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Abstract sub-categories [Crammer & Singer, 2000]: (1) given a set
of binary classifiers, find a code matrix that yields small
empirical loss; (2) given a code matrix, find a set of bi-
nary classifiers that result in small empirical loss; (3) find
both a set of binary classifiers and a code matrix simulta-
neously that produce small empirical loss. A majority of
the existing algorithms belongs to the second category in
which the underlying dependence between the constructed
binary classifiers and the fixed code matrix is not explic-
itly accounted for. This problem is discussed in [Allwein
et al., 2000], where five different output codes are com-
pared for a variety of datasets, with indecisive answers as
to which output code is the best. The results in [Allwein
et al., 2000] suggest that finding the optimal code matrix
and binary classifiers simultaneously is the best strategy.

In this paper, we present a new interpretation of
AdaBoost.ECC and AdaBoost.OC. We show that
AdaBoost.ECC performs stage-wise functional
gradient descent on a cost function, defined in the
domain of margin values, and that AdaBoost.OC
is a shrinkage version of AdaBoost.ECC. These
findings strictly explain some properties of the
two algorithms. The gradient-minimization for-
mulation of AdaBoost.ECC allows us to derive
a new algorithm, referred to as AdaBoost.SECC,
by explicitly exploiting shrinkage as regulariza-
tion in AdaBoost.ECC. Experiments on diverse
databases confirm our theoretical findings. Em-
pirical results show that AdaBoost.SECC per-
forms significantly better than AdaBoost.ECC The third category, however, has been shown to be NP-
and AdaBoost.OC. hard [Crammer & Singer, 2000]. To alleviate this prob-
lem, a number of sub-optimal algorithms have been pro-
posed in the literature, of which we are particularly inter-
1. Introduction ested in those formulated within the AdaBoost framework
— more specifically, output-code AdaBoost (AdaBoost.OC)
A review of the literature indicates that the majority of Schapire, 1997], and error-correcting code AdaBoost
available pattern classification algorithms are deSigne‘%AdaBoost.ECC) [Guruswami & Sahai, 1999]. Here, the
only for binary classification problems. Some of them cancglumns of the code matrix and binary hypothesis func-
be easily generalized to solve multiclass problems (e.g4ions are generated alternatively, in a specified number of
C4.5 [Quinlan, 1993]), while for others the extension isjteration steps. Thereby, the underlying dependence be-

not straightforward. Therefore, it is important to inves- yyeen the code matrix and binary classifiers is exploited
tigate how to use well studied binary classification algo-jn a stage-wise manner.

rithms for solving multiclass problems. One of the possi-
ble approaches is to first decompose a multiclass into sey?d@Boost.0C and AdaBoost.ECC have been successfully

eral binary problems by using a code matrix, then, to apphppplied toa number of standard rr_1u|ticlass problems. For
binary classifiers to these binary problems, and finally toP0th algorithms, the upper theoretical bounds of the train-
combine the binary outcomes toward the final classificai"d error have been derived. Yet, a mathematically rigorous

tion. The outlined approach can be systematized into threformulation of how AdaBoost.OC and AdaBoost.ECC de-
crease the classification error has not to date been proposed

Appearing inProceedings of the2*t International Conference In addition, the relationship between these two algorithms
on Machine LearningBonn, Germany, 2005. Copyright 2005 by as well as the algorithms’ behavior in the case of noise-
the author(s)/owner(s). corrupted data are not fully examined in the literature. In
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fact, current understanding of the two algorithms, as reing dataseD={(x,,y,)}\_,€X x) whereX’ is the pat-
ported in the literature, might even mislead practitionerstern space ang={1,---,C} is the label space. To de-
to choose a wrong algorithm between the two for a givencompose the multiclass problem into several binary ones,
application. For example, in [Guruswami & Sahai, 1999],a code matrixMec{+1}“*7 is introduced, wheré is the
AdaBoost.ECCis said to outperform AdaBoost.OC, which,length of a code word. Herél/(c) denotes the-th row,

as we show in this paper, is not true for many settingsthat is, a code word for clags and M (¢, t) denotes an el-
The aforementioned missing links in the theoretical develement of the code matrix. Each column®f defines a
opment of AdaBoost.OC and AdaBoost.ECC motivated usinary partition of C classes over data samples — the parti-
to conduct the research reported in this paper. tion on which a binary classifier is trained. AftErtraining

. . . steps, the output coding method produces a final classifier
We present a new interpretation of the two algorlthmsf(x) = [fu(x), -, fr(x)]T, wheref,(x) : x—R. When

based on the analogy of boosting to steepest-descent min- .
imization [Mason e?);I. 2000 B%eiman I?L999 FriedmanIoresenteOI an unseen samglethe output coding method

et al., 2000]. More precisely, we show that AdaBoost.ECC?erICtS the labej”, such that the code word (y”) is the

i ; . losest” to the predictiofi(x), with respect to a specified
performs stage-wise functional gradient descent on a coséf . .
function, defined in the domain of margin values. We ecoding strategy. In this paper, we use the loss-based de-

further prove that AdaBoost.OC is a shrinkage versionCOOIIng strategy [Allwein et al., 2000], given by

of AdaBoost.ECC. This theoretical analysis allows us to . . T
derive the following results. First, we formulate and y'=argmingey ), exp (=M (y, 1) f(x)). (1)
strictly prove several properties of AdaBoost.ECC and

AdaBoost.OC, including the relationship between their
convergence training-error rates, and their performanceg- AdaBoost.ECC and AdaBoost.OC

in noisy regimes. Second, we show how to simplify ¢ h45 heen empirically observed that AdaBoost can effec-
the computation of AdaBoost.OC by avoiding the redun-e|y increase the margin [Schapire et al., 1998]. For this

dant calculation of pseudo-loss. Third, we derive thergagon since the invention of AdaBoost, it has been conjec-
shrinkage version of AdaBoost.ECC, which we refer 10y a4 that in the limit AdaBoost achieves the same solution

as AdaBoost._SECC. This novel alg_orithm naturally arises,q 5 |inear Programming (LP) problem in which the mar-
from the gradient-descent formulation of AdaBoost.ECC,gin is directly optimized [Grove & Schuurmans, 1998]. In

where a shrinkage parameter can be used as a regularizgg recent paper [Rudin et al., 2004], however, the equiv-
tion parameter, similar to introducing the learning rate ingjance of the two algorithms has been proven not to hold
always. Nevertheless, the two algorithms are connected in

neural networks.
We also study the algorithms’ behavior in the presence othe sense that they try to maximize the margin. We make

mislabeled training data. Mislabeling noise is a critical Use of this connection, by employing the results obtained
pr0b|em for many app"ca’[ions, where preparing a goodNithin the LP framework to define a cost function over the

training dataset is a challenging task. Indeed, humarn-intedomain of margin values, upon which AdaBoost.ECC per-
preters are often faced with hard-to-classify cases, whichorms a stage-wise gradient descent.

may cause erroneous hum_an _s_upervision. As a _result, thRe begin by defining the sample margifx.,) as

training set may contain a significant number of mislabeled

data. These considerations were also examined for two-

A .
class AdaBoost in [Dietterich, 2000]. p(xn)= feeDrertyn) AMM(e). £0n)) = AM (gn). £(xn)).

The experimental results support our theoretical find- here A() i dist Maximi t'(Z) ¢
ings. In a very likely event, when for example 109 WNere () is a distance measure. aximization o

of training patterns are mislabeled, AdaBoost.OC outperp(x") in Eq. (2) can be interpreted as findirfyix,)

forms AdaBoost. ECC. Moreover, in the presence of mis-close to the code word of the true label, while at the

labeling noise, AdaBoost.SECC converges fastest to th&ame time distant from the code word of the most con-

sed class. For the purposes of this paper, we specify
smallest test error, as compared to AdaBoost.ECC an (M (c), £(x))2 | M(c)—£7 (x)| %, yielding

AdaBoost.OC.
_ : _ T 2_ _eT 2
2. Output Coding pl)= g, N o))~ )]
CFYn
First, we briefly explain the output coding method for solv- =2M (y,)f(xn) — max {2M(c)f(x,)}. (3)
ing multiclass classification problems [Dietterich & Bakir {c€Y,cyn}

1995, Allwein et al., 2000]. Suppose we are given a train-
Hence, maximization gf(x,,) can be formulated as an op-
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timization problem: Similar to the derivation steps in [Friedman, 2001], it is
straightforward to show that, should be selected fro
m?X ]\P/[’ () M) > by maximizing its correlation with the-th component of
S.l n n) — n)y = P, —
(y (X {cegl,i;ﬁ(yn} (C (X p (4) th—l(x)G’
n=1---,N.
Herein, we are particularly interested in findifig) of the ~ Tu=arg max{z Z M (yn, t)—M(c,1))
following form: n=1c=1,c#yn
.e—(M(yn)—M(C))Ft—l(Xn)}.
f( )7 [alhl(x)a B aThT(X)]Ti F(X) (5) (8)
x)= T T ’ To facilitate the computation of Eq. (8), we introduce the
Doim1 Doim1

following terms:
where the weightst, o; > 0, and the hypothesis functions

. c
hi(x) : z—{=£1}. From Egs. (4) and (5), we derive Vi(n)2 Z M (o £)— M (¢, 1) (M)~ MEDF 11 Gxn)
max p, h
S ) £ Vi) S il 2 Vi)V
sty o (M) = Mehi(xa) 2 p, @ A S T S 9
=1 D=1 Ot ©)

n=1,---,N, c=1,---,C, ctyn, a>0. Note thatV;, given by Eq. (9), differs fronl/;, defined

(6) in Step (4) in Fig. 1, by a constant. Also, note that
In light of the connection between LP and AdaBoost, it (M (yn,t)—M(c,t)) either equals zero, or has the same
appears reasonable to define a new cost function, which &gn asM (y,,, t). It follows that

optimized by a multiclass AdaBoost algorithm, as follows: N ]
hy=arg maxpen ., _q Ve(n)sign(M (yn,t)) h(x,),(10)

Géi zc: exp (—(M(yy) — M(c))F(xy)) —argmaxner Vi Yon_y di(n)M(yn, )h(xn) ,  (11)
n= 1 {c Leyn} . =argmaxpecy Us Z L di(n)M (yn, t)h(xn) , (12)
Z exp(— Z M (yn, £)— M (¢, ) he(x0))- =argminper 3y (M (ynt) # h(xn))di(n) , (13)
n=lel, t=1 =argminpen € , (14)

(7)  wheree is the training error. Oncé, is found, a; can
Indeed, the following theorem shows that AdaBoost.ECGye computed by a line seareh = arg ming>o Gy. The

optimizes the above cost function. derivative of the cost functio@; with respect tay, reads
Theorem 1. AdaBoost.ECC performs a stage-wise func-
tional gradient descent procedure on the cost function —t—— SN $~C ertgn M (Y, t) =M (c, 1)) he (%)

) o CEYn
given by Eq. (7). t e s (M) =M ()b ().
Proof: In Fig. 1, we present the pseudo code of the sym- (15)

metric version of AdaBoost.ECC, as proposed in [Gu-Note that (M (y,,t)—M(c,t)) takes values in the set
ruswami & Sahai, 1999]. By comparing the expressions{0; 2, —2}. Also, recall that(M (y, t)—M(c,t)) has the
for: (i) the data-sampling distributiod, (Step (5)), and (i) ~Same sign as/ (y,, t). From Eg. (9) we derive

the weightsy; (Step (8)), with those obtained from the min- N

imization of G, we prove the theorem. For the time being, _6 t*Vt Zdt M (Yo, t)he(xn)e =20 M (yn,t)he (xn)
we assume that the code mathX is given, the generation " ’
of which is discussed later. < N

Z (Yn» t)=hy (Xn))dt (n) e %™

n=1

After (t—1) iteration steps, AdaBoost.ECC produces

Fi1(xn) = [arhi(Xn),  + ae—1he—1(x5),0,---,0]". N

In the t-th iteration step, the goal of the algo- Z (Yn, t)#hi (X)) dy (n) €2

rithm is to compute thet-th entry of F(x), given n=1

by ahi(x,), and to updateF(x) as Fy(x,) = - (18)

[a1hi (%), whe(xn),0, -+, 0]T. From Eq. (7), From Egs. (13) and (14), art{7; /0 =0 we obtain

the negative functional derivative aff with respect to 1 _

Fy1(x), if % = %o, IS COMPpUted a8- Vi, , ) Glaoon, — ap = 7 In[(1 —&4)/ed] a7)
¢ M (yn)—M(c))Te= (Myn)=M(c))Fr1(xn) which is equal to the expression given in Step (8), Fig. 1.
c=1,c#Yn
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AdaBoost.ECC 3.1. Relationship between AdaBoost.OC and
(1) Initialization: givenD = {(xn, yn)}3_; € X x Y, initialize AdaBoost.ECC

felt(tﬁé%:x{r%cfrgﬁ{r]nvéecr:)}?fe:;ti);:é\tféﬁ(;: 1 AdaBoost.ECC is derived from AdaBoost.OC on the algo-

@fort=1:T rithm level, as disc_usseq in [Guruswami & Sahai{ 1999_].
(3) Define thet-th column ofM: M., € {—1, +1}°%"; However, the_relat_lonshlp between the two glgorlthms is
@ U = SN 520 Da(n, UM (g, 1) £ M(c,1)); not fglly examined in the Illterature. Thgfollowmg theorgm

1 é 1t Yns v provides for a mathematical explanation of their relation-

(8)de(n) = g 2oy De(n, )L(M (yn, t) # M(c, t)); ship.

(6) Train the base Iearner frof with respect to distribution
d:, and computé; (x);

(7) 0= 3002 I(M (yn, t) # he(%0))di(n);

g; O‘t:d% In[(1 —hEt)/etL ) Proof: The pseudo code of AdaBoost.OC is given in Fig. 2.
Update weight®; 1 asDi1(n, ¢) = In Step (7), a pseudo hypothesis functidn(x), is con-
D1, ) exp( e (M (g, 1)~ M(e, 1) (x2)) oen . ap » )

whereZ; is a normalizing constant;

(10)end A . _
(11)Output: F(x) = [a1hi (x),- - , arhr(x)] . ha(3) = H{e € ' hex) = M(c, )} (18)

Theorem 2. AdaBoost.OC is a shrinkage version of
AdaBoost.ECC.

Usingh,(x), a pseudo-loss, is computed in Step (8) as

Figure 1.Pseudo code of AdaBoost.ECC, as proposed in [Gu-
ruswami & Sahai, 1999].

N C
Z Z Dy(n ( yn¢ht(xn))+1(c€ht(xn))) ,
n=1 c= (19)

l\3|’—‘
—_

whereD,(n, ¢) is updated in Step (9). Note that:

)):(M(C-,t)*l\'f(yn-,t))ht(xn)+1_

Finally we check the update rule for data-sampling dis-1(¥n&he(xn))+L(cERs (xn
tribution d;. By unravelling D,(n, ¢) in Step (9) in the (20)
pseudo code of AdaBoost.ECC (see Fig. 1), we deriveTherefore, from Eq. (19), we have

Dy(n, )= exp(—(M (yn) =M (c))Fi—1(xn)), if c#yn, N C©
andD;(n, ¢)=0, if c=y,, whereZ, is a normalization con- - 1 Z Z
stant. By pluggingD;(n, ¢) into Steps (4) and (5) in the 4 4~ =
pseudo code of AdaBoost.ECC, it is straightforward to —

show that the expressions fd; in Step (5) and Eq. (9) _
are the samdll =ir+g=>r=4(—3) (21)

(M (e, ) = My, O)aln) +5

T

Now, we discuss how to generate the columns of the cod®ow, let us take a look at the pseudo code of
matrix, denoted aM1.;. Recall that simultaneous optimiza- AdaBoost.ECC given in Fig. 1. The training errey, is
tion of bothM ; and h; is NP-hard. Both AdaBoost.OC computed in Step (7) as

and AdaBoost.ECC perform in fact a two-stage optimiza-

tion in which M, is first generated by maximizing;, e = o 11( (Yn, t) # hi(xn))di(n)
given in Step (4) in Fig. 1, and then is trained based on = 335N di(n)M(yn, )he(x0) . (22)

the binary partition defined byl ;. In [Schapire, 1997,Gu-
ruswami & Sahai, 1999], this procedure is justified by From Step (5), in Fig. 1, we have

showing that maximizing/; decreases the upper bound of [

the training error. Maximizind/; is a special case of the ¢,=1— Zn 1 2oy De(a UM (yn )7 M (0,)) M(yn Dhi(Xn) _

“Max-Cut” problem, which is known to be NP-complete. _ 1 =%, 9, Dt(n,c)(M(yn,Qt[)]iM(c,t))ht(xn) -

Note that the proof of Theorem 1 provides for yet another % 40 N
interpretation of the outlined procedure. Recall that im th ~— 5 + 4_Utr ‘ (23)
t-th iteration stegh; is selected frornt{, such that the corre- By plugging Eq. (21) into Eq. (23), we get:

lation between the-th component of-VG(f;_1(x)) and y plugging Eq. (21) into Eq. (23), we get

h: is maximized. From Eg. (12), we observe that maxi- 1 1. 1

mizing U, in fact, increases this correlation. For comput- =5+ E(Et —3) (24)

ing the approximate solution of the optim ;, herein,

we use the same approach as that used in the experlmerﬁmm Eq. (24), we observe that < % if and only if

in [Schapire, 1997]. < WhICh means that both algorlthms provide the same



Unifying the Error-Correcting and Output-Code AdaBoost

AdaBoost.OC

(1) Initialization: givenD = {(xn,yn)}A—1 € X x Y, initialize

DY (n,¢) =I(c # yn)N(C — 1), n=1:N, ¢ = 1:C;

set the maximum number of iteration steps

@2)fort=1:T

(3) Define thet-th column ofM: M.; € {—1,+1}¢*%;

@ U: = 01 325, Deln, LM (yn, 1) # M(c,1));

(5)di(n) = &= 3, Di(n, )X(M (yn,t) # M(c,1));

(6) Train the base learner frof with respect to distribution
d, and computér (x);

ror than AdaBoost.OC. They also experimentally observe
that the training error of AdaBoost.ECC converges faster
than that of AdaBoost.OC. However, the fact that the train-
ing error upper bound of one algorithm is better than that
of the other cannot explain the empirical evidence related
to the convergence rate. Theorem 2 provides for the strict
proof of the observed phenomenon.

(3) Shrinkage can be considered as a regularization method,
which has been reported to significantly improve classifica-
tion performance, especially in the case of noise corrupted

(7) Define pseudo hypothesit; (x)={cc€Y:h.(x)=M (c,t)};
(8) Compute pseudo error:
=5 302 ooy De(n, ) (IUyn@he(xn)) +L(cERe (xn)));
(9w = 2In[(1 — &) /&;
(10) Update weight®; 1 asDy1(n,c) =
22 D, €) exp (264 (L(ya Ehe (x0))+1(c€he (x2))) ),
whereZ; is a normalizing constant;
(11)end
(12) Output: F(x) = [@1h1(x), -

data [Friedman, 2001]. Introducing shrinkage in the steep-
est decent minimization of AdaBoost.ECC is analogous to
using a specified learning rate in neural networks. Con-
sequently, based on the above analysis in Theorem 2, one
can expect that, in the low noise regime, AdaBoost.ECC
may have some advantages over AdaBoost.OC. However,
in the noise-corrupted-data cases, one should anticipate
AdaBoost.OC to perform better than AdaBoost.ECC. This
provides a guideline for selecting the appropriate albarit

sarhr(x)].
rhr () between the two.

. , . _(4) Shrinkage as a regularization can be pursued explicitly

fé%’ér]e 2Pseudo code of AdaBoost.OC, as proposed in [SChaplrei'n AdaBoost.ECC. We refer to the resulting new algorithm
as AdaBoost.SECC. The pseudo-codes of AdaBoost. SECC
and AdaBoost.ECC are identical, except for Step (8),

conditions for the regular operation of AdaBoost. That is,whereq; is computed aﬂtZﬁi In[(1—e;)/e]. Hereis

whene; < § bothay > 0 anda, > 0. Furthermore, note  a shrinkage parameter that takes value@in].

thatU; € [0,1], as defined in Step (4), in Fig. 1. From

Eq. (24), it follows that, fog, < 1, 4. Experiments

et —& = (11— i)(% —&) <0 = & =m0y, (25) Forthethree boosting algorithms, we choose C4.5 as a base

Ut learner. C4.5 is a decision-tree classifier with a long récor
wheren, € [0,1]. Eq. (25) asserts that under the same©f successful implementation in many classification sys-
conditions, AdaBoost.OC takes a smaller step size thafems [Quinlan, 1993]. Although, in general, C4.5 can be

AdaBoost.ECC in the direction df, over the functional €mployed to classify multiple classes, in our experiments,
spaceH. we use it as a binary classifier.

We finally check Step (5) in Figs. 1 and 2, that is, We test AdaBoostOC, AdaBoost.ECC, and
the updating rules for the data-sampling distributions ofAdaBoost SECC on five databases, four of which
AdaBoost.OC and AdaBoost.ECC. By using Eq. (20), it isare publicly available at the UCI Benchmark Reposi-
straightforward to show that the updating rules of the twotory [Blake & Merz, 1998]. These are: (1) Car Evaluation
algorithms are the samm Database (or shortlyCars), (2) Image Segmentation
Database Ifnage3, (3) Letter Recognition Database
(Lettery, and (4) Pen-Based Recognition of Handwritten
Digits (PenDigitg. The fifth database is USPS Dataset of
The following remarks are immediate from Theorems 1Handwritten CharacterdJSPS. For Cars andLetters all

and 2. data samples are grouped in a single file per each database,

(1) Itis possible to reduce the computational complexity ofVhile for Images PenDigitsand USPS the training and
AdaBoost.OC, by eliminating Steps (7) and (8) in Fig. o test datasets are available. We divide each database into

Insteadz, can be directly calculated from Eq. (24), given training, test, and cross-validation s_ets as de_tall_ed in
£;. Here, the simplification stems from the fact thatis Table 1. For databases where only a single data-file is pro-
easier to compute, as in Eq. (13) vided, we form the training, cross-validation and test files

by random selection of samples from that single file, such

(2) In [Guruswami & Sahai, 1999], the authors prove thatthat a certain percentage of samples per class is present
AdaBoost.ECC has a better upper bound of the training er-

3.2. Remarks
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Table 1.The number of samples in each database

Table 2.0ptimaln* values

database training cross-validation test noise level
Cars 865 (50%) 286 (15%) 577 (35%) database | 0% | 10% | 20% | 30%
Images 210 210 (10%) 1890 (90%) Cars 1 1 0.05 | 0.05
Letters | 8039 (40%)| 3976 (20%) | 7985 (40%) Images | 0.5 | 0.05 | 0.05 | 0.05
PenDigits | 5621 (75%)| 1873 (25%) 3498 Letters | 0.2 | 0.05 | 0.05 | 0.05
USPS | 6931 (95%) 360 (5%) 2007 PenDigits| 1 | 0.5 | 05 | 0.2
USPS 05| 035] 0.05| 0.05

n edaCh|0f tt:]e three datas?gs' .Rbaés ar;d Lettirs Wef .__Table 3.Classification errorsj) on the test data. The best results
randomly choose cross-validation data from the tralnlngare marked in bold face. The optimal number of training siEps

dataset, and foimages from the test dataset. In Table 1, ot aqaBoost.SECC, if different from the predefined numbee, a
the number of percentages in parentheses indicates thgyicated in the parentheses.

distribution of samples per each class in the corresponding database | noise | ECC | SECC oC
dataset. FotJSPSdatabase, to reduce the run-time of our " 0% 55 | 55 7.3
experiments, we projected each sample using PCA onto T 10% | 125 | 125 13.3
a lower-dimensional feature space (256 featuresb4 © ggég gg'g g'g gg; gg'g
features) at the price of 10% of the representation error. - 0% 75 a2 75
To conduct experiments with mislabeling, noise is in- % 10% | 86 | 7.6(70) 8.4
troduced only to the training and cross-validation sets, E %8?;’ %gé Eg (igg) %gg
while the test set is kept intact. The level of noise rep- O(yo 9'3 86 (150) Sé
resents a percentage of randomly selected training data g 1002 585 T 134 19.8
(or cross-validation data) whose class labels are changed. o 50% | 35.6 169 549
The performance of AdaBoost.OC, AdaBoost.ECC, and - 30% | 41.9 | 233 315
AdaBoost.SECC is evaluated for several different noise 2 0% | 129 | 129 139
levels, ranging from0% to 30%. Throughout, for -g 10% | 15.2 | 147 14.8
AdaBoost.SECC, the optimal shrinkage parameteand & 20% | 17.7 | 163 17.1
the optimal number of training stefds' are found by cross- < S0% | 21.7 | 192 194
validation. We choose* for which the classification error 4 105@) gg g'é g'g
on the cross-validation data at tfi&-th step is minimum. 9 0% 197 1 75 79
In all experiments, the maximum number of training steps 30% | 12.4 | 87 91

is preset tad’=500. The classification error both on the test
and cross-validation sets is averaged averuns.

. . o than AdaBoost.OC with respect to the test error. However,
We point out that the algorithms behave similarly for thewith the increase of noise level, AdaBoost.OC outperforms

noise level0% and30%. Also, results for the wo ten- AdaBoost.ECC, as predicted in Section 3.2. Finally, regu-

class datase.ts PenD|glts apd U.SPS are very similar. Henc%rization of AdaBoost.ECC, by introducing the shrinkage
because of limited space, in Fig. 3, we show the test-error

; ) arametem, improves the performance; however, it ma
plots for only four databases at three noise levels, whée thP ), IMPrOVe P . y
. . : .~ _also lead to overfitting (se€ars andImage$, which can
classification results are summarized in Table 3. In Fig. 4

L . be alleviated by using the early stopping method. Over-
we plotthe training errors fdrettersas typical examples of .
. Lo all, AdaBoost.SECC outperforms other two algorithms at
the algorithms’ training-errror convergence rates. The op

. : all noise levels above zero. In some cases, significant im-
timal n* values for AdaBoost.SECC, determined through gnit

L . provements are observed. For example, lfetters in a
cross-validation, are presented in Table 2.

likely event, when 10% of training patterns are mislabeled,
From the results we observe the following. First, con-AdaBoost.SECC improves the classification performance
vergence of the training error for AdaBoost.ECC is fasterof AdaBoost.ECC by abow0% (28% vs. 14%).

than for AdaBoost.OC and AdaBoost.SECC, which is in

agreement with Theorem 2. Also, the convergence rat®& conclusions

of the training error of AdaBoost.SECC is the slowest,

which becomes very pronounced for high-level noise setin this paper, we have unified AdaBoost.OC and
tings, where typically a small value of the shrinkage pa-AdaBoost.ECC through the margin concept. We have
rametern* is used, as detailed in Table 2. Second, inshown that AdaBoost.ECC performs stage-wise functional
the absence of mislabeling noise (i.e., 0% of noise level)gradient descent on a cost function, defined in the do-
we observe that AdaBoost.ECC performs slightly bettemain of margin values, and that AdaBoost.OC is a shrink-
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Figure 3.Classification errors on the test data.
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In some plots, ther @urves of AdaBoost.SECC are overlapped with those of

AdaBoost.ECC (i.ey) = 1, see Table 2). For AdaBoost.SECC, the optimal number afitrgistepsI’™ is found by cross-validation
and indicated in the figures.
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Figure 4.Letters typical behavior of the three algorithms over all five dataswith respect to the convergence rate of the training.erro

age version of AdaBoost.ECC. Based on this analyFriedman, J. (2001). Greedy function approximation: a
sis, we have formulated and explained several proper- gradient boosting machin@he Annals of Statistic&9,
ties of AdaBoost.ECC and AdaBoost.OC, and derived 1189-1232.

the shrinkage version of AdaBoost.ECC, referred to as_ . ) L "
AdaBoost. SECC. Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive

logistic regression: a statistical view of boostinghe
We have also reported experiments, conducted on five Annals of Statistic8, 337—407.
datasets, with training data corrupted by various levels of
mislabeling noise. The empirical results confirm our the-Grove, A. J., & Schuurmans, D. (1998). Boosting in
oretical findings: (1) AdaBoost.ECC is the fastest, and the limit: maximizing the margin of learned ensem-
AdaBoost.SECC is the slowest, with respect to the conver- bles. Proc. 15th Nat'l Conf. on Atrtificial Intelligence
gence rate of the training error; (2) in the absence of misla- (Pp. 692-699). Madison, WI.

beling noise, AdaBoost.ECC yields a slightly smaller teStGuruswami, V., & Sahai, A. (1999). Multiclass learning,

error than AdaBoost.OC; (3) for noise levels above zero, . .
S boosting, and error-correcting codéxoc. 12th Annual
AdaBoost.SECC performs significantly better than the sec- Conf. Computational Leaming Theofpp. 145-155)
ond place AdaBoost.OC and the worst AdaBoost.ECC, ) putat . 9 P- '
Santa Cruz, California.

with respect to the test error.
Mason, L., Bartlett, J., Baxter, P., & Frean, M. (2000).
References Functional gradient techniques for combining hypothe-
] ) ] ses. In B. Scholkopf, A. Smola, P. Bartlett and D. Schu-
Allwein, E. L., Schapire, R. E., & Singer, Y. (2000). Reduc-  ymans (Eds.)Advances in Large Margin Classifiers
ing multiclass to binary: A unifying approach for margin - 521_247. MIT Press.
classifiers.J. Machine Learning Research, 113-141.

) . Quinlan, J. R. (1993)C4.5: Programs for Machine Learn-
Blake, C., & Merz, C. (1998). UCI repository of machine ing. Morgan Kaufmann.

learning databases.
. - _ Rudin, C., Daubechies, I., & Schapire, R. E. (2004). The
Brglman, L. (1999). Predllctlon games and arcing algo- dynamics of AdaBoost: Cyclic behavior and conver-
rithms. Neural Computationi1, 1493-1517. gence of margins.J. Machine Learning Research,

Crammer, K., & Singer, Y. (2000). On the learnability and 1557-1595.
design of output codes for multiclass probler@ampu-

tational Learing Theorypp. 35-46). Schapire, R. E. (1997). Using output codes to boost multi-

class learning problem®roc. 14th Int'l Conf. Machine
Dietterich, T. G. (2000). An experimental comparison of ~Learning(pp. 313-321). Nashville, TN, USA.
three methods for constructing ensembles of decisio .
trees: Bagging, boosting, and gEandomizatidﬂllachine %chaplre, R. E'Z Freund, Y". I?:artlett, P. & Lee’ W. S.
Leaming 40, 139-157. (1998_). Boosting the margin: a new explananon_ f(_)r the
effectiveness of voting methodBhe Annals of Statistics
Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass 26, 1651-1686.

learning problems via error-correcting output codés.
Artificial Intelligence Researcl2, 263—-286.



