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Abstract— Recently, we have implemented a computer-
vision based horizon-tracking algorithm for flight stability
and autonomy in Micro Air Vehicles (MAVs) [1]. Occasion-
ally, this algorithm fails in scenarios where the underlying
Gaussian assumption for the sky and ground appearances
is not appropriate. Therefore, in this paper, we present a
general statistical image modeling framework which we use
to build prior models of the sky and ground. Once trained,
these models can be incorporated into our existing horizon-
tracking algorithm. Since the appearances of the sky and
ground vary enormously, no single feature is sufficient for
accurate modeling; as such, we rely both on color and texture
as critical features in our modeling framework. Specifically,
we choose hue and intensity for our color representation,
and the complex wavelet transform (CWT) for our texture
representation. We then use Hidden Markov Tree (HMT)
models, which are particularly well suited for the CWT’s
inherent tree structure, as our underlying statistical models
over our feature space. With this approach, we have achieved
reliable and robust image segmentation of flight images from
on-board our MAVs as well as on more difficult-to-classify
sky/ground images.

I. INTRODUCTION

In this paper, we seek to build statistical appearance

models that will allow us to segment sky from ground in

images and flight video. This goal was inspired by our

previous work in horizon tracking for Micro Air Vehicles

(MAVs) [1]. In that work, we developed a real-time, vision-

based horizon detection and tracking algorithm for MAVs

equipped with on-board video cameras. With this system,

we were able to achieve self-stabilized and autonomous

flights of MAVs, without any additional inertial or rate

sensors. We resorted to vision-based control, since such

inertial and rate sensors typically do not yet have the

requisite accuracy at the miniature scale required for

MAVs, where weight of sensors and other components is

of paramount importance.

Overall, the horizon tracking algorithm works well,

especially when the sky and ground distributions are

relatively coherent. Occasionally, however, horizon de-

tection fails in scenarios where the underlying Gaussian

assumption for the sky and ground appearances is not

appropriate. Moreover, the horizon detection algorithm is

bootstrapped by assuming that initially the sky occupies the

upper part of the image. For complex mission scenarios,

this may be an incorrect assumption with potentially fatal

consequences to the flight vehicle. For example, we are

currently working on deploying MAVs on munitions for

post-impact bomb damage assessment. In this case, the

MAV would separate from the munition prior to impact,

and an upright attitude with respect to the ground cannot

be guaranteed. Correct identification of sky and ground,

therefore, becomes imperative.

While modeling the appearance of sky and ground

regions in images may seem intuitively easy, it is, in fact,

a very challenging task. Depending on lighting, weather,

landscape, etc., the appearance of the sky and ground can

vary enormously. Given the complex variations in our two

image classes (i.e. sky and ground), careful consideration

must be given to selecting sufficiently discriminating fea-

tures and a sufficiently expressive modeling framework.

Having experimented with color and texture features sep-

arately, we conclude that only the feature set that includes

both color and texture clues enables accurate statistical

modeling for our application [2]. Previous experiments also

suggest that it is important to represent both local as well

as regional interdependencies in the feature space. As such,

we resort to wavelet-based multi-resolution analysis in the

form of the Complex Wavelet Transform (CWT).

Given our feature selection, we then choose the Hidden

Markov Tree (HMT) model [3] as our statistical model,

since it is particularly well suited to the CWT’s inherent

tree structure. This choice of model imposes Markov

dependencies on the states of both color values and wavelet

coefficients at adjacent scales of the pyramidal multi-

resolution structure. We train the HMTs with the EM

algorithm [4] to obtain a small set of parameters that fully

characterize the likelihoods of the two image classes at

different scales. Finally, we fuse the posterior likelihoods

at each scale, analogous to Choi’s [5] interscale fusion

approach, and perform Bayesian segmentation.

Our approach is distinguished from others, which use

wavelets exclusively, by the inclusion of color in the

HMT model structure. Incorporating color introduces a

number of differences between our models and those in

the literature. Moreover, the design of our statistical models

was guided by real-time requirements of our MAV flight

system, leading to certain design choices that may be sub-
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optimal if real-time processing constraints had not been

an issue. Although it may appear that our vision algorithm

is computationally complex, we have come very close to

meeting real-time requirements for our MAVs. Reading,

subsampling and segmentation of a 640×480 image takes

only 0.12s on an Athlon 1.8GHz PC.

Below, we give an overview of this paper. In Section II,

we explain our choice of feature space, reviewing the most

important aspects of the HSI color space and properties

of the CWT. Next, in Section III, we describe the HMT

model and Bayesian multiscale segmentation. Then, in

Section IV, we present several examples of sky/ground

segmentation. Finally, we conclude with a discussion of

our experimental results.

II. FEATURE SPACE

For our statistical models, we seek to identify features

that lead to improved segmentation performance without

unnecessarily increasing computational complexity. As we

have already mentioned, color or texture clues by them-

selves yield poor segmentation results [2]; therefore, below

we consider a feature space that spans both color and

texture domains.

A. Color

The color information in a video signal is usually

encoded in the RGB color space. Unfortunately, the R,

G and B color channels are highly correlated; therefore,

we choose the HSI space as a more appropriate color

representation for statistical modeling [6]. In order to

simplify our feature space, we examine the Mahalanobis

distances for the hue (H), saturation (S) and intensity (I)

values in sky and ground training images. Denoting µ

as the sample mean and σ2 as the sample variance, we

compute:

d2
H =

(µsky
H − µ

ground
H )2

(σsky
H )2 + (σground

H )2
,

d2
S =

(µsky
S − µ

ground
S )2

(σsky
S )2 + (σground

S )2
,

d2
I =

(µsky
I − µ

ground
I )2

(σsky
I )2 + (σground

I )2
, (1)

and observe that for various training data sets d2
H and

d2
I are consistently greater than d2

S [2]. Thus, to reduce

computational complexity, we choose only the features H

and I for our statistical model.

Next, we consider the representation of frequency,

orientation and location of energy content in an image;

in short, we want to define texture-based features. As

such, we employ the wavelet transform, due to its inherent

representation of texture at different scales and locations.

Fig. 1. The CWT is strongly oriented at angles ±15◦,±45◦,±75◦.
The original image (left) and the magnitude of the CWT coefficients:
15◦, 45◦, 75◦ (center) and 105◦, 135◦, 165◦ (right).

B. Complex Wavelet Transform

The 2-D Complex Wavelet Transform (CWT) essen-

tially filters rows and columns of an image with a bank

of complex bandpass filters, similar to the conventional

Discrete Wavelet Transform (DWT) [7]. Since, each coef-

ficient contains a real and imaginary part, a redundancy

of 2:1 is introduced for one-dimensional signals. For

images, the redundancy increases to 4:1, since two adjacent

quadrants of the spectrum are required to fully represent

a real 2-D signal. This is achieved by additional filtering

with complex conjugates of either row or column filters

[8]–[10].

Despite its higher computational cost, we prefer the

CWT over the DWT because of the CWT’s following

attractive properties. Kingsbury [8] has shown that the

Dual-Tree CWT possesses near shift invariance, unlike the

DWT, where small shifts in the input signal induces major

changes in coefficient values. Also, the CWT’s directional

selectivity is greater, producing six bandpass subimages

of complex coefficients at each level. The coefficients are

strongly oriented at angles ±15◦,±45◦,±75◦, as illus-

trated in Figure 1.

While it is known that the phase of CWT coefficients

is less susceptible to noise corruption than the coefficient

magnitudes [9], experimental results have shown that phase

is not a good feature choice for sky and ground modeling

[2]. Computing the phase of the CWT for orientation

angles ±15◦,±45◦,±75◦, yields virtually indiscernible

subimages for sky and ground. Therefore, we consider only

the magnitude of CWT coefficients in our representation

of texture.

The magnitudes of CWT coefficients share the follow-

ing properties of the DWT [3], [4], [7]:

1) Multi-resolution: CWT represents an image at dif-

ferent scales of resolution in space.

2) Clustering: if the magnitude of a wavelet coefficient

is large/small, then the magnitudes of the adjacent

coefficients are very likely to also be large/small.

3) Persistence: large/small values of wavelet coeffi-

cients tend to propagate through scales.

These properties naturally give rise to the HMT statistical
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Fig. 2. The arrangement of the features: the original image (left), magnitudes of the 15◦ and 75◦ CWT and H values (center), magnitudes of the
−15◦ and −75◦ CWT and I values (right).

model, which helps us compute the distribution of pixels

belonging to different image classes (as described in the

next section).

To see which sets of orientations tend to be the most

discriminating between sky and ground, we once again

experiment with the Mahalanobis distances between sky

and ground coefficient magnitudes belonging to subimages

at different orientation. Computing d2
15◦ , d2

−15◦ , d2
45◦ , etc.,

similarly to the expressions in (1), we observe that for

the available sky and ground training images d2
45◦ and

d2
−45◦ are consistently the least significant. Therefore,

our complete feature space is defined by the H and I

color features and the subimages with orientation ±15◦

and ±75◦. To benefit from the multiscale presentation

of the CWT, we replace the missing ±45◦ subimages

with H and I images instead, as shown in Figure 2. The

H and I values at coarser scales are computed as the

mean of the corresponding four values at the next higher-

resolution scale. Hence, the H and I features also exhibit

the clustering and persistence properties to some extent.

Next we describe the HMT model as an appropriate

statistical framework for modeling our chosen feature set.

III. HIDDEN MARKOV TREE MODEL

The Hidden Markov Tree (HMT) structure can model

both the clustering and persistence properties of the CWT

coefficient magnitudes. It consists of a tree structure T that

assigns a node to each coefficient1 and connects mutually

dependent nodes. Thus, every parent node is vertically

connected with its four2 children at the finer scale, as

depicted in Figure 3. For instance, it is obvious from the

1Here, coefficient refers to the magnitude of CWT coefficients and/or
the H and I color values.

2Throughout the paper the CWT is assumed to be dyadic.

figure that

T15◦ = W0
15◦ ∪ W1

15◦ ∪ · · · ∪ W
(L−1)
15◦ (2)

Also, note from the figure that we assume that different

features are mutually independent. In other words, con-

necting coefficients that belong only to the same feature,

we obtain six mutually independent probability trees: T15◦ ,

T75◦ , T105◦ , T165◦ , TH , and TI .

It is worth noting that we tried to implement the Mixture

Memory Markov Model, as proposed in [10], to account

for the dependencies between features (i.e. probability

trees). However, the slightly improved performance in

image segmentation did not justify the substantial increase

in processing time [2]. Also, we experimented with the

HMT-2 model, developed in [11], where a coefficient

depends on its two twin parents. Since the context-based

fusion method used for Bayesian classification incorporates

nine parents (not only two), segmentation performance did

not improve with the HMT-2. Finally, we note that while

we do not consider horizontal dependencies among nodes

at the same scale, the clustering property is still well

modeled, since adjacent coefficients at one scale have a

unique parent.

In order to discuss HMT properties, we first need

to introduce the following notation. A coefficient of a

probability tree Tt at a scale J is denoted with wJ
i,Tt

. A

node i has one parent node ρ(i) and four children nodes

χ(i), such that J(χ(i)) = J(i)−1 and J(ρ(i)) = J(i)+1.

As is customary for HMTs [4], [12], we assign to each

observable random variable (RV) wJ
i,Tt

a hidden RV, state

SJ
i,Tt

, which determines the marginal distribution of the

observable coefficient value. The HMT imposes that wJ
i,Tt

is conditionally independent of all other RVs given its

associated state SJ
i,Tt

. Furthermore, wJ
i,Tt

is conditionally

independent of the entire tree, given its parent state SJ+1
ρ(i),Tt

.
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Fig. 3. The three-level CWT with H values: four adjacent coefficients
at one scale have a unique parent belonging to the upper coarser scale.
States SJ

i are depicted as white balls and coefficient values wJ
i as black

balls.

Note that the Markov structure is related to state RVs

between scales and not to coefficient values.

If we assume an M-state Gaussian mixture density for

the marginal distribution of wJ
i,Tt

, the tree Tt is fully

characterized by the following parameters:

1) The probability measure function of the root node:

P (S0,Tt
= m) , m ∈ [0, M − 1]

2) The transition probability that SJ
i,Tt

is in a state m,

given that SJ+1
ρ(i),Tt

is in a state n:

a
n,m

(J+1),J,Tt
= P (SJ

i,Tt
= m | SJ+1

ρ(i),Tt
= n) ,

m, n ∈ [0, M−1]

3) The mean and variance of wJ
i,Tt

, given SJ
i,Tt

= m:

µJ,Tt,m , σ2
J,Tt,m

, m ∈ [0, M−1] .

In order to simplify computations and to avoid the risk of

overfitting the HMT model, we assume that the statistical

parameters at the same scale are equal for all coefficients.

Therefore, the model parameters are indexed by J , de-

noting that they are equal for all nodes i at the scale J .

Finally, we group the parameters for all probability trees

into a vector Θ.

Unlike in [4], [5], we do not assume zero mean values,

since such an assumption would lead to substantial model

error, especially for the H feature that takes on values in

the interval [0, 360]. Also, much better image segmentation

is obtained if the number of possible states M is greater

than 2; since this introduces only a negligible increase in

computation time, we let M > 2 (unlike in [4], [5]).

A. EM algorithm

Due to the Markov property and the assumption of

probability tree independence, the most likely value for

p(wJ
i |Θ), can be computed by maximizing the joint like-

lihood:

p(wJ
i , SJ

i |Θ) =
∏

Tt

p(wJ
i,Tt

, SJ
i,Tt

|Θ) ,

=
∏

Tt

p(wJ
i,Tt

|SJ
i,Tt

,Θ)P (SJ
i,Tt

|Θ) ,

=
∏

Tt

p(wJ
i,Tt

|SJ
i,Tt

,Θ) ·

·P (S0,Tt
=m|Θ)

∏

J

a
n,m
J+1,J,Tt

, (3)

where t ∈ {±15◦,±75◦, H, I}.

The last expression shows all the HMT parameters

which must be learned from observations. For training

the HMT model, we implement the iterative Expectation-

Maximization (EM) algorithm, as proposed in [4]. In the

E step, the state information is propagated throughout the

tree by means of the upward-downward algorithm. Here,

at step l of the algorithm, the expectation value of the log-

likelihood from (3) is computed as follows:

Q(Θ,Θl) = ESJ

i

[

ln p(wJ
i , SJ

i |Θ) | wJ
i ,Θl

]

,

=
∑

m

ln p(wJ
i , SJ

i |Θ)P
(

SJ
i =m|wJ

i ,Θl
)

.(4)

Then, in the M step, we compute

Θ
l+1 = arg max

Θ

Q
(

Θ,Θl
)

. (5)

It has been proved that increasing the Q-function is

sufficient to increase the likelihood p(wJ
i |Θ) [13]. We are

not concerned with the convergence rate in the training

process, because our data base contains long sequences

of similar sky and ground images. Hence, Θ
l, computed

for one image, is used as the input to compute Θ
l+1 for

the next image of the training data base. Finally, after

processing all sky training images, we obtain Θ
sky , and

similarly, for ground, Θ
ground.

Thus, the EM algorithm gives us the likelihoods of

all coefficients at all scales for a given class, say sky, as

follows:

p(wJ
i |Θ

sky) =
∑

m

p(wJ
i , SJ

i =m|Θsky). (6)

Consequently, we are able to perform Bayesian classi-

fication at all scales, without significant computational

overhead.

B. Multiscale Bayesian Segmentation

Most segmentation algorithms employ a classification

window of some size, which provides statistical informa-

tion to a classifier. A large classification window produces

accurate segmentation of large, homogeneous regions, but
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Fig. 4. The Markov tree structure: a context cJ
i is determined from the

class labels of nine parents {ωJ+1
ρ(i)

} at the coarser scale J + 1.

poor results along their boundaries. On the other hand, a

small window yields unreliable classification. In our case,

we require not only recognition of the sky and ground

regions, but also the detection of the horizon with as much

accuracy as possible. Therefore, both large and small scale

neighborhoods should be analyzed. Naturally, to benefit

from our already trained HMT model, we again resort to

its multiscale structure to perform segmentation. Thus, we

implement a multiscale segmentation algorithm, similar to

the one developed in [5].

Denoting with Ω
J the collection of all class labels at

the scale J , ΩJ = {ωJ
i }, where ω

J
i ∈ {sky, ground}, the

classification is performed according to the MAP rule, as

follows:

Ω̂
J = arg max

ΩJ

{

P (ΩJ |{wJ
i })

}

, (7)

= arg max
ΩJ

{

p({wJ
i }|Ω

J)P (ΩJ)
}

, (8)

= arg max
ΩJ

{

∏

i∈J

p(wJ
i |ω

J
i )P (ΩJ )

}

, (9)

where the expression (9) is derived assuming that coef-

ficients {wJ
i } are mutually independent, given their class

labels Ω
J . To compute the joint probability P (ΩJ ), we

assume that the distribution of Ω
J is completely deter-

mined by Ω
J+1 at the coarser J +1 scale. The conditional

probability P (ΩJ
i |Ω

J+1), being unknown in general, must

be estimated using a prohibitive amount of data. In order

to overcome this problem, we introduce contexts [5]. To

each coefficient wJ
i , with the hidden class label ω

J
i , we

assign the context cJ
i , which represents the information on

Ω
J+1. In Figure 4, we illustrate our choice for contexts

cJ
i . We assume that a set {cJ

i } represents a reliable source

of information on the distribution of all class labels at

J +1 level and that {wJ
i } are mutually independent, given

their corresponding contexts {cJ
i }. Moving upward to the

highest tree level L, we apply the Markov chain rule to

obtain the expression for P (ΩJ)

P (ΩJ) = P (ΩL)
∏

i∈J

L−1
∏

j=J

P (ωj
i |c

j
i ) , (10)

=
∏

i∈L

P (ωL
i )

∏

i∈J

L−1
∏

j=J

P (ωj
i |c

j
i ) , (11)

where, in the last step, we assume that the class labels

{ωL
i } of a dyadic square with the coarsest resolution are

mutually independent. Finally, from (9) and (11), we derive

a more convenient expression for the MAP rule:

Ω̂
J=arg max

ΩJ







∏

i∈L

P (ωL
i )

∏

i∈J

p(wJ
i |ω

J
i )

L−1
∏

j=J

P (ωj
i |c

j
i )







.

(12)

From the expression (12), it follows that the new

Markov tree, introduced to perform the multiscale image

segmentation, is completely characterized by prior proba-

bilities P (ωL
i ), transition probabilities P (ωj

i |c
j
i ), and like-

lihoods p(wJ
i |ω

J
i ). These values must be learned from the

given training images. To estimate the prior and transition

probabilities, we once again implement the EM algorithm,

using the already known values for likelihoods. Once

learned, these values are then used in a Bayes classifier

to obtain the desired image segmentation.

IV. RESULTS

For training the HMT model, we recorded two sets of

500 sky and ground images. One set presented only the

sky and the other set contained air images of the ground.

We carefully chose the training sets to account for great

variability within the classes.

After experimenting with different image resolutions,

we found that the best trade off between processing time

and performance was achieved when 640×480 original

images were subsampled to 128×128 pixels. At that reso-

lution, the training time on an Athlon 1.8GHz PC for 1000
training images was less than 2 minutes. Once trained, the

HMT models of the sky and ground were used for image

segmentation. We noted that for reading, subsampling and

segmentation of a testing image it took only 0.12 seconds

on an Athlon 1.8GHz PC.

Figures 5-7 we present segmentation results for three

diverse sky/ground images; these results incorporated the

Q-shift Dual-Tree CWT introduced in [14].

V. CONCLUSION

Segmentation of complex image classes, such as sky

and ground, demands an elaborate consideration of class

properties. Clearly, in some cases, color provides sufficient

information for sky and ground detection. However, due to
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video noise and/or unfavorable class patterns, both color

and texture clues are necessary for successful recognition.

In this paper, we first presented our choice of features,

consisting of H and I values from the HSI color space, and

CWT coefficients. Then, we showed the implementation

of the HMT model and the training steps for obtaining

its parameters. We further described how the learned

parameter set could be used for computing likelihoods of

all nodes at all scales of our HMT. We then developed

multiscale Bayesian classification for our application. We

incorporated in our design results from the available liter-

ature, modifying the original algorithms for our purposes

where appropriate. Most importantly, we incorporated

color features into the HMT framework and designed the

consequent classifier with real-time constraints in mind.

Finally, we show sample classification results on diverse

sky/ground images.
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Fig. 5. A MAV’s flight: the MAV’s propeller
blades are recognized as ground.

Fig. 6. Water surface with ice patches similar
to clouds.

Fig. 7. A mountain view with predominant
blue color and fuzzy horizon line.
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