
Learning to Learn Second-Order Back-Propagation
for CNNs Using LSTMs

Anirban Roy
SRI International

Menlo Park, USA
anirban.roy@sri.com

Sinisa Todorovic
Oregon State University

Corvallis, USA
sinisa@eecs.oregonstate.edu

Abstract—Convolutional neural networks (CNNs) typically suf-
fer from slow convergence rates in training, which limits their
wider application. This paper presents a new CNN learning
approach, based on second-order methods, aimed at improving:
a) Convergence rates of existing gradient-based methods, and b)
Robustness to the choice of learning hyper-parameters (e.g., learn-
ing rate). We derive an efficient back-propagation algorithm for
simultaneously computing both gradients and second derivatives
of the CNN’s learning objective. These are then input to a Long
Short Term Memory (LSTM) to predict optimal updates of CNN
parameters in each learning iteration. Both meta-learning of the
LSTM and learning of the CNN are conducted jointly. Evaluation
on image classification demonstrates that our second-order back-
propagation has faster convergences rates than standard gradient-
based learning for the same CNN, and that it converges to better
optima leading to better performance under a budgeted time for
learning. We also show that an LSTM learned to learn a small
CNN network can be readily used for learning a larger network.

I. INTRODUCTION

Convolutional neural networks (CNNs) have led to great
advances in science and technology. CNNs are typically learned
using stochastic gradient descent (SGD), or its more sophis-
ticated variants, leveraging back-propagation [1]. However,
these methods exhibit slow convergence rates for the highly
nonconvex learning objectives of CNNs [2], [3], and their
convergence is sensitive to the choice of hyper-parameters.

This paper presents a new learning approach to estimating
parameters of a CNN, aimed at improving: (1) Convergence
rates of existing gradient-based learning methods, and (2)
Robustness to the choice of learning hyper-parameters. Our
objectives (1) and (2) are constrained such that performance of
the CNN should not be compromised relative to the gradient-
based training of the same CNN.

Prior work considers: (i) Gradient values of the previous
iteration as a momentum for updating CNN parameters in the
next iteration [2], [3]; (ii) Curvature of the learning objective
function as a second-order cue to automatically adjust the
learning rate of SGD [4], [5], [6], [7]; and (iii) Efficient
approximations of the Hessian for conducting quasi-Newton
optimization [6], [7]. However, these approaches typically use
hand-designed heuristics (e.g., heuristic approximation of the
Hessian) tailored to a specific task that the CNN is trained for,
e.g., image classification or object detection. Also, most second-
order methods, which approximate the Hessian for efficiency,

Fig. 1: Overview of our approach to learn a CNN with parameters θ = {θn}
and objective L. At tth iteration, we use LSTMs to predict optimal updates
∆θtn for each parameter θn, given the respective gradient gtn and second
derivative htn of L as input.

cannot handle large deep networks with millions of parameters,
with a few exceptions [4], [5] that use only the main diagonal
of the Hessian matrix.

Motivation. In this paper, we resort to the framework of
second-order methods. We are motivated by recent findings
that deep learning objectives are typically characterized by
numerous “plateau” regions with near-zero gradient values
[7], [8], [9]. Also, as the number of hidden units in a neural
network increases, any given critical point of a deep-learning
objective function is more likely to be a saddle point than
a local minimum [7], [8]. Consequently, first-order gradient-
based learning is bound to have a slow convergence rate due to
frequent “passes” through the “plateau” regions. For speeding-
up the convergence, it seems critical to account for the Hessian,
and in this way avoid the “plateau” regions. However, the
main challenge is that computing the Hessian is prohibitively
expensive both computationally and memory-wise.

Our Approach. To address this issue, we derive an effi-
cient back-propagation, which simultaneously (thus efficiently)
computes both gradients and second derivatives of the CNN’s
learning objective. At tth iteration, these gradients gt and
second derivatives ht are then used to estimate optimal updates
∆θt of CNN parameters as

θt+1 = θt + ∆θt(gt,ht). (1)

Our key contribution is to employ a Long Short Term
Memory (LSTM) [10] to learn to estimate ∆θt, as shown in
Fig. 1. An LSTM is a recurrent neural network with memory.
Our LSTM takes gradients gt and second derivatives ht as
input, and uses a memory of previous learning iterations to



predict ∆θt for the next iteration. As the LSTM is used in
learning a CNN, then learning the LSTM represents meta-
learning [11], [12], [13], [19]. Importantly, in our approach,
both the meta-LSTM and the CNN are learned jointly.

LSTMs are suitable for our purposes for a number of reasons.
First, they could capture long- and short-range dependences of
sequential updates of CNN parameters. In this way, LSTMs
facilitate avoiding “plateau” regions of the learning objective.
Second, our meta-learning of the LSTM directly overcomes
the issue of choosing optimal hyper-parameters (e.g., learning
rate), as they are meta-learned.

Closely Related Previous Work on the second-order opti-
mization in deep learning [14], [15], [5], [7] typically uses the
additional curvature cues to automatically adjust the learning
rate, and thus better navigate through the plateaus and saddle
points. Due to the size of the network, approximate Hessian-free
or Quasi-Newton approaches [5], [7] or a diagonal Hessian
matrix [4], [5] are usually adopted in practice. As there is
no efficient way of computing even the main diagonal of the
inverse Hessian [14], we consider the approximate computation
of the diagonal, following [4]. While majority of meta-learning
approaches rely only on gradient based cues as inputs to their
respective meta-leaners [11], [12], [13], [19], in contrast, we
additionally consider second derivatives which results in our
faster convergence.

Evaluation. We evaluate our approach on the task of image
classification. First, we learn parameters of a standard CNN
for image classification on the MNIST [16], CIFAR-10 [17]
and ImageNet [18] datasets. In comparison with the standard
hand-designed optimization methods, our approach achieves
faster convergence rates and better performance with minor
increase in computation. Second, following [19], we evaluate
the generalization capability of our learning. Specifically, the
meta-LSTM is learned to optimize parameters of a small
network, and then the same LSTM is used for learning a
larger network.

II. A REVIEW OF CNN LEARNING

This section gives an overview of learning CNN parameters.
Let L(θ) denote the CNN’s learning objective (e.g., loss
function) over the parameter space θ ∈ Θ. The goal of CNN
learning is to estimate optimal parameters θ∗ by minimiz-
ing the objective, θ∗ = arg minθ∈Θ L(θ). This optimization
problem can be iteratively solved using gradient descent as
θt+1 = θt − αtgt, where gt = ∂L

∂θt is the gradient of L, and
αt is the learning rate at iteration t.

Second-order methods consider a local approximation of
L using the second-order Taylor expansion, L(θ + ∆θ) ≈
L(θ) + g>∆θ+ 1

2∆θ>H∆θ, where g and H are the gradient
and Hessian of L at θ. Following the Newton’s method, this
gives the following parameter updates:

θt+1 = θt − αt(Ht)
−1
gt. (2)

As computing the inverse of the Hessian in (2) is pro-
hibitively expensive for large CNNs, following [4], [7], we

Fig. 2: A multi-layer CNN. i, j, k are indices or neurons on layers l−1, l, l+1
respectively. ok represents neurons at the output layer.

consider only the second derivatives of L that are on the main
diagonal of the Hessian:

∂2L
∂θlj′i′∂θ

l
ji

=


∂2L
∂θlji

2 if i = i′ and j = j′

0 otherwise

(3)

where θlji is the weight between neuron j at layer l and neuron
i at layer l − 1. We denote the resulting approximate Hessian
matrix Ĥ as H ≈ Ĥ = diag(h), where h : hlji = ∂2L

∂θlji
2 is the

main diagonal of H. We will use Ĥ in one of our quasi-Newton
baselines to compare with our meta-LSTM based method. This
quasi-Newton baseline specifies the following updates:

θlji = θlji − α
∂L/∂θlji
∂2L/∂θlji

2 . (4)

From (1) and (4), it follows that our meta-LSTM serves to learn
to optimally compute the ratio −α ∂L/∂θlji

∂2L/∂θlji
2 in each iteration.

Note that h can be iteratively estimated [6], [5]; however, this
increases complexity and also makes it harder to incorporate
into the popular back-propagation based learning framework.

Instead, we derive a second-order back-propagation algo-
rithm, aimed at approximately computing the elements of h
using only one forward and one backward pass through the
CNN. Note that our complexity is of the same order as the
standard gradient computation in back-propagation.

III. SECOND-ORDER BACK-PROPAGATION

In a CNN with L layers, illustrated in Fig. 2, neurons at
consecutive layers are connected such that neuron j at layer l
and neuron i at layer l − 1 are connected with an edge with
weight θlji. Let zlj denote the total input to neuron j at layer l,
zlj =

∑
i θ
l
jia

l−1
i (we drop the bias terms for simplicity), where

alj = σ(zlj) is the corresponding non-liner activation, and σ(·)
is a non-linear function (e.g., sigmoid, or ReLU). Using this
notation, below, we define the following partial derivatives.

∂alj
∂zlj

= (σlj)
′,
∂2alj

∂zlj
2 = (σlj)

′′,
∂zlj
∂θlji

= al−1
i ,

∂alj

∂al−1
i

= (σlj)
′θlji,

(5)
where for example (σlj)

′ = alj(1 − alj) and (σlj)
′′ = alj(1 −

alj)(1−2alj) for the sigmoid function. In the following, we use
the shorthand σ′ and σ′′ to denote (σlj)

′ and (σlj)
′′, respectively,

where the neuron’s layer and index are clear from the context.



Fig. 3: Computational graph of our approach. In each step t, we compute the
gradient gt, second derivatives ht of the objective function L corresponding
to the current parameters θt. These are input to the LSTM for computing the
update ut. The LSTM is parameterized by the parameters φ and its hidden
states xt. Both θ and φ are learned jointly using back-propagation through
time. All LSTMs have shared parameters, but separate hidden states.

A review of gradient based updates. The standard gradient
based back-propagation at any particular step is defined as

θlji = θlji − α
∂L
∂θlji

= θlji − α
∂L
∂alj

∂alj
∂zlj

∂zlj
∂θlji

,

= θlji − αδljσ′al−1
i ,

(6)

where δlj = ∂L
∂alj

and σ′ = (σlj)
′. δlj is defined recursively as

δlj =
∂L
∂alj

=
∑
k

∂L
∂al+1

k

∂al+1
k

∂alj
=
∑
k

δl+1
k σ′θl+1

kj , (7)

where σ′ = (σl+1
k )′. k indicates the neurons in layer l + 1

which are connected to jth neuron at layer l (Fig. 2).
The second-order term can be recursively computed as

∂2L
∂θlji

2 =

(
∂2L
∂alj

2σ
′2 +

∂L
∂alj

σ′′

)
(al−1
i )2

=
(
λljσ

′2 + δljσ
′′) (al−1

i )2,

(8)

where λlj = ∂2L
∂alj

2 , σ′ = (σlj)
′, and σ′′ = (σlj)

′′. λlj is defined
recursively as

λlj =
∂2L
∂alj

2 =
∑
k

(
∂2L
∂al+1

k

2

(
σ′θl+1

kj

)2
+

∂L
∂al+1

k

σ′′θl+1
kj

)
=
∑
k

(
λl+1
k

(
σ′θl+1

kj

)2
+ δl+1

k σ′′θl+1
kj

)
,

(9)
where σ′ = (σl+1

k )′ and σ′′ = (σl+1
k )′′. k indicates the neurons

in layer l + 1 which are connected to jth neuron at layer l
(Fig. 2). Detailed derivation of (8) and (9) is provided in the
appendix. From (8) and (9), it can be seen that back-propagation
of gradient and second-order derivatives can be performed
jointly in a single backward pass through the network. Due to
this, the running of our proposed meta-learned is comparable
to that of the state-of-the-art optimizers (e.g., RMSprop [2]
and ADAM [3]).

IV. LEARNING THE UPDATE FUNCTION

The updates of CNN parameters in our quasi-Newton
baseline, given by (4), are based on local approximation of the
function L(θ). These update steps are deterministically taken

based on the current state of optimization, and are not affected
by the previous steps. It is likely that better convergence rates
could be achieved if the updates were estimated based on the
history of previous updates as shown in RMSprop [2] and
ADAM [3] update rules. To this end we replace the heuristic
update rules of (4) with a learned update function. This new
update function is implemented using the meta-LSTM. Both
the meta-LSTM and the CNN parameters are learned with
back-propagation through time (BPTT), which incorporates
cues from previous learning iterations in subsequent updates
of the LSTM and CNN parameters. At iteration t, we learn an
update ut as follows

θt+1 = θt + ut,[
ut,xt+1

]
= LSTM(gt,ht,xt,φ)

(10)

where the update ut is computed by the LSTM taking the
gradient gt and second-derivative ht as inputs. The hidden
state of the LSTM is denoted by xt which is updated in each
time step. LSTM parameters are denoted as φ. Note the both
θ and φ are learned jointly through BPTT.

Lets assume the final parameters of the CNN as θ∗ which
depends of the underlying CNN objective L and the parameters
of the update function, i.e., φ. Now we need to define an
objective function for the LSTM to learn its parameters φ.
Given a distribution of functions L we can express the LSTM
objective as an expected loss

E(φ) = EL [L(θ∗;φ)] . (11)

It can be noted that the objective function in (11) depends
only on the final parameters θ∗. For training the LSTM to
incorporate cues from previous time steps, it will be convenient
to have an objective that depends on the entire trajectory of
optimization, for some finite horizon T ,

E(φ) = EL

[
T∑
t=1

wtL(θt)

]
, (12)

Where wt ≥ 0 are arbitrary weights associated with each time-
step. gt and ht are the gradient and Hessian, respectively, of
the function L at θt. Note that this formulation is equivalent to
(11) when wt = 1[t = T ]. Our learning framework is shown
in Fig. 3.

To train the LSTM, we aim to optimize E(φ) using gradient
descent on φ. The gradient estimate ∂E(φ)/∂φ can be
computed by sampling a random function L and applying
back-propagation to the computational graph, shown in Fig. 3.
We allow gradients to flow along the solid edges in the graph,
but gradients along the dashed edges are dropped. Ignoring
gradients along the dashed edges amounts to making the
assumption that the gradients of the CNN, i.e., θ do not
depend on the LSTM parameters, i.e., φ. Which leads to
∂gt/∂φ = 0 and ∂ht/∂φ = 0. This assumption allows us to
avoid computing derivatives of L with respect to φ.

Note that in (12) the gradient is non-zero only for terms
where wt 6= 0. For simplicity, we consider wt = 1 for every t.
This allows us to train the optimizer on partial trajectories.



A. LSTM Implementation of the Update Function

Optimizing millions of parameters in modern CNNs along
with parameters of a fully connected LSTM is not scalable, as
it requires a huge hidden state and an enormous number of
parameters to model such state. Thus, we use an LSTM that
operates coordinate-wise on the parameters of the objective
function, similar to other common update rules like RMSprop
[2] and ADAM [3]. This coordinate-wise network architecture
allows us to use a very small network that only operates on a
single coordinate of the optimizer. For scalability, LSTM share
parameters across different parameters of the CNN.

As the LSTMs are learned coordinate-wise, once learned,
it can be generalized to a CNN with arbitrary number of
parameters. We evaluate the generalization capability of meta-
learning in the results section. We implement the update rule
for each coordinate using a two-layer LSTM network [10],
using the forget gate architecture. The network takes as input
the CNN gradient and second-order derivatives for a single
coordinate as well as the previous hidden state and outputs the
update for the corresponding updates ut for CNN parameter.

The use of recurrence allows the LSTM to learn dynamic
update rules which integrate information from the history of
gradients, similar to momentum. This is known to have many
desirable properties in convex optimization (e.g., [20]) and in
fact many recent learning procedures such as ADAM [3] uses
momentum in their updates.

V. RESULTS

Experimental setup. We follow the experimental setup of
[19] which considers learned gradient updates to train CNNs
and can be considered as a reasonable baseline to justify the
importance of second derivatives in meta-learning. We use two-
layer LSTMs with 20 hidden units in each layer. The BPTT
optimization is learned using the ADAM optimizer where the
learning rate is chosen through a random search. We consider
T = 20 as the length of time horizon. We consider CNNs
consisting of two types of parameters: convolutional and fully
connected parameters. For each type of parameters, we learn
specific LSTMs. LSTMs share parameters across the units but
the units maintain distinct hidden states.

Datasets. We consider the image classification task and
evaluate the learning approach on three benchmark datasets:
MNIST [16], CIFAR-10 [17], and ImageNet [18]. The MNIST
digit dataset consists 28x28 images of the 10 handwritten
digits. There are 60,000 training images and 10,000 test images.
The CIFAR-10 dataset consists 60000 32x32 color images of
10 classes with 6000 examples per class. There are 50,000
training images and 10000 test images. Finally, we consider
the Imagenet ILSVRC 2014 consisting 1.2 million training
images of 1000 object classes and 100,000 test images.

CNN architecture. We consider a CNN architecture suitable
for image classification as in [21]. For MNIST and CIFAR-10
datasets, we consider a CNN with 3 convolutional layers and
2 fully connected layers with 32 neurons. Convolutional layers
consist of 5x5 filters and 64 feature maps for each layer with
ReLU activation. For Imagenet, we consider 5 convolutional

layers and 2 fully connected layers with 4096 neurons. The
dimension of feature maps for five convolutional layers are 64,
256, 512, 512, 512, respectively.

Baselines. We consider the following baselines.
• Sub-gradient descent (SGD) : Here we use the vanilla

SGD to update parameters.
• RMSprop [2]: In this approach, the learning rate is

divided by an exponentially decaying average of squared
gradients. The decay rate is set to 0.9 while computing
the running average of the squared gradients.

• ADAM [3]: In addition to storing an exponentially decay-
ing average of previous squared gradients like RMSprop,
ADAM also keeps an exponentially decaying average of
past gradients which is commonly known as momentum.
The decay rate is set to 0.9 for momentum and 0.99 for
squared gradients.

• LSTM [19]: This approach uses an LSTM to learn the
update function based on only gradients. Comparison with
this approach justifies the importance of considering the
second derivatives in the update function

• Second order updates (SOU): To justify the importance
of learning of the second-order cues in parameter updates,
we define this baseline where gradient steps are scaled
using the Hessian matrix as in (2). We consider the
approximate diagonal Hessian Ĥ.

We call our approach second-order LSTM (SLSTM). We
compare SLSTM with the above-mentioned baselines on
MNIST, CIFAR-10, and ImageNet datasets. In case of MNIST
dataset, we sample random minibatches in each step of learning
and update the SLSTM parameters. Then performance is
evaluated on the test set keeping the optimizer fixed after
each step. On MNIST, we evaluate our approach for a limited
100 steps compared with the baselines approaches in term of
loss and error metrics. We present the loss vs. steps and error
vs. steps plots in Fig. 4. In case of CIFAR-10 dataset, we train
our SLSTM on the training set and apply the learned optimizer
to fit an unseen test data. Corresponding loss vs. steps and
error vs. steps plots are shown in Fig. 5. Similar to CIFAR-10,
on ImageNet, we train the optimizer on the training set and
use validation set to fit the optimizer. We present the error vs.
steps plots in Fig. 6.

We see from the above comparisons that though other
optimization methods are able to achieve similar loss values as
SLSTM but our SLSTM converges faster than other baselines
on all the datasets. Note that in case of the MNIST dataset
(Fig. 4), our approach achieves better loss and error values
when the optimization is run for a limited number of steps.
Also, our SLSTM not only minimizes the desired loss function
during training, it also achieves low error measure during
testing (loss vs .steps plots in Fig.4, 5, and 6). This implies
that SLSTM does not learn to minimize the loss function by
overfitting the training data.

Superior convergence rate of SLSTM compared to the hand-
designed gradient-based approaches, e.g., SGD, RMSprop, and
ADAM justify the efficiency of learning based updates to
train CNNs. SLSTM also outperforms LSTM and SOU, which



justifies the importance of considering second derivatives in
the learned update function. Performance on ImageNet (Fig. 6)
justifies that our SLSTM approach is scalable to bigger network
and can be applicable to large-scale problems. As during
training a CNN, randomly chosen samples can introduce
uncertainty in training, we run SLSTM and other baseline
approaches for five iterations and report averaged metrics.

Generalization of the LSTM learner. One important aspect
of the learning based approach is that the update function
learns a general policy to update individual parameters, based
on the corresponding gradient and second derivative. Thus,
once learned for any network, the learned update functions can
be transferred to learn parameters of a new network as long as
the gradient and second-derivatives are available. Recall that
we learn distinct LSTMs for all the CNN parameters. Thus
the learned LSTM modules can be easily exported to train
a network with arbitrary number of parameters. To test the
generalization capability, we perform an experiment where
we learn the update function for a small network with 1
convolutional layer and 1 fully connected layer. Then the
learned LSTM is used to train a bigger network with 3
convolutional layers and 2 fully connected layers. Moreover,
we only consider 5 object classes during training while test set
consists of 10 object classes. We perform the experiments on
CIFAR-10 dataset and the results are shown in Fig. 7. Note that
SLSTM outperforms the baselines while applied to learn a new
network on a novel dataset, even though it is not specifically
learned for that network.

VI. CONCLUSION

We have presented a new meta-learning approach to estimat-
ing CNN parameters leveraging recent advances in second-order
optimization. Our key contribution is to employ a meta-LSTM
that takes the gradients and second derivatives as input, and uses
its memory of previous iterations to predict updates of CNN
parameters for the next iteration. Learning of the meta-LSTM
and CNN is done jointly. We have evaluated our approach on
the task of image classification on three benchmark datasets:
MNIST, CIFAR-10, and ImageNet. Our approach achieves
faster convergence and better performance compared to the
gradient based counterpart. Also the results demonstrates that
out meta-LSTM learned for small networks generalizes well
to learn a new larger network.

APPENDIX

Computing the Second-Order Derivatives. In this section,
we explain the computation of the second derivatives as
mentioned in (8) and (9). We assume a multilayer neural
network architecture as described in Sec. III in Fig. 2 which
can be easily extended to any network, such as CNNs..

Our goal is the compute the main diagonal of Hessian with
respect to the loss term L, i.e., ∂2L

∂θlji
2 where we assume the

network is feed-forward and neurons are arranged layer-wise.
Furthermore, we assume, there are no skip connections in the
network. Following [4], [22], we compute the diagonal Hessian
as follows

hlji =
∂2L
∂θlji

2 =

∂
∂L
∂θlji
∂θlji

=

∂
∂L
∂alj

∂alj
∂zlj

∂zlj
∂θlji

∂θlji
,

=

(
∂2L
∂alj

2σ
′2 +

∂L
∂alj

σ′′

)
(al−1
i )2,

(13)

where we use the shorthand σ′ = (σlj)
′ and σ′′ = (σlj)

′′.
Note that the above-mentioned expression is inherently re-
cursive. When l = L, i.e., in the final layer, the derivatives
are computed based on the loss function directly. Otherwise,
derivatives are computed (and back-propagated) based on the
layer above. Error derivatives depend on the loss function,
for example, if we consider the cross-entropy loss, then at
the final layer, ∂L

∂aLj
= −

∑
k
ok
aLj

and ∂2L
∂aLj

2 =
∑
k
ok
aLj

2 , where

ok ∈ {0, 1} is the ground-truth for k the class. For squared
distance error, similarly, ∂L

∂aLj
= −(ok − aLj ) and ∂2L

∂aLj
2 = 1.

For an intermediate layer l 6= L, ∂2L
∂alj

2 and ∂2L
∂alj

2 are computed
from the layer above like standard back-propagation. We show
the computation of the second derivative, i.e., ∂2L

∂alj
2 and ∂2L

∂alj
2

is computed as standard gradient back-propagation

λlj =
∂2L
∂alj

2 =

∂
∂L
∂alj
∂alj

=

∂

(∑
k

∂L
∂al+1

k

∂al+1
k

∂alj

)
∂θl+1
kj

,

=
∑
k

(
∂2L
∂al+1

k

2

(
σ′θl+1

kj

)2
+

∂L
∂al+1

k

σ′′θl+1
kj

) (14)

where σ′ = (σl+1
k )′ and σ′′ = (σl+1

k )′′.

ACKNOWLEDGMENT

This work was supported in part by DARPA XAI Award
N66001-17-2-4029

REFERENCES

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” Tech. Rep., 1985.

[2] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural
networks for machine learning, vol. 4, no. 2, 2012.

[3] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
ICLR, 2014.

[4] S. Becker, Y. Le Cun et al., “Improving the convergence of back-
propagation learning with second order methods,” in Proceedings of
the 1988 connectionist models summer school, 1988, pp. 29–37.

[5] J. Martens, I. Sutskever, and K. Swersky, “Estimating the hessian by
back-propagating curvature,” in ICML, 2012.

[6] O. Vinyals and D. Povey, “Krylov subspace descent for deep learning.”
in AISTATS, 2012.

[7] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and
Y. Bengio, “Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization,” in NIPS, 2014.

[8] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun,
“The loss surfaces of multilayer networks.” in AISTATS, 2015.

[9] K. Kawaguchi, “Deep learning without poor local minima,” in NIPS,
2016.

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.



(a) (b)

Fig. 4: Comparison of our SLSTM to the baselines in terms of a) Loss and (b) Error(%) vs. steps on the MNIST dataset.

(a) (b)

Fig. 5: Comparison of our SLSTM to the baselines in terms of a) Loss and (b) Error(%) vs. steps on the CIFAR-10 dataset.

Fig. 6: Loss vs. steps plot corresponding to the baselines and our approach
(SLSTM) on the ImageNet dataset.

Fig. 7: Loss vs. steps plot on the CIFAR-10 dataset where we learn the
LSTM with a smaller network and then use it to train a bigger network.

[11] J. Schmidhuber, “Learning to control fast-weight memories: An alterna-
tive to dynamic recurrent networks,” Neural Computation, vol. 4, no. 1,
pp. 131–139, 1992.

[12] ——, “A neural network that embeds its own meta-levels,” in ICNN,
1993.

[13] S. Thrun and L. Pratt, Learning to learn. Springer Science & Business
Media, 2012.

[14] J. Martens, “Deep learning via hessian-free optimization,” in ICML, 2010.
[15] O. Chapelle and D. Erhan, “Improved preconditioner for hessian free

optimization,” in NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, 2011.

[16] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[17] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” 2009.

[18] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in CVPR, 2009.

[19] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, and N. de Freitas, “Learning to learn by gradient descent by
gradient descent,” in NIPS, 2016.

[20] Y. Nesterov, “A method of solving a convex programming problem with
convergence rate o (1/k2),” in Soviet Mathematics Doklady, vol. 27, no. 2,
1983, pp. 372–376.

[21] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-adaptation
of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[22] W. L. Buntine and A. S. Weigend, “Computing second derivatives in feed-
forward networks: A review,” IEEE transactions on Neural Networks,
vol. 5, no. 3, pp. 480–488, 1994.


