are several zero terms in Table.2.
This might because of the difference in variance of object
instance appearances between training set in NYU dataset
and SUN3D dataset.

We study the impact of each of our three classes of mutex
constraints on the performance of our proposed system in
Table 3. As can be seen all the constraints contribute to the
performance. The most significant mutex constraints are
co-occurrence followed by relative height.

Finally we provide some qualitative examples to demon-
strate the effectiveness of our CRF inference model with
mutex constraints in Fig. 3. The region labelings shown
in the second column are directly from [3]. It can be ob-
served that some common sense object configuration rules
are violated. For example, the counter (row 2, col 2) is fully
supported by a door, and the sofa region (row 4, col 2) has
been divided into sofa and bed. The labeling of the same
scene turns out to be much more reasonable after enforcing
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[3] 68.2 81.3 46.2 57.1 36.9 41.2 25.9 14.4 33.5 18.5 42.1 51.5 41.9 5.8 4.4 28.5 19.6 30.2 21.5 23.4 7.4 61.2

[20] 67.9 81.5 45.0 60.1 41.3 47.6 29.5 12.9 34.8 18.1 40.7 51.7 41.2 6.7 5.2 26.9 25.0 32.8 21.2 30.7 7.7 61.2

[12] (R-CNN) 68.0 81.3 44.9 65.0 47.9 47.9 29.9 20.3 32.6 18.1 40.3 51.3 42.0 11.3 3.5 29.1 34.8 34.4 16.4 28.0 4.7 60.5

Ours (noMutex) 66.9 81.0 42.9 55.7 33.5 41.2 28.2 14.0 32.9 20.3 41.2 51.2 41.6 6.6 6.2 29.5 20.0 30.4 21.6 23.4 8.8 61.1

Ours ([3]+mutex) 65.1 80.4 48.5 65.2 41.9 51.8 35.3 18.8 35.1 33.9 49.1 49.0 49.6 11.5 9.6 44.8 17.1 34.1 34.8 31.8 14.8 56.9

Ours (mutex) 65.6 79.2 51.9 66.7 41.0 55.7 36.5 20.3 33.2 32.6 44.6 53.6 49.1 10.8 9.1 47.6 27.6 42.5 30.2 32.7 12.6 56.7
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[3] 7.0 16.1 7.6 15.7 25.8 7.1 2.1 11.7 1.4 21.5 45.4 32.5 23.3 32.6 0 8.0 3.9 21.6 45.1 26.1 57.9

[20] 7.5 11.8 15.8 14.7 20.0 4.2 1.1 10.9 1.4 17.9 48.1 45.1 31.1 19.1 0.0 7.6 3.8 22.6 45.9 26.8 58.3

[12] (R-CNN) 6.4 14.5 31.0 14.3 16.3 4.2 2.1 14.2 0.2 27.2 55.1 37.5 34.8 38.2 0.2 7.1 6.1 23.1 47.0 28.4 60.3

Ours (noMutex) 8.1 16.2 9.8 16.7 27.0 9.1 2.1 11.2 5.7 21.7 47.1 36.5 23.3 32.6 0 7.8 5.4 23.3 44.8 26.6 60.5

Ours ([3]+mutex) 13.2 20.9 9.5 25.7 32.3 22.8 2.1 1.0 6.0 18.1 50.4 35.0 29.2 28.9 0 9.4 8.6 24.9 47.9 30.4 63.1

Ours (mutex) 8.9 21.6 19.2 28.0 28.6 22.9 1.6 1.0 9.6 30.6 48.4 41.8 28.1 27.6 0 9.8 7.6 24.5 48.5 31.5 63.8

Table 1. Performance on 40-class semantic segmentation on the NYU-Depth V2 data set. We compare directly with the best results obtained
in [3, 12, 20]. The fourth row shows results of our model without mutex constraints. The fifth row shows results of our model with mutex
constraints where our unary potential is replaced with the output of multi-class logistic regression in [3]. The last row contains labeling
results of our full model.
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[3] 64.8 89.9 2.8 29.5 45.1 38.3 42.9 16.5 21.8 15.7 13.9 40.9 21.3 0.05 56.6 18.5 56.4 6.1
Ours (noMutex) 63.7 90.1 5.6 42.9 45.8 38.7 50.6 3.5 26.2 12.3 10.5 43.8 19.7 0 58.0 12.8 51.3 13.4
Ours ([3]+mutex) 60.9 89.3 14.5 45.1 46.6 42.3 64.8 5.7 36.4 0.5 11.3 47.7 6.8 0.08 59.4 20.1 55.4 14.1
Ours 61.1 88.8 19.8 46.3 51.1 41.9 69.7 9.3 34.9 2.0 21.8 49.4 5.2 0 62.3 20.8 56.0 16.7
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[3] 0 81.4 0 61.0 0.57 21.8 0 23.7 13.8 0 0 21.2 0 1.6 10.7 48.2 24.8 60.1
Ours (noMutex) 0.16 80.1 0 70.5 4.9 27.3 0 24.3 11.1 0 0 17.8 0 3.4 11.8 48.8 25.5 61.2
Ours ([3]+mutex) 0 70.6 0 93.2 9.9 65.7 0 20.3 1.0 0 0 15.5 0 2.8 12.7 50.1 27.6 64.7
Ours 0.2 67.2 0 93.6 11.5 65.7 0 15.3 2.2 0 0 5.6 0 2.3 11.0 51.0 28.2 65.7

Table 2. Performance of 33 classes semantic segmentation task on the SUN3D dataset. All 64 images are used as the test set. Note: since
[20] and [12] did not report any results on SUN3D, we cannot include them here.

mutex constraints during inference. As is shown in the row
2 and column 3 image, the door area is labeled correctly
as cabinet and the labelings of other regions are improved
too. Also the big sofa region (row 4, col 3) has been cor-
rectly recognized after our inference. The last row shows
one labeling example from SUN3D dataset.

6. Conclusion
We present a novel method for indoor scene semantic

segmentation from RGB-Depth images. We effectively uti-
lize available 3D geometric structures of indoor scenes and
learn object relationships directly from training set. Our
experimental results demonstrate incorporating hard mutex

constraints into a soft CRF model can significantly increase
the labeling accuracy. The proposed approach outperforms
the state of the art methods on very challenging NYU-v2
RGBD dataset and SUN3D dataset for indoor scene seman-
tic segmentation.
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Figure 3. Examples of indoor scene semantic segmentation obtained by our system. Column 1 shows the original RGB images, column 2
shows the results from [3], column 3 shows our results after inferring with hard mutex constraints and column 4 shows the ground truth
(black areas are unlabeled). Recommend to view in color.



References
[1] Ren, X., Bo, L., Fox, D.: RGB-(D) scene labeling: Features

and algorithms. CVPR (2012)

[2] Silberman, N., Hoiem, D., Kohli, P., Fergus, R.:Indoor seg-
mentation and support inference from rgbd images. ECCV
(2012)

[3] Gupta, S., Arbelaez, P., Malik, J.: Perceptual organization and
recognition of indoor scenes from rgb-d images. CVPR (2013)

[4] Silberman, N., Fergus, R.: Indoor scene segmentation using a
structured light sensor. ICCVW (2011)

[5] Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.:
Multi-class segmentation with relative location prior. IJCV
(2008)

[6] Galleguillos, C., Rabinovich, A., Belongie, S.: Object catego-
rization using co-occurrence, location and appearance. CVPR
(2008)

[7] Kohli, P., Torr, P.H.: Robust higher order potentials for en-
forcing label consistency. IJCV (2009)

[8] Ladicky, L., Russell, C., Kohli, P., Torr, P.H.: Graph cut based
inference with co-occurrence statistics. ECCV (2010)

[9] Couprie, C., Farabet, C., Najman, L., LeCun, Y.: Indoor se-
mantic segmentation using depth information. ICLR (2013)

[10] Roy, A., Todorovic, S.: Scene labeling using beam search
under mutex constraints. CVPR (2014)

[11] Khan, S.H., Bennamoun, M., Sohel, F., Togneri, R.: Geom-
etry driven semantic labeling of indoor scenes. ECCV (2014)

[12] Gupta, S., Girshick, R., Arbelez, P., Malik, J.: Learning rich
features from RGB-D images for object detection and seg-
mentation. ECCV (2014)

[13] Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour de-
tection and hierarchical image segmentation. PAMI (2011)

[14] Ma, T., Latecki, L J.: Maximum weight cliques with mutex
constraints for video object segmentation. CVPR (2012)

[15] Khoshelham, K.: Accuracy analysis of kinect depth data. IS-
PRSW (2011)

[16] Xiao, J., Owens, A., Torralba, A.: SUN3D: A database of
big spaces reconstructed using sfm and object labels. ICCV
(2013)

[17] Koppula, H.S., Anand, A., Joachims, T., Saxena, A.: Seman-
tic labeling of 3d point clouds for indoor scenes. NIPS (2011)

[18] Bo, L., Ren, X., Fox, D.: Kernel descriptors for visual recog-
nition. NIPS (2010)

[19] Quattoni, A., Torralba, A.: Recognizing indoor scenes.
CVPR (2009)

[20] Gupta, S., Arbelaez, P., Girshick, R., Malik, J.: Indoor Scene
Understanding with RGB-D Images: Bottom-up Segmen-
tation, Object Detection and Semantic Segmentation. IJCV
(2014)


