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Abstract— In this paper, we develop a unified vision
system for small-scale aircraft that not only addresses basic
flight stability and control, but also enables more intelligent
missions, such as ground object recognition and moving-
object tracking. The proposed system defines a framework
for real-time image feature extraction, horizon detection
and sky/ground segmentation, and contextual ground object
detection. Multiscale Linear Discriminant Analysis (MLDA)
defines the first stage of the vision system, and generates a
multiscale description of images, incorporating both color
and texture through a dynamic representation of image
details. This representation is ideally suited for horizon
detection and sky/ground segmentation of images, which we
accomplish through the probabilistic representation of tree-
structured belief networks (TSBN). Specifically, we propose
incomplete meta TSBNs (IMTSBN) to accommodate the
properties of our MLDA representation and to enhance the
descriptive component of these statistical models. In the last
stage of the vision processing, we seamlessly extend this
probabilistic framework to perform computationally efficient
detection and recognition of objects in the segmented ground
region, through the idea of visual contexts. By exploiting
visual contexts, we can quickly focus on candidate regions
where objects of interest may be found, and then perform
additional analysis for those regions only. Throughout, our
approach is heavily influenced by real-time constraints and
robustness to transient video noise.

I. INTRODUCTION

Over the past several years, researchers at the Uni-

versity of Florida have established an active program in

developing Micro Air Vehicles (MAVs) and small UAVs

with maximum dimensions ranging from 5 to 24 inches

[1], [2]. This paper substantially advances our previous

work on vision-based flight stabilization for these flight

vehicles [2], [3], by considering robust stabilization in less

benign settings, and in developing a unified vision-based

framework for control, tracking and recognition of ground

objects to enable intelligent mission profiles.

Imparting MAVs with autonomous and/or intelligent

capabilities is a difficult problem, due to their stringent

payload requirements and the relative inadequacy of cur-

rently available miniature sensors suitable for these small-

scale flight vehicles. The one sensor that is absolutely

critical for almost any potential MAV mission (e.g. remote

surveillance), however, is an on-board video camera. While

an on-board camera is essential for a remote human

supervisor, it also offers a wealth of information that

can be exploited in vision-based algorithms for guidance

and control of MAVs. As such, this paper presents a

unified computer vision framework for MAVs that not

only addresses basic flight stability and control, but also

enables more intelligent missions, such as ground object

recognition and moving-object tracking. In this framework,

we first seek to extract relevant features from the flight

video that will enable higher level goals. Then, we apply

this image representation towards horizon detection and

sky/ground segmentation for basic flight stability and con-

trol. Finally, we extend this basic framework through the

idea of visual contexts to perform object recognition in the

flight video. Throughout, the most important factors that

inform our design choices for the vision system are: (1)

real-time constraints, (2) robustness to video noise, and (3)

complexity of various object appearances in flight images.

Our paper is organized as follows. In Section II, we

briefly review Multiscale Linear Discriminant Analysis

(MLDA), motivate it as our principal feature representation,

and illustrate how it naturally allows us to perform horizon

detection. Then, in Section III, we present incomplete

meta tree-structured belief networks (IMTSBNs) and dis-

cuss their appropriateness for the problem of sky/ground

segmentation. Next, the context-based object recognition

algorithm is explained in Section IV. Finally, in Section V,

we demonstrate the performance of the proposed unified

computer vision system.

II. MLDA AND HORIZON DETECTION

A. Multiscale Linear Discriminant Analysis

Our choice of feature selection is largely guided by

extensive prior experimentation [4], [5], from which we

conclude that a prospective feature space must span both

color and texture domains. Recently many new image

analysis methods, such as wedgelets, ridgelets, beamlets,

etc. [6], [7] have been proposed. Aside from the multiscale

and localization properties of wavelets [8], these methods

exhibit characteristics that account for concepts beyond

the wavelet framework, as does our approach to feature

extraction and image representation–namely, Multiscale
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(a) (b)

Fig. 1. (a) MLDA atom; (b) MLDA dyadic decomposition.

Linear Discriminant Analysis (MLDA) [9]. Not only does

MLDA overcome the shortcomings of wavelets, but it also

incorporates color information.

Limited space does not permit a detailed discussion of

MLDA; see [9] for a more comprehensive treatment. Here,

we illustrate the essentials of MLDA through Figures 1 and

2. In MLDA, we first seek linear discriminants through

multiple scales that maximize the Mahalanobis distance J

between the RGB color distributions of the two regions on

either side of the linear discriminants. Figure 1a illustrates

this concept for a square image as a whole, while Fig-

ure 1b does so for finer scales. Given this decomposition,

individual MLDA atoms (e.g. discriminants) can naturally

be represented as a tree T . However, the distance J will

obviously differ for different dyadic squares in the MLDA

representation. For example, dyadic squares with relatively

uniform color distributions or at finer scales will exhibit

smaller distances J between color distributions. Since

these discriminants are less useful features, we control

the complexity of the MLDA tree T by pruning those

MLDA atoms (e.g. discriminants) or whole subtrees from

the complete tree T . Thus, our final image representation

leads to an incomplete tree, as depicted in Figure 2.

Examples of MLDA-represented images can be found

throughout this paper. Note that MLDA implicitly encodes

information about spacial frequencies in the image (i.e.

texture) through the process of tree pruning, and that the

MLDA tree can easily be examined for spacial interrela-

tionships of its linear discriminants, such as connectedness,

collinearity, and other properties of curves in images.

Therefore, MLDA is appropriate for computer-vision tasks

where both color and texture are critical features.

B. Horizon detection through MLDA

The MLDA framework presents an efficient solution

to the horizon-detection problem, incorporating our ba-

sic assumptions that the horizon can be interpolated by

piecewise linear approximations (i.e., linear discriminants),

and that the horizon separates the image into two ho-

mogeneous regions. In benign flight video, the horizon-

detection problem can be adequately solved by computing

only the root atom of the MLDA tree, where the linear

discriminant of the root is the optimal solution for the

horizon estimate, as illustrated in Figure 3; in fact, the

(a) (b)

Fig. 2. (a) MLDA graph: the dashed line depicts the actual curve;
(b) corresponding MLDA tree: ellipsoid nodes represent the leaf MLDA
atoms.

Fig. 3. (a) original image; (b) optimization criterion J as a function of
bank angle and pitch percentage, that is, vertices along the perimeter of
the image; (c) resulting classification of sky and ground pixels in RGB
space.

work presented in [2], [3] is equivalent to this special

case. There are, however, unfavorable image conditions

(e.g., when the horizon is not a straight line and/or an

image is corrupted by video noise), when it is necessary to

examine discriminants at finer MLDA scales. For example,

in Figure 4, we show that the discriminant of the root

MLDA atom does not coincide with the true horizon due

to video noise. Expanding the MLDA tree corresponds to

image filtering and leads to more accurate positions for

the linear discriminants, which then give more accurate

evidence of the true horizon’s location in the image. Also,

in Figure 5, we show an example, where MLDA detects

the true horizon more correctly, as compared to a single-

line discriminant. Additional examples and videos can be

found at http://mil.ufl.edu/∼nechyba/mav.

(a) (b) (c)

Fig. 4. MLDA efficiently filters video noise: (a) noise-degraded original
image; (b) MLDA root atom with the discriminant not equal to the true
horizon; (c) MLDA atoms at finer scales as clues for the true horizon
position.
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(a) (b) (c)

Fig. 5. Non-straight-line horizon: (a) original image; (b) the root MLDA
atom with the discriminant not equal to the true horizon; (c) MLDA atoms
at finer scales as clues for the true horizon position.

III. SKY/GROUND SEGMENTATION

The horizon detection algorithm determines only the

line separating sky and ground regions, which proves

sufficient for vision-based flight control under benign

flight conditions [2], [3]. However, for complex mission

scenarios, correct identification of the sky and ground

regions, rather than just the line separating them, takes on

increased importance. To accomplish reliable sky/ground

image segmentation, we resort to a Bayesian framework,

choosing tree-structured belief networks (TSBNs) as the

underlying statistical models to describe the sky and

ground classes. There are several reasons for this choice of

model. Successful sky/ground segmentation implies both

accurate classification of large regions, as well as distinct

detection of the corresponding boundaries between them.

To jointly achieve these competing goals, both large and

small scale neighborhoods should be analyzed; this can be

achieved through the multiscale structure of TSBNs that

naturally arises from our multiscale image representation

(i.e., MLDA). Further, it is necessary to employ a powerful

statistical model that is able to account for enormous

variations in sky and ground appearances, due to video

noise, lighting, weather, and landscape variability. Finally,

prior work presented in the computer vision literature

(e.g. [10]) clearly suggests that TSBNs possess sufficient

expressiveness for our goals.

A tree-structured belief network (TSBN) is a generative

model comprising hidden and observable random variables

(RVs) organized in a tree structure T . In supervised learn-

ing problems, such as our formulation of the sky/ground

segmentation problem, an observable RV y represents an

(a) (b)

Fig. 6. Differences in TSBN models: (a) “standard” complete TSBN;
(b) incomplete TSBN: leaf nodes (depicted black) may occur at coarser
resolutions due to MLDA-tree pruning.

(a) (b)

Fig. 7. (a) Zoomed-in look at Fig. 6b: statistical dependencies among
parent and children nodes; (b) zoomed-in square from (a): observables
are mutually independent given the corresponding hidden RVs.

extracted feature vector (i.e., MLDA atom in our case)

and the corresponding hidden RV x identifies the image

class, k ∈ C of y. As is common for TSBNs, the edges

between the nodes, representing x’s, describe Markovian

dependencies across the scales, whereas y’s are assumed

mutually independent given the corresponding x’s, as

depicted in Figure 6.

There are, however, substantial differences between

our approach and the standard TSBN treatment in the

graphical-models literature (e.g., [10], [11]). First, our

TSBN model corresponds one-to-one to the MLDA tree.

Therefore, due to MLDA-tree pruning, leaf nodes of a

TSBN may occur at coarser resolutions as well as at the

pixel level, resulting in an incomplete tree structure (see

Figure 6b). Second, we enhance the descriptive component

of TSBNs by incorporating observable information at all

levels of the TSBN model, not only at the lowest pixel

level. Thus, to each MLDA atom in the MLDA tree, we

assign a pair of observable RVs, (yi0, yi1), modeling µ0

and µ1 RGB pixel color values. Clearly, the corresponding

pair of hidden RVs, (xi0, xi1), models the image classes

of µ0 and µ1. Third, Markovian dependencies among x’s

across scales model the relation that a parent MLDA atom

generates four children MLDA atoms. Given that i is a

child of j, it follows that both xi0 and xi1 have the same

parents xj0 and xj1, as illustrated in Figure 7a. Therefore,

our statistical model is not a tree in the strict sense of the

word; however, pairs (xi0, xi1), ∀i ∈ T , form a tree struc-

ture, allowing us to use the belief-network formalism. To

emphasize all the aforementioned differences between our

model and “standard” TSBNs, we refer to our model as the

incomplete meta tree-structured belief network (IMTSBN).

The state of a node, xia, is conditioned on the state

of its parents, xjb, and is given by conditional probability

tables, P kl
ijab, ∀i, j ∈ T , a, b ∈ {0, 1}, ∀k, l ∈ C. It follows

that the joint probability of all hidden RVs, X = {xia},

can be expressed as

P (X) =
∏

i,j∈T

∏

a,b∈{0,1}

∏

k,l∈C

P kl
ijab . (1)

We assume that the distribution of an observable RV, yia,

depends solely on the node state xia. Consequently, the
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joint pdf of Y = {yia} is expressed as

P (Y |X) =
∏

i∈T

∏

a∈{0,1}

∏

k∈C

p(yia|xia = k, θk
i ) , (2)

where p(yia|xia = k, θk
i ) is modeled as a mixture of

M Gaussians whose parameters are grouped in θk
i . We

usually simplify the notation as p(yia|xia = k, θk
i ) =

p(yia|xia). For large M , the Gaussian-mixture density can

approximate any probability density [12], in particular, the

distributions of image classes. In order to avoid the risk of

overfitting the models, we assume that θ′s are equal for all

i at the same scale. Finally, an IMTSBN is fully specified

by the joint distribution of X and Y given by

P (X, Y ) =
∏

i,j∈T

∏

a,b∈{0,1}

∏

k,l∈C

p(yia|xia)P kl
ijab . (3)

To learn the parameters of an IMTSBN, we itera-

tively maximize the conditional probability P (X |Y ), using

a probabilistic inference algorithm for TSBNs, broadly

known as Pearl’s λ − π message passing scheme [13],

[14]. In the image-processing literature similar algorithms

have been proposed [15], [16]. Essentially, all these algo-

rithms perform belief propagation up and down the tree,

where after a number of training cycles we obtain all

the tree parameters necessary to compute P (X |Y ). Note

that simultaneously with Pearl’s belief propagation, we

employ the EM algorithm [17] to learn the parameters of

the Gaussian mixture distributions. Since IMTSBNs have

observable RVs at all tree levels, the EM algorithm is

performed at all scales. Moreover, Pearl’s message passing

scheme is accommodated to sum λ messages over eight

children nodes for each parent when propagating upwards,

and to account for π messages of two parents for each child

node when propagating downwards (see Figure 7a). Thus,

the parameters of the prior models are learned through

extensive training, which can be performed off-line1. Once

learned, the parameters fully characterize the likelihoods

of image classes, given the pixel values. These likelihoods

are then submitted to a Bayes classifier to perform image

segmentation.

IV. OBJECT RECOGNITION USING VISUAL CONTEXTS

In our approach to object recognition, we seek to exploit

the idea of visual contexts [18], and, thus, to incorporate

the algorithms for flight stability and control (i.e., the

MLDA-based horizon detection and sky/ground segmen-

tation) into a unified framework. For clarity, Figure 8

illustrates the steps discussed below for a sample flight

image.

Having previously identified the overall type of

scene, we can then proceed to recognize specific ob-

jects/structures within the scene. Thus, objects (e.g., cars,

1In this case, there are no real-time constraints for training.

buildings), the locations where objects are detected (e.g.,

road, meadow), and the category of locations (e.g., sky,

ground) form a taxonomic hierarchy. There are two main

advantages to this type of approach. First, contextual

information helps disambiguate the identity of objects

despite the poverty of scene detail in flight images. Second,

visual contexts significantly reduce the search required to

locate specific objects of interest, obviating the need for

an exhaustive search for objects over various scales and

locations in the image.

For each image in a video sequence, we first compute

its MLDA representation and perform categorization–that

is, sky/ground image segmentation. Then, we proceed with

localization–that is, recognition of global objects/structures

(e.g., road, forest) in the ground2 region. Here, we we

extend the set of classes C from sky/ground, generalizing

the meaning of classes to any global object that may

appear in flight video. Thus, the results from Section III are

readily applicable, except that, since we label only ground

regions, we build an IMTSBN of smaller dimensions than

the image size and, thus, achieve significant computational

savings.

While MLDA proves sufficient for reliable identification

of global objects, it yields less reliable results for the

recognition of small objects. Therefore, in the next step

of the algorithm, our intention is not to actually recognize

and differentiate between particular objects, but rather to

detect candidate locations where objects of interest might

appear in the image. For this task, it is necessary to

resort to a more descriptive image representation than

merely µ0 and µ1 of MLDA atoms. Hence, we examine

spacial interrelationships of linear discriminants among

neighboring MLDA atoms, such as connectedness and

collinearity, since these types of geometric regularities

should be most evident in artificial objects, which we

seek to detect. Scanning the identified ground region in

the image, we analyze 3 × 3 boxes of leaf-level MLDA

atoms, checking whether neighboring linear discriminants

are parallel, perpendicular or collinear, though the size of

the analyzed window and testing procedure could easily be

tailored to other application requirements. The examined

image areas with the spacial frequency of the aforemen-

tioned geometric properties higher than an application-

dependent threshold are extracted as candidate locations

for object appearances.

To further examine the candidate object locations from

the previous step, it becomes necessary to consider im-

age analysis tools other than MLDA. The results of our

extensive experimentation [4], [5], where various feature

extraction methods have been investigated, suggest that the

2Recognition of objects in the sky region is of lesser importance to us;
however, if required, it can be easily incorporated into the algorithm.
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(a) (b) (c)

(d) (e) (f)

Fig. 8. The hierarchy of visual contexts conditions gradual image
interpretation: (a) a 64× 64 MAV-flight image; (b) MLDA image repre-
sentation; (c) categorization: sky/ground segmentation; (d) localization:
recognition of global objects; (e) detection of candidate object locations;
(f) car recognition using CWT and HSI features.

Complex Wavelet Transform (CWT) [19] together with

HSI color features yield robust and reliable object recog-

nition. Thus, having detected candidate object locations,

we proceed with new feature extraction of those particular

image regions, only. CWT and HSI coefficients form com-

plete quad-tree structures for which we then build TSBNs,

similar to the procedure explained in Section III. The

off-line training of TSBNs is performed for a predefined

set of image classes (over CWT and HSI features). For

instance, for remote traffic monitoring, a global object

road may induce a set of objects {car, cyclist, traffic

sign}. Consequently, for object recognition, we, in fact,

consider only a small finite number of image classes, which

improves recognition results.

Following inference down the hierarchy of visual con-

texts, we gradually perform categorization, localization and

object recognition, as demonstrated in Figure 8. For space

reasons, we present only the recognition of a global object

road, then, the detection of candidate object locations in

the ground region, and final recognition of an artificial

object car, though the algorithm performs simultaneous

searches over a larger set of objects. Obviously, the pro-

posed algorithm performs well despite video noise and the

poverty of image detail in the flight image.

V. RESULTS

Below, we report experimental results on the proposed

framework on a set of sample flight and other natural-

scene images. First, the MLDA feature extraction and our

horizon-detection algorithm has been demonstrated to run

at 30Hz on an Athlon 2.4GHz PC with a down-sampled

image resolution of 64×64. For the test images, represen-

tative samples of which are illustrated in Figure 3–5, our

horizon-detection algorithm correctly identifies the horizon

in over 99.9% of cases.

Second, for training IMTSBNs for the sky and ground

image classes, we used two sets of 500 sky and ground

training images. We carefully chose the training sets

to account for the enormous variability within the two

classes. For each image, first the MLDA representation

was found and then the corresponding IMTSBN model

was trained. The training time for 1000 images of both

classes takes less than 40s on an 2.4GHz x86 processor.

Correct segmentation takes only 0.03s–0.07s, depending

on the number of levels in the MLDA tree, for 64×64
image resolution. Clearly, the algorithm runs faster for

a small number of MLDA terminal nodes, but at the

cost of increased segmentation error. Note that while we

are very close to meeting our 30Hz processing goal, it

is not crucial for sky/ground segmentation, as long as

this segmentation is updated sufficiently often. In between

segmentation updates, horizon detection suffices for flight

stability and control.

Having trained our sky and ground statistical mod-

els, we tested the segmentation algorithm on 300 flight

images. For accuracy, we separated the test images into

three categories of 100 images each: (I) easy-to-classify

sky/ground appearances (e.g. clear blue sky over dark-

colored land), (II) challenging images due to landscape

variability, and (III) noise-degraded images. In Figure 9,

we illustrate classification performance on representative

test images from each category. To measure misclassifi-

cation, we marked the “correct” position of the horizon

for each image by visual inspection and then computed

the percentage of erroneously classified pixels. In Table I,

we summarize our segmentation results. Averaging results

seemed inappropriate, because only a small number of

test images in each category generated the larger error

percentages.

Third, object recognition tests have been carried out for

numerous types of objects, of which, for space reasons,

we present only results for the following image classes:

road, car, cyclist, traffic sign. For training TSBNs, we

carefully chose 100 MAV-flight images for each image

class. After experimenting with different image resolu-

tions, we found that reliable object recognition was achiev-

able for resolutions as coarse as 64×64 pixels. With this

resolution, the processing time of the object-recognition

procedure (i.e., sky/ground segmentation, road localization

and car/cyclist/traffic-sign recognition), ranges from 1s

TABLE I

PERCENTAGE OF SKY/GROUND MISCLASSIFIED PIXELS

category I category II category III

2% - 6% 2% - 8% 5% - 14%
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Fig. 9. Sky/ground segmentation of the three categories of test images:
(top) mountain view (category I); (center) water surface covered with
broken patches of ice similar in appearance to the sky (category II);
(bottom) noise-degraded MAV flight image (category III).

to 4s on an Athlon 2.4GHz PC, depending on image

complexity. Computing additional CWT and HSI features

for candidate object locations is the most time consuming;

therefore, we implement an optimization procedure that

adaptively selects the optimal feature subset, as discussed

in [5]. Thus, for simple images, where only one candidate

location is detected, and where only one feature (e.g.,

wavelet coefficients oriented in the direction of 15◦) is

used for pixel labeling, we achieve processing times of

about 0.5s, which is sufficient for the purposes of moving-

car or cyclist tracking. Moreover, for a sequence of images

in video, the categorization and localization steps could

be performed only for images that occur at specified time

intervals.

Similar to the sky/ground segmentation testing, we car-

ried out object recognition experiments on three categories

of test sets of 20 images each, containing appearances of

cars, cyclists and traffic signs, as illustrated in Figure 10

and Figure 11. By visual inspection, we hand-labeled

the pixels belonging to objects for each test image. In

Table II, we report the recognition results of 20, 38, and

20 objects in the first, second and third category of images,

respectively. The outcomes are organized into three groups:

correctly recognized objects (correct recognition – CR),

detected object appearances with erroneous identification

(swapped identity – SI), and undetected object appearances

(complete miss – CM). For the CR group of outcomes, in

Table III, we present the percentage of correctly classified

pixels for the three categories of images. When considering

TABLE II

OBJECT RECOGNITION RESULTS

category I category II category III
(20 objects) (38 objects) (20 objects)

CR SI CM CR SI CM CR SI CM

16 2 2 31 3 4 11 2 7

TABLE III

PERCENTAGE OF CORRECTLY CLASSIFIED PIXELS FOR CR OUTCOMES

category I category II category III

94% 91% 87%

the overall quality of recognition results, it is important to

emphasize that we are dealing with relatively poor-quality

images, not high-resolution, high-quality images. For ex-

ample, the relatively larger error associated with category

III images is obviously due to video-noise degradation.

VI. CONCLUSION

In this paper, we presented a unified computer-vision

system for enabling intelligent MAV missions. We first

reviewed MLDA as a feature extraction tool and demon-

strated its applicability to real-time horizon detection.

Then, we explained the use of IMTSBN statistical models

in segmenting flight images into sky and ground regions.

We extended this basic framework through the idea of

visual contexts to detect and recognize object/structure

appearances. Finally, we presented results of our extensive

testing, which appear to validate our vision-system design

choices. While testing to date has largely been done on

recorded flight images and video, we are currently moving

towards further closed-loop flight tests of the proposed

contextual vision system. Together with other researchers,

we are also working on recovering 3D-scene structure from

flight video. Moreover, work is on-going in miniature-

sensor integration (e.g. GPS, INS), flight vehicle modeling

and characterization, and advanced control algorithm de-

velopment. We expect that the totality of our efforts will

eventually enable MAVs to not only fly in unobstructed

environments, but also in complex urban 3D environments.
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(a) (b)

(c) (d) (e)

Fig. 11. Simultaneous recognition of objects: (a) a category II image;
(b) MLDA image representation; (c) localization: recognition of global
objects; (d) detection of candidate object locations; (e) car and cyclist
recognition using CWT and HSI features. Note that while the traffic sign
was detected as a candidate region, it was not recognized as such due to
lack of detail.
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