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In this thesis, a novel computer vision algorithm for statistical image modeling

is proposed. The necessity for such an algorithm initially came as a requirement

for vision-based stability and control of micro air vehicles (MAV). The MAV

flight autonomy can be achieved by real-time horizon tracking, using the on-board

vision system. Occasionally, this algorithm fails in scenarios where the underlying

Gaussian assumption for the sky and ground appearances is not appropriate.

Therefore, we propose a statistical modeling framework to build prior models of

the sky and ground. Once trained, these models can be incorporated into the

existing horizon-tracking algorithm for MAVs. Since the appearances of the sky

and ground vary enormously, no single feature is sufficient for accurate modeling.

As such, we rely both on color and texture as critical features in our modeling

framework. Specifically, we choose the hue, saturation and intensity (HSI) color

system for color representation, and the complex wavelet transform (CWT) for

x



texture representation. We then use the Hidden Markov Tree (HMT) model,

as the underlying statistical model over our feature space. With this approach,

we have achieved reliable and robust image segmentation of flight images from

on-board our MAVs as well as on more difficult-to-classify sky/ground images.

Furthermore, we demonstrate the generality of our modeling framework through

another segmentation task–classifying the cut/uncut grass regions on images taken

by an on-board camera of a lawn mower.
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CHAPTER 1
INTRODUCTION

Recently, the researchers in the Department of Mechanical and Aerospace

Engineering and in the Department of Electrical and Computer Engineering, at

the University of Florida, Gainesville, have successfully implemented a vision-

based horizon tracking algorithm for flight stability and autonomy of Micro Air

Vehicles (MAVs) [1]. The horizon tracking algorithm works well, especially when

the sky and ground distributions are relatively coherent. Occasionally, however,

horizon detection fails in scenarios where the underlying Gaussian assumption

for the sky and ground appearances is not appropriate. Moreover, the horizon

detection algorithm is bootstrapped by assuming that initially the sky occupies

the upper part of the image. For complex mission scenarios, this may be an

incorrect assumption with potentially fatal consequences to the flight vehicle.

For example, in the case of deploying MAVs on munitions for post-impact bomb

damage assessment, a MAV would separate from the munition prior to impact,

and an upright attitude with respect to the ground cannot be guaranteed. Correct

identification of sky and ground, therefore, becomes imperative.

While modeling the appearance of sky and ground regions in images may

seem intuitively easy, it is, in fact, a very challenging task. Depending on lighting,

weather, landscape, etc., the appearance of the sky and ground can vary enor-

mously. Moreover, in some cases, even human perception fails, tricked by “unusual”

patterns of sky and ground. For instance, the images of water surface reflecting

the sky or mountain tops covered with snow represent the extreme cases, in which

human detection of sky and ground is unreliable.

1
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Consequently, given the complex variations in our two image classes (i.e.,

sky and ground), careful consideration must be given to selecting sufficiently

discriminating features and a sufficiently expressive modeling framework. Next we

present the overview of our approach.

1.1 Overview of the Proposed Computer Vision System

In this thesis, we propose a computer vision algorithm for image segmentation.

The proposed vision system represents, in fact, a Bayes classifier, as illustrated

in Figure 1.1. A Bayes classifier assigns a pixel to a particular class if a posteri-

ori probability of the class given the pixel value is maximum. Designing a Bayes

classifier guarantees the best performance, subject to the correctness of available

statistical models [2]. Therefore, it is necessary to statistically model interdepen-

dencies among pixels as accurately as possible. This is achieved in the computer

vision system, whose components are explained further in the text.

The first module is a preprocessing block, which subsamples the input image

and thus reduces the overall computation cost.

In the following block, the key features of an image are extracted. Having

experimented with color and texture features separately, we conclude that only the

feature set that includes both color and texture clues enables accurate statistical

modeling for our application. Previous experiments also suggest that it is impor-

tant to represent both local as well as regional interdependencies in the feature

space. As such, we first employ the hue, intensity and saturation (HSI) color space

to represent color. Also, we resort to wavelet-based multi-resolution analysis in

INPUT

IMAGE
PREPROCESSING

FEATURE

EXTRACTION STATISTICAL PARAMETERS

COMPUTATION  OF
MAP CLASSIFIER

SEGMENTED

IMAGE

BAYES CLASSIFIER

Figure 1.1  A computer vision system
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the form of the Complex Wavelet Transform (CWT). Thus, from original complex

representation of image classes, we obtain a finite set of features.

Given our feature selection, we then choose the Hidden Markov Tree (HMT)

model as our underlying statistical model. Since the true distribution of the chosen

feature set is not known, it is necessary to statistically model the interdependencies

among the features. Therefore in the following block, we estimate statistical

parameters which completely characterize the underlying distribution of the

features.

Once, the model parameters are computed from the available training data,

it is possible to find the likelihood of image classes for each pixel. Employing the

maximum a posteori (MAP) criterion, we assign a class label to each pixel, and,

thus, perform segmentation.

In conclusion, the mutual dependence of all modules in the system should also

be emphasized. The system performs poorly overall if only one of the components

is badly designed. For instance, a perfect set of features and a sophisticated

statistical model could yield horrible results if only the segmentation block is

bad. Therefore, one should always have in mind that modularity, as depicted in

Figure 1.1, serves only for presentation purposes.

1.2 Overview of the Thesis

In the following chapters we discuss the main components of our computer

vision system.

First, in Chapter 2, we explain our choice of the feature space for statistical

modeling and review fundamental theory, necessary for better understanding of

our work. Specifically, we give an overview of the most important aspects of the

HSI color system and the CWT. Next, in Chapter 3 we introduce the properties of

the Hidden Markov Model, and in Chapter 4 we develop the algorithm for training

HMT models, pointing out implementation issues. Further, in Chapter 5, we
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explain the procedure for multiscale image segmentation. In Chapter 6, we present

experimental results. We illustrate the reliability and robustness of our approach

on examples of flight images from on-board our MAVs as well as on more difficult-

to-classify sky/ground images. Furthermore, we demonstrate the generality of our

modeling framework through another segmentation task–classifying the cut/uncut

grass regions on images taken by an on-board camera of a lawn mower. Finally, we

discuss the experimental results in Chapter 7.



CHAPTER 2
FEATURE SPACE

For our statistical models, we seek to identify features that lead to improved

segmentation performance without unnecessarily increasing computational com-

plexity. Color or texture clues by themselves yield poor segmentation results.

Therefore, we consider a feature space that spans both color and texture domains.

2.1 Color

The color information in a video signal is usually encoded in the RGB color

space. Unfortunately, the R, G and B color channels are highly correlated; there-

fore, we choose the HSI space as a more appropriate color representation [3].

Though, HSI exhibits numerical instability at low saturation, this problem can be

easily overcome by assigning some application-dependent, predefined values to the

hue (H), intensity (I) and saturation (S) features. Thus, for sky/ground segmenta-

tion, we assume that low S and/or I values most likely appear for the ground class,

which then sets H value appropriately.

2.2 Texture

For the choice of texture-based features, we have considered several filtering,

model-based and statistical methods for texture feature extraction. Our conclusion

complies with the comparative study of Randen and Husoy [4] that for problems

with many textures with subtle spectral differences, as in the case of our complex

classes, it is reasonable to assume that the spectral decomposition by a filter

bank yields consistently superior results over other texture analysis methods. Our

experimental results also suggest that it is crucial to analyze both local as well as

5
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regional properties of texture. As such, we employ the wavelet transform, due to its

inherent representation of texture at different scales and locations.

2.2.1 Wavelet Transform

Wavelet atom functions, being well localized both in space and frequency,

retrieve texture information quite successfully [5]. The conventional discrete

wavelet transform (DWT) may be regarded as equivalent to filtering the input

signal with a bank of bandpass filters, whose impulse responses are all given by

scaled versions of a mother wavelet. The scaling factor between adjacent filters

is 2:1, leading to octave bandwidths and center frequencies that are one octave

apart. The octave-band DWT is most efficiently implemented by the dyadic

wavelet decomposition tree of Mallat [6], where wavelet coefficients of an image are

obtained convolving every row and column with impulse responses of lowpass and

highpass filters, as shown in Figure 2.1. Practically, coefficients of one scale are

obtained convolving every second row and column from the previous finer scale.

Thus, the filter output is a wavelet subimage that has four times less coefficients

than the one at the previous scale. The lowpass filter is denoted with H0 and

the highpass filter with H1. The wavelet coefficients W have in index L denoting

lowpass output and H for highpass output.

Separable filtering of rows and columns produces four subimages at each level,

which can be arranged as shown in Figure 2.2. The same figure also illustrates well

the directional selectivity of the DWT, because WLH , WHL , and WHH , bandpass

subimages can select horizontal, vertical and diagonal edges, respectively.

2.2.2 Wavelet Properties

The following properties of the DWT have made wavelet-based image process-

ing very attractive in recent years [5, 7, 8]:
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Figure 2.2  The original image (left) and its two-scale dyadic DWT (right).
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a. locality: each wavelet coefficient represents local image content in space and
frequency, because wavelets are well localized simultaneously in space and
frequency

b. multi-resolution: DWT represents an image at different scales of resolution in
space domain (i.e., in frequency domain); regions of analysis at one scale are
divided up into four smaller regions at the next finer scale (Fig. 2.2)

c. edge detector: edges of an image are represented by large wavelet coefficients
at the corresponding locations

d. energy compression: wavelet coefficients are large only if edges are present
within the support of the wavelet, which means that the majority of wavelet
coefficients have small values

e. decorrelation: wavelet coefficients are approximately decorrelated, since the
scaled and shifted wavelets form orthonormal basis; dependencies among
wavelet coefficients are predominantly local

f. clustering: if a particular wavelet coefficient is large/small, then the adjacent
coefficients are very likely to also be large/small

g. persistence: large/small values of wavelet coefficients tend to propagate
through scales

h. non-Gaussian marginal pdf: wavelet coefficients have peaky and long-tailed
marginal distributions; due to the energy compression property only a
few wavelet coefficients have large values, therefore a Gaussian pdf for an
individual coefficient is a poor statistical model

It is also important to introduce shortcomings of the DWT. Discrete wavelet

decompositions suffer from two main problems, which hamper their use for many

applications, as follows [9]:

a. lack of shift invariance: small shifts in the input signal can cause major
variations in the energy distribution of wavelet coefficients

b. poor directional selectivity: for some applications horizontal, vertical and
diagonal selectivity is insufficient

When we analyze the Fourier spectrum of a signal, we expect the energy in

each frequency bin to be invariant to any shifts of the input. Unfortunately, the

DWT has a significant drawback that the energy distribution between various

wavelet scales depends critically on the position of key features of the input signal,
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Figure 2.3  The Q-shift Dual-Tree CWT.

whereas ideally dependence is on just the features themselves. Therefore, the real

DWT is unlikely to give consistent results when used in texture analysis.

In literature, there are several approaches proposed to overcome this problem

(e.g., Discrete Wavelet Frames [5, 10]), all increasing computational load with

inevitable redundancy in the wavelet domain. In our opinion, the Complex Wavelet

Transform (CWT) offers the best solution providing additional advantages,

described in the following subsection.

2.2.3 Complex Wavelet Transform

The structure of the CWT is the same as in Figure 2.1, except that the CWT

filters have complex coefficients and generate complex output. The output sampling

rates are unchanged from the DWT, but each wavelet coefficient contains a real and

imaginary part, thus a redundancy of 2:1 for one-dimensional signals is introduced.

In our case, for two-dimensional signals, the redundancy becomes 4:1, because

two adjacent quadrants of the spectrum are required to represent fully a real

two-dimensional signal, adding an extra 2:1 factor. This is achieved by additional

filtering with complex conjugates of either the row or column filters [9, 11].
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Table 2.1  Coefficients of the filters used in the Q-shift DTCWT.

H13 (symmetric) H19 (symmetric) H6

-0.0017581 -0.0000706 0.03616384
0 0 0

0.0222656 0.0013419 -0.08832942
-0.0468750 -0.0018834 0.23389032
-0.0482422 -0.0071568 0.76027237
0.2968750 0.0238560 0.58751830
0.5554688 0.0556431 0
0.2968750 -0.0516881 -0.11430184
-0.0482422 -0.2997576 0

... 0.5594308 0
-0.2997576

...

Despite its higher computational cost, we prefer the CWT over the DWT

because of the CWT’s following attractive properties. The CWT is shown to posses

almost shift and rotational invariance, given suitably designed biorthogonal or

orthogonal wavelet filters. We implement the Q-shift Dual-Tree CWT scheme,

proposed by Kingsbury [12], as depicted in Figure 2.3. The figure shows the

CWT of only one-dimensional signal x, for clarity. The output of the trees a

and b can be viewed as real and imaginary parts of complex wavelet coefficients,

respectively. Thus, to compute the CWT, we implement two real DWT’s (see

Fig. 2.1), obtaining a wavelet frame with redundancy two. As for the DWT,

here, lowpass and highpass filters are denoted with 0 and 1 in index, respectively.

The level 0 comprises odd-length filters H0a(z) = H0b(z) = H13(z) (13 taps)

and H1a(z) = H1b(z) = H19(z) (19 taps). Levels above the level 0 consist of

even-length filters H00a(z) = z−1H6(z
−1), H01a(z) = H6(−z), H00b(z) = H6(z),

H01b(z) = z−1H6(−z−1), where the impulse response of the filters H13, H19 and H6

is given in the table 2.1.
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Figure 2.4  The CWT is strongly oriented at angles ±15◦,±45◦,±75◦.

Aside from being shift invariant, the CWT is superior to the DWT in terms of

directional selectivity, too. A two-dimensional CWT produces six bandpass subim-

ages (analogous to the three subimages in the DWT) of complex coefficients at each

level, which are strongly oriented at angles of ±15◦,±45◦,±75◦, as illustrated in

Figure 2.4.

Another advantageous property of the CWT exerts in the presence of noise.

The phase and magnitude of the complex wavelet coefficients collaborate in a non

trivial way to describe data [11]. The phase encodes the coherent (in space and

scale) structure of an image, which is resilient to noise, and the magnitude captures

the strength of local information that could be very susceptible to noise corruption.

Hence, the phase of complex wavelet coefficients might be used as a principal clue

for image denoising. However, our experimental results have shown that phase is

not a good feature choice for sky/ground modeling. Therefore, we consider only

magnitudes.

To conclude, we consider the CWT a suitable tool to analyze image texture.

The CWT inherited attractive properties of the DWT, such as: locality, multi-

resolution, energy compression, etc. Its shift invariance and increased directional

selectivity give additional power to statistical modeling of image classes. Therefore,
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we choose, beside the color features HSI, the CWT to complement our feature

space.

2.2.4 Color Multi-resolution Representation

In order to unify the color and texture features into a unique modeling

framework, we also form multi-resolution representation for the H, S and I

features, analogous to the CWT structure. The H, S and I values at coarser scales

are computed as the mean of the corresponding four values at the next higher-

resolution scale. Hence, the H, S and I features also exhibit the clustering and

persistence properties to some extent.

Naturally, the choice of the feature space determines the statistical image

model. In the next chapter, we describe the HMT model as an appropriate

statistical framework for modeling our complex classes in the chosen feature space.



CHAPTER 3
STATISTICAL MODELING

In order to compute the joint pdf of the chosen features, which fully charac-

terizes a class for our Bayes classifier (see Fig 1.1), we must account for the key

dependencies. In our case, we need to examine thoroughly all the properties of the

CWT and HSI features, and to best incorporate this knowledge into our statistical

model.

3.1 Marginal Density

We model the true marginal pdf of a feature as a mixture of Gaussian pdf’s.

Let’s refer to the magnitude of a CWT coefficient and/or the H, S and I color

values, simply as coefficient. Then, a coefficient can be in one of the M states,

which results in an M-state Gaussian mixture model. It means that we associate

to each coefficient wi, at location (x, y), a state random variable Si
1 In general,

Si can take on values m ∈ {0 . . . M − 1}. The mixture model is completely

parameterized with the probability measure function (pmf) of the state random

variable P (Si = m) and with the means µi(m) and the variances σ2
i (m) of each

state. By increasing the number of states, we can make our model fit arbitrarily

close to real densities with a finite number of discontinuities [7].

Thus, the marginal pdf of a wavelet coefficient wi is given by

p(wi) =
M−1∑

m=0

P (Si = m)p(wi|Si = m) , (3.1)

1 Note that boldface letters represent random variables and their particular real-
izations are not boldface.

13
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Figure 3.1  The HMT of the three-level CWT.

where

p(wi|Si = m) =
1√

2π σi(m)
e
− (wi−µi(m))2

2σ2
i
(m) . (3.2)

Although each coefficient wi is conditionally Gaussian, given its state random

variable Si, the overall density is non-Gaussian due to the randomness of Si.

3.2 Graph Models

A probabilistic graph associates each random variable with a node in the graph

[13]. Correlation between pairs of variables is represented by links connecting the

corresponding nodes. The chosen feature space can be modeled by a probabilistic

graph in the following way. A node is assigned to each coefficient and an edge is

placed between two mutually dependent nodes. All coefficients that belong to the

same scale are placed in the corresponding horizontal plane. The coefficients of the

finer scales form planes under the current one, and the coefficients that belong to

the coarser scales form planes above the current one, as illustrated in Figure 3.1.

Four adjacent coefficients at one scale have a unique parent belonging to the upper

coarser scale, only within the same feature (shaded area). States SJ
i are depicted as

white nodes and coefficient values wJ
i as black nodes.
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Thus, we obtain a pyramid structure, because the coarser the scale the fewer

nodes there are. We can develop graphs that can capture arbitrary interdepen-

dencies, but the computational complexity increases substantially for graphs more

complicated than trees. If we keep only horizontal edges, which connect adjacent

nodes of one scale, we obtain the Hidden Markov Chain Model (HMC). By connect-

ing only the adjacent nodes vertically across scale, we obtain the Hidden Markov

Tree Model (HMT).

3.3 HMT Model

The HMT models both the clustering and persistence properties. A tree

structure is formed connecting every parent coefficient2 from the coarser scale with

its children at the finer scale. There are four direct children from one parent node,

and every child has only one parent node, as depicted in Figure 3.1. Leaf nodes

have no children and they are formed from the coefficients at the finest resolution.

Although we do not include horizontal edges among the nodes of one scale in our

model, the clustering property is still well modeled, because the adjacent nodes

at one scale have the same parent. Therefore the local correlation is indirectly

modeled by interscale dependencies [14].

In order to discuss HMT properties, first we need to introduce the following

notation. The random field of all wavelet coefficients at a scale J is denoted with

WJ = {wJ
i }. A node i has a parent node ρ(i) and a set of children nodes χ(i).

This implies that J(χ(i)) = J(i) − 1 and J(ρ(i)) = J(i) + 1. The scales are ordered

from the finest J = 0 to the coarsest J = L − 1, where L = log2 xmax. In this

project, the dimensions xmax and ymax of an image are assumed to be equal to

facilitate computation of the CWT.

2 Here, coefficient refers to the magnitude of a CWT coefficient and/or the H, S
and I color values.



16

3.4 HMT Properties

The HMT imposes that wJ
i is conditionally independent of all other random

variables given its associated state SJ
i , [15]. Secondly, given a parent state SJ+1

ρ(i) ,

wJ
i is independent of the ρ(i)’s ancestors. Conversely, given a child state SJ−1

χ(i) , wJ
i

is independent of the child’s descendants. Combining these properties shows that

wJ
i is conditionally independent of the entire tree, given only the parent state SJ+1

ρ(i)

and the children states SJ−1
χ(i) . Here follows a mathematical formulation of these

statements:

p(wJ
i | {wJ

k}k �=i, {SJ
k}k �=i,S

J
i = m) = p(wJ

i | SJ
i = m) , (3.3)

p(wJ
i | {wk}J(k)>J(ρ(i)),wJ+1

ρ(i) ) = p(wJ
i | wJ+1

ρ(i) ) , (3.4)

p(wJ
i | {wk}J(k)<J(χ(i)),wJ−1

χ(i) ) = p(wJ
i | wJ−1

χ(i) ) . (3.5)

It is important to note that the Markov structure is related to the states of

coefficients and not to the coefficient values. Further, since the states are never

known exactly, the Markov model is hidden with real continuous outcomes. Also,

unlike the usual HMM treatment in literature [15], here transitions between states

are not related to time. In fact, the HMT deals with transitions between scales

(i.e., horizontal planes) of the pyramidal graph structure.

Using an M-state Gaussian mixture model for each wavelet coefficient wi, the

parameters for the HMT model are

i. P (SL−1
0 = m) , m ∈ [0,M − 1], the pmf of the root node SL−1

0

ii. aJ
i,ρ(i)(m,n) = P (SJ

i = m|SJ+1
ρ(i) = n), the transition probability that SJ

i

is in a state m given that SJ+1
ρ(i) is in a state n, where m ∈ [0,M − 1] and

n ∈ [0,M − 1]

iii. µJ
i (m), and (σJ

i (m))2, the mean and variance, respectively, of the wavelet
coefficient wJ

i , given SJ
i is in a state m, where m ∈ [0,M − 1]

These parameters can be grouped into a model parameter random vector Θ.
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For training the HMT, we employ the expectation maximization (EM)

algorithm [16, 17], which iteratively estimates model parameters Θ. Under mild

conditions, the iteration converges to a local maximum of the function p(W|Θ).

The training of the HMT is explained in the following chapter.



CHAPTER 4
TRAINING OF THE HMT MODEL

Our aim is to determine the parameter vector Θ, given the pyramidal struc-

ture of observed coefficients W = W . Here, the usual EM algorithm for training

HMM’s [15], is modified for the continuous outcome HMT.

First, let’s introduce the following notation. We define T J
i to be the subtree

of observed coefficients with a root at node wJ
i , at the level J . T J

i contains the

coefficient wJ
i and all its descendants. If T {J(k)<J}

k is a subtree of T J
i (i.e., w

{J(k)<J}
k

and all its descendants are members of T J
i ), then we define T J

i\k to be the set of

coefficients obtained by removing the subtree T {J(k)<J}
k from T J

i . Without loss of

generality, we order W so that wL−1
0 is at the root of the entire tree. Thus, T L−1

0 is

the entire tree of observed coefficients and we interchange the symbols T L−1
0 and W

when convenient.

4.1 Implementation of the EM Algorithm

Customary for the EM algorithm [15], for each subtree T J
i , we define the

following conditional densities:

βJ
i (m) = p(T J

i | SJ
i = m, Θ) , (4.1)

βJ
ρ(i),i(m) = p(T J

i | SJ+1
ρ(i) = m, Θ) , (4.2)

βJ+1
ρ(i)\i(m) = p(T J+1

ρ(i)\i | S
J+1
ρ(i) = m, Θ) , (4.3)

and the joint probability

αJ
i (m) = P (SJ

i = m, T L−1
0\i | Θ) , (4.4)

with SJ
i taking discrete values and T L−1

0\i taking continuous values.

18
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To determine the HMT parameter vector Θ, it is necessary first to compute

the state and transition probabilities for all the observed coefficients W, P (SJ
i =

m | W,Θ) and P (SJ
i = m | SJ+1

ρ(i) = n,W,Θ). From the HMT properties (3.3),

(3.4) and (3.5) it follows that the trees T J
i and T L−1

0\i are independent, given the

state random variable SJ
i . This fact, together with the Markov chain rule, leads to

the desired expressions in terms of the defined α and β. First, we obtain

P (SJ
i = m, T L−1

0 | Θ) = αJ
i (m)βJ

i (m) , (4.5)

P (SJ
i = m,SJ+1

ρ(i) = n, T L−1
0 | Θ) = βJ

i (m)aJ
i,ρ(i)(m,n)αJ+1

ρ(i) (m)βJ+1
ρ(i)\i(n) . (4.6)

Then, the joint pdf of W can be expressed as

p(W|Θ) = p(T L−1
0 |Θ) =

M−1∑

m=0

P (SJ
i = m, T L−1

0 | Θ) ,

=
M−1∑

m=0

αJ
i (m)βJ

i (m) . (4.7)

Applying the Bayes rule to (4.5)-(4.7) results in the desired conditional

probabilities

P (SJ
i = m| W,Θ) =

αJ
i (m)βJ

i (m)
M−1∑

n=0

αJ
i (n)βJ

i (n)

, (4.8)

P (SJ
i = m,SJ+1

ρ(i) = n| W,Θ) =
βJ

i (m)aJ
i,ρ(i)(m,n)αJ+1

ρ(i) (n)βJ+1
ρ(i)\i(n)

M−1∑

n=0

αJ
i (n)βJ

i (n)

. (4.9)

From (4.8), (4.9) and (4.3) follows the expression for the transition probability

P (SJ
i = m| SJ+1

ρ(i) = n,W,Θ) =
P (SJ

i = m,SJ+1
ρ(i) = n| W,Θ)

P (SJ+1
ρ(i) = n| W,Θ)

,

=
βJ

i (m)aJ
i,ρ(i)(m,n)αJ+1

ρ(i) (n)βJ+1
ρ(i)\i(n)

αJ+1
ρ(i) (n)βJ+1

ρ(i) (n)
,

=
βJ

i (m)aJ
i,ρ(i)(m,n)

βJ
ρ(i),i(n)

. (4.10)
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Apparently, the expressions (4.8) and (4.10) guarantee that the computed proba-

bilities are less or equal to 1. From the state and transition probabilities all other

components of the random vector Θ can be computed.

4.1.1 E Step

In determining probabilities for the state variables, the state information

is propagated throughout the tree by means of upward-downward1 algorithm.

The up step calculates β’s by transmitting information about the fine-scale

wavelet/color coefficients up to coarser scales. The down step computes α’s by

propagating information about the coarse-scale wavelet/color coefficients down to

finer scales.

In the following subsections we present the up and down steps for the l-th

iteration of the EM algorithm.

4.1.2 Up Step

The up part of the EM algorithm consists of the following steps:

1. ∀S0
i = m, where m ∈ {0, . . . , M−1}, calculate

β0
i (m) = N(w0

i , µ
0
i (m), σ0

i (m)) , (4.11)

2. ∀SJ
i = m, where m ∈ {0, . . . ,M−1}, calculate

βJ
ρ(i),i(n) =

M−1∑

m=0

aJ
i,ρ(i)(m,n)βJ

i (m) (4.12)

βJ+1
ρ(i) (m) = N(wJ+1

ρ(i) , µJ+1
ρ(i) (m), σJ+1

ρ(i) (m))
∏

k∈χ(ρ(i))

βJ
ρ(k),k(m) , (4.13)

βJ+1
ρ(i)\i(m) =

βJ+1
ρ(i) (m)

βJ
ρ(i),i(m)

. (4.14)

1 E step of the EM algorithm is often referred to as the forward-backward al-
gorithm in the HMM literature and as the upward-downward algorithm in the AI
literature. Since the tree structure imposes moves up and down in the E step com-
putation, here we use the latter term.
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3. Move up the tree, setting J = J + 1.

4. If J = L, then stop; else return to step 2.

4.1.3 Down Step

The down part of the EM algorithm consists of the following steps:

1. ∀SL−1
0 = m, where m ∈ {0, . . . ,M−1}, set

αL−1
0 (m) = P (SL−1

0 = m | W,Θ = Θl) . (4.15)

2. Move down the tree, setting J = J − 1.

3. ∀SJ
i = m, where m ∈ {0, . . . ,M−1}, calculate

αJ
i (m) =

M−1∑

n=0

aJ
i,ρ(i)(m,n)αJ+1

ρ(i) (n)βJ+1
ρ(i)\i(n) . (4.16)

4. If J = 0, then stop; else return to step 2.

4.1.4 M Step

Once α and β values are computed for all nodes, the maximization step of the

EM algorithm follows straightforward. The state and transition probabilities could

be computed applying (4.8) and (4.10). We could then find µJ
i (m) and σJ

i (m) for

all coefficients. However, all that will make our HMT model too complex.

In order to simplify and to avoid the risk of overfitting the HMT model, we

assume that statistic parameters are equal for all coefficients belonging to the same

scale. It means that all nodes at the scale J are characterized by the following

unique parameters: P (SJ = m | W,Θ), µJ(m), σJ(m), and P (SJ = m | SJ+1 =

n,W,Θ). Here, SJ denotes the state random variable for all nodes i at the same

scale J .
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Applying the assumption, in the M step, results in the following expressions for

all K nodes at the scale J , for the l-th iteration:

P (SJ = m | W,Θ) =
1

K

K−1∑

i=0

P (SJ
i = m | W,Θ = Θl) ,

=
1

K

K−1∑

i=0

αJ
i (m)βJ

i (m)
M−1∑

n=0

αJ
i (n)βJ

i (n)

, (4.17)

P (SJ = m | SJ+1 = n,W,Θ) =
1

K

K−1∑

i=0

P (SJ
i = m | SJ+1

ρ(i) = n,W,Θ = Θl) ,

=
1

K

K−1∑

i=0

βJ
i (m)aJ

i,ρ(i)(m,n)

βJ
ρ(i),i(n)

, (4.18)

µJ(m) =

K−1∑

i=0

wJ
i P (SJ

i = m | W,Θ)

K P (SJ = m | W,Θ)
, (4.19)

(σJ(m))2 =

K−1∑

i=0

(wJ
i − µJ(m))2 P (SJ

i = m | W,Θ)

K P (SJ = m | W,Θ)
. (4.20)

4.2 Implementation Issues

The computer implementation of the upward-downward algorithm, if the

equations (4.11) - (4.16) are directly used, suffers from numerical underflow. In

order to make the algorithm stable, we need to introduce adaptive scaling of β

values. The dynamic scaling is performed β values only. Since β’s are computed

only in the up step, we need only to rewrite the equations (4.11) - (4.14). The

scaled values are denoted with β̂i. In the following subsections we present the

scaled up step and down step algorithms.

4.2.1 Scaled Up Step

The scaled up part of the EM algorithm consists of the following steps:
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1. ∀i at the scale J = 0 compute

β0
i (m) = N(w0

i , µ
0
i (m), σ0

i (m)) ,

s0
i =

M−1∑

m=0

β0
i (m) , (scaling factor for β′s) ,

β̂0
i (m) =

1

s0
i

β0
i (m) . (4.21)

2. ∀i at a scale J compute

β̂J
ρ(i),i(n) =

M−1∑

m=0

aJ
i,ρ(i)(m,n)β̂J

i (m) =
1

sJ
i

M−1∑

m=0

aJ
i,ρ(i)(m,n)βJ

i (m) ,

=
1

sJ
i

βJ
ρ(i),i(n) , (4.22)

β̃J+1
ρ(i) (m) = N(wJ+1

ρ(i) , µJ+1
ρ(i) (m), σJ+1

ρ(i) (m))
∏

k∈χ(ρ(i))

β̂J
ρ(k),k(m) ,

=
1∏

k∈χ(ρ(i))

sJ
k

βJ+1
ρ(i) (m) , (4.23)

s̃J+1
ρ(i) =

M−1∑

m=0

β̃J+1
ρ(i) (m) =

1∏

k∈χ(ρ(i))

sJ
k

M−1∑

m=0

βJ+1
ρ(i) (m) , (4.24)

β̂J+1
ρ(i) (m) =

β̃J+1
ρ(i) (m)

s̃J+1
ρ(i)

=
βJ+1

ρ(i)∑M−1
m=0 βJ+1

ρ(i) (m)
=

βJ+1
ρ(i) (m)

sJ+1
ρ(i)

, (4.25)

β̂J+1
ρ(i)\i(m) =

β̂J+1
ρ(i) (m)

β̂J
ρ(i),i(m)

=

βJ+1
ρ(i)

(m)

sJ+1
ρ(i)

βJ
ρ(i),i

(m)

sJ
i

=
sJ

i

sJ+1
ρ(i)

βJ
ρ(i)\i(m) . (4.26)

3. J = J + 1.

4. If J = L, then stop; else return to step 2.

From (4.21) and (4.25) it is obvious that scaling at each step of the up

algorithm limits the dynamics of β̂ values to the interval [0, 1]. If we carefully

observe the equation (4.16) in the down-step algorithm, α values need not be

scaled, because limiting β̂J+1
ρ(i)\i(m) stabilizes α̂’s in (4.16), as well.
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4.2.2 Scaled Down Step

The scaled down part of the EM algorithm consists of the following steps:

1. For J = L − 1 compute

tLρ(0) = 1 , (scaling factor for αL−1
0 ) ,

α̂L−1
0 (m) =

1

tLρ(0)

αL−1
0 . (4.27)

2. J = J − 1.

3. ∀i, J(i) = J ,

α̂J
i (m) =

M−1∑

n=0

aJ
i,ρ(i)(m,n)α̂J+1

ρ(i) (n)β̂J+1
ρ(i)\i(n) ,

=
sJ

i

sJ+1
ρ(i) tJ+1

ρ(i)

M−1∑

n=0

aJ
i,ρ(i)(m,n)αJ+1

ρ(i) (n)βJ+1
ρ(i)\i(n) ,

=
sJ

i

sJ+1
ρ(i) tJ+1

ρ(i)

αJ
i (m) . (4.28)

4. If J = 0, then stop; else return to step 2.

Finally, it is necessary to check the expressions for the state and transition

probabilities to account for the scaled α̂’s and β̂’s. From the equations (4.17),

(4.25) and (4.28) it follows:

P̂ (SJ = m | W,Θ) =
1

K

K−1∑

i=0

α̂J
i (m)β̂J

i (m)
M−1∑

n=0

α̂J
i (n)β̂J

i (n)

,

=
1

K

K−1∑

i=0

sJ
i

sJ+1
ρ(i)

tJ+1
ρ(i)

αJ
i (m) 1

sJ
i
βJ

i (m)

M−1∑

n=0

sJ
i

sJ+1
ρ(i) tJ+1

ρ(i)

αJ
i (n)

1

sJ
i

βJ
i (n)

,

= P (SJ = m | W,Θ) , (4.29)
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and from the equations (4.18), (4.22) and (4.25)

P̂ (SJ = m | SJ+1 = n,W,Θ) =
1

K

K−1∑

i=0

β̂J
i (m)aJ

i,ρ(i)(m,n)

β̂J
ρ(i),i(n)

,

=
1

K

K−1∑

i=0

1
sJ
i
βJ

i (m)aJ
i,ρ(i)(m,n)

1
sJ
i
βJ

ρ(i),i(n)
,

= P (SJ = m | SJ+1 = n,W,Θ) . (4.30)

Clearly, the equations (4.29) and (4.30) show that it is not necessary to

perform additional computation due to scaling. Thus, the substitution of the

scaled α̂’s and β̂’s in the M step does not change the results of the expressions

(4.17)-(4.20).

For the next (l + 1) − th iteration step of the EM algorithm, we use the

computed Θ = Θl of the l − th step. In this way the EM converges to a local

maximum of the joint pdf fW|Θ(W |Θ). There are various criteria when to stop

the iteration. In order to simplify the computation, we compare the values of the

components of Θl and Θl+1. If they differ less than some preset value, then the

iteration is stopped.

After training the HMT, we are able to compute the joint pdf of all pixels and

to classify images using a Bayes classifier. In the next chapter we explain how to

obtain the joint pdf of an image and how to classify it.



CHAPTER 5
MULTISCALE SEGMENTATION

The overall statistical model consists of Hidden Markov Trees Tf that assign

a node i to each coefficient1 wJ
i,Tf

, at a scale J , of the same feature f . We assume

that the features are mutually independent. In other words, connecting coefficients

that belong only to the same feature f , we obtain nine mutually independent

probability trees Tf , f ∈ F = {±15◦,±45◦,±75◦, H, S, I}. Each tree Tf represents,

in fact, a distinct HMT model, which can be trained separately from the other

trees, as explained in the previous chapter. After training, we perform Bayesian

classification, where the independent trees Tf are unified into a unique statistical

model.

As a result of training the HMT for sky and ground images, we obtain the

model parameter vectors Θs and Θg, respectively. It follows, for each coefficient

wJ
i,Tf

of the tree Tf , it is possible to compute the likelihood for the class sky as

p(wJ
i,Tf

|Θs
f ) =

∑

m

p(wJ
i,Tf

,SJ
Tf

=m|Θs
f ) ,

=
∑

m

p(wJ
i,Tf

|SJ
Tf

,Θs
f )P (SJ

Tf
|Θs

f ) ,

=
∑

m

p(wJ
i,Tf

|SJ
Tf

,Θs
f )P (SL−1

Tf
=m|Θs

f )
∏

J

P (SJ
Tf

=m|SJ+1
Tf

=n), (5.1)

where p(wJ
i,Tf

|SJ
Tf

,Θs
f ) represents the Gaussian distribution, fully characterized by

(µJ
f )s and (σJ

f )s, which are the components of the known Θs . Clearly, from the

assumption that the trees Tf are independent, for all f ∈ F , the likelihood of any

1 Here, coefficient refers to the magnitude of a CWT coefficient and/or the H, S
and I color values.
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coefficient wJ
i , at a scale J , given a class, say sky, can be computed as

p(wJ
i |Θs

f ) =
∏

f∈F
p(wJ

i,Tf
|Θs

f ) (5.2)

Consequently, we are able to perform Bayesian classification at all scales, and

combining these results to perform segmentation of an image.

Under successful image segmentation, we imply both accurate classification of

large, homogeneous regions, and distinct detection of their boundaries. To achieve

this goal, both large and small scale neighborhoods should be analyzed. Therefore,

we implement a multiscale segmentation algorithm, based on the algorithm

proposed by Choi and Baraniuk [18].

Denoting with WJ all coefficients from all features at a scale J , WJ = {wJ
i },

and with ΩJ the collection of all class labels at the scale J , ΩJ = {ωJ
i }, where

ωJ
i ∈ {s, g}, the classification is performed according to the MAP rule, as follows:

Ω̂J = arg max
ΩJ

{P (ΩJ |WJ)} , (5.3)

= arg max
ΩJ

{p(WJ |ΩJ)P (ΩJ)} . (5.4)

Thus, our goal is to compute the discriminant function g(WJ ,ΩJ) = p(WJ |ΩJ)P (ΩJ),

in (5.4), which we present further in the text.

Assuming that a class label ωJ
i completely determines the distribution of

the corresponding coefficient wJ
i , it follows that all coefficients are mutually

independent, given their class labels:

p(WJ |ΩJ) =
∏

i∈J

p(wJ
i |ωJ

i ) , (5.5)

where p(wJ
i |ωJ

i ) is already known from (5.2).

To compute the joint probability P (ΩJ), we assume that the distribution of

ΩJ is completely determined by ΩJ+1 at the coarser J + 1 scale. Here, we once

again introduce a new Markov tree, where class labels ωJ
i play a role analogous to
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J+1
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ρ (i) }{

i

Figure 5.1  The context vector.

the hidden states SJ
i in the HMT. Combined with the Markov property that, given

ωJ+1
ρ(i) , ωJ

i is independent of all ωJ
k , k �= i, the Markov chain rule reads:

P (ΩJ) = P (ΩL)
∏

i∈J

L−1∏

j=J

P (ωj
i |Ωj+1) , (5.6)

where L denotes the coarsest level, which is still able to provide statistically reliable

segmentations ΩL.

The conditional probability P (ωj
i |Ωj+1) in (5.6), being unknown in general,

must be estimated using a prohibitive amount of data. In order to surmount this

problem, we introduce contexts [18]. To each coefficient wJ
i , with the hidden class

label ωJ
i , we assign the context cJ

i , which represents the information on ΩJ+1. The

choice of cJ
i , poised between complexity and accuracy, in our case, is a vector that

consists of the two components:

1. the class label ωJ+1
ρ(i) , of the corresponding direct parent (as in the HMT),

2. the majority vote of the class labels ωJ+1
{ρ(i)}, where {ρ(i)} denotes the eight

neighboring coefficients of the direct parent ωJ+1
ρ(i) .

Recall that in the HMT a coefficient wJ
i has exactly one parent wJ+1

ρ(i) and four

children wJ−1
χ(i) . It follows that all four neighboring coefficients at a scale J , have the

same context vector cJ
i = [ωJ+1

ρ(i) , ωJ+1
{ρ(i)}], as illustrated in Figure 5.1.
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We assume that cJ
i represents a reliable source of information on the dis-

tribution of all class labels at J + 1 level. Thus, we rewrite the equation (5.6)

as

P (ΩJ) = P (ΩL)
∏

i∈J

L−1∏

j=J

P (ωj
i |c

j
i ) . (5.7)

Finally, we derive a more convenient expression for the discriminant function

from (5.4) as

g(WJ ,ΩJ) = P (ΩL)
∏

i∈J

p(wJ
i |ωJ

i )
L−1∏

j=J

P (ωj
i |c

j
i ). (5.8)

The unknown transition probabilities P (ωJ
i |cJ

i ) can be obtained, maximizing

the discriminant function (5.8) in cascades, employing the EM algorithm at each

scale J [18]. Using the already known likelihoods p(wJ
i |ωJ

i ) from training, the

P (ωJ
i |cJ

i ) is estimated in the ML sense by averaging over the entire scale J ,

because it is reasonable to assume that the transition probabilities are equal for all

coefficients at the same scale.

The initial parameters for the EM at the level L are p(wL
i |ωL

i ), obtained

in training (5.2). Also, for the coarsest level L, we assume that P (ωL
i |cL

i ) = 1

for all coefficients. Then, the EM is performed in cascades towards the finer

scales, estimating P (ωJ
i |cJ

i ) and P (ωJ
i ), until the finest level J = 0 is reached.

Experimental results show that the algorithm converges rapidly if the initial

parameters are set to the values estimated at the previous coarser scale.

Once the transition probabilities P (ωJ
i |cJ

i ) are estimated for all class labels

and context values, it is possible to perform image segmentation, using the MAP

rule as follows:

ω̂0
i = arg max

ω0
i ∈{s,g}

P (ω0
i )P (ω0

i |c0
i )p(w0

i |ω0
i ) . (5.9)

In the next chapter we present experimental results for sky/ground image

segmentation, using the proposed computer vision system.



CHAPTER 6
EXPERIMENTAL RESULTS

In our experiments, first, the HMT model is trained using a data base of

training images. We recorded two sets of 500 images. One set represents the

sky and the other ground, only. Images are carefully chosen to account for great

variability within classes, as illustrated in Figure 6.1.

Then, the trained HMT is tested on another set of test images. There are

two types of testing images. The first testing set contains images similar to the

training data base. The second type of testing images consists of flight images of

our MAV’s, where both the sky and ground appear. In the following sections we

present the experimental set-up and results.

6.1 Real-Time Realization Problems

In order to implement the HMT-based Bayes classifier in real-time, which

is our ultimate goal, the amount of computation must be as small as possible.

There are several avenues to decrease the amount of computation. The greatest

computational load comes from the EM algorithm. It is known that given M

training images of N pixels each, the total computational cost per EM iteration is

O(MN) [7].

Thus, first, we reduce N , the number of pixels to be analyzed. Since the fast

CWT algorithm requires image dimensions be a power of 2, we subsample each

640 × 480 image in the data base to dimensions 128 × 128. Hence, the maximum

number of levels in the HMT is L = log2 127 = 7. Segmentation results show that

the 128 × 128 image resolution is sufficient for reliable classification.
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Figure 6.1  Training images of the sky and ground.

Second, with reducing the number of HMT parameters, we lower the number

M of images necessary for training the HMT. Recall that we compute only the

components of Θ for all coefficients at a scale J–not for each particular coefficient

wJ
i . This reduces the number of iteration steps for the EM to converge. In our

experiments, the convergence criterion compares values of the components of Θl+1

with the values from the previous iteration step in Θl. The EM algorithm stops if

| Θl+1 − Θl | < ε ,

where ε should not be an arbitrarily small value, because it would lead to overfit-

ting the HMT model. If ε = 10−4, the convergence is achieved in 5 iteration steps,

in the worst case.

Finally, intelligent choice of initial values also reduces the number of iteration

steps. Appropriate setting of all the parameters and the code optimization made

the execution of training relatively fast. Training on 900 images (450 of each class),

on an Athlon 900 MHz PC, is less than 3 minutes, and it takes less than 1 minute,

for testing 100 images (50 of each class).
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6.2 Classification of the First Type of Test Images

Having trained the HMT on the training set, we obtained parameters Θ for

all features f ∈ {±15◦,±45◦,±75◦, H, S, I}. Then, we tested the performance of

our computer vision system on the first type of test images, where either the sky or

ground is present. Here, the goal is to recognize the whole image either as the sky

or as the ground.

First, we show that the choice of H, S, I color features is justified. As we

have already pointed out, the R, G, B color features exhibit significant statistical

dependence. Here, we present the classification error of our algorithm for both R,

G, B features and H, S, I features in Table 6.1 and Table 6.2. Better results are

achieved when the number of possible color states is increased. However, a better

model is computationally more expensive.

Table 6.1  The performance of the RGB-based classifier for ground test images.

class number of states error HSI error RGB
2 4 % 6 %

ground 3 2 % 4 %
4 2 % 4 %
5 2 % 4 %
6 2 % 4 %

Table 6.2  The performance of the RGB-based classifier for sky test images.

class number of states error HSI error RGB
2 12 % 26 %

sky 3 10 % 18 %
4 6 % 16 %
5 6 % 12 %
6 6 % 10 %

Comparing the classification results for HSI-based and RGB-based classifier,

presented in Figure 6.2, we conclude that the HSI color feature space is superior to

the RGB space.
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Figure 6.2  The classification error using RGB and HSI color spaces.

The performance of the wavelet-based classifier, the case when only the CWT

features are used (f ∈ {±15◦,±45◦,±75◦}), is presented in Table 6.3.

Table 6.3  Performance of the wavelet-based classifier.

class error CWT
ground 2 %

sky 6 %

From Tables 6.2, 6.1, and 6.3, we conclude that even when the number of

states is increased the color-based classifier performs worse than the wavelet-based

classifier. Therefore, for reliable classification, both color and texture features have

to be incorporated.

6.3 Segmentation of the Second Type of Test Images

Having trained the HMT for all features f ∈ {±15◦,±45◦,±75◦, H, S, I}, we

tested the performance of our computer vision system on the second type of test

images. This set of images consists of flight images of our MAV’s, as well as other

difficult-to-segment sky/ground images. Here, the goal is to segment an image into

sky and ground regions. The image segmentation is presented in Figures 6.3-6.5.
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Figure 6.3  A MAV’s
flight: favorable
sky/ground patterns.

Figure 6.4  Water surface
with ice patches similar
to clouds.

Figure 6.5  A mountain
view with fuzzy horizon
line.
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Finally, we illustrate the generality of our algorithm in segmentation of

cut/uncut grass regions (see Figure 6.6). We present the original image (left), the

subsampled image (center), and segmentation of the subsampled image (right).

These images1 show a grass lawn from the perspective of a camera mounted on an

autonomous lawn mower. Even at image resolutions as low as 64×64, we achieve

satisfactory results at very fast processing speeds.

Figure 6.6  Segmentation of cut and uncut grass regions.

1 We thank Rand Chandler for giving us access to his image database.



CHAPTER 7
CONCLUSION

Segmentation of complex image classes, such as sky and ground, demand an

elaborate consideration of class properties. Clearly, in some cases, color provides

sufficient information for sky and ground detection. However, due to video noise

and/or unfavorable class patterns, both color and texture clues are necessary for

successful recognition.

In this thesis, first, we presented our choice of features, consisting of H and I

values from the HSI color space, and CWT coefficients. In our experiments, the

HSI color space proved to be superior to the RGB space. Also, in the early stage of

considering the method for texture analysis, experimental results showed that the

DWT (realized with Daubechies wavelets) is inferior to the CWT.

Second, we showed the implementation of the HMT model and the training

steps for obtaining its parameters. The contribution of this thesis reflects in the

derivation of the formulae, which must be used in the EM algorithm to surmount

the implementation issues; specifically the numerical underflow. We proposed the

method, where dynamic scaling is performed for β values only, whereas in literature

[7, 11, 15] other approaches are used.

Further, we described how the learned parameter set could be used for

computing likelihoods of all nodes at all scales of our HMT. We then developed

multiscale Bayesian classification for our application.

The most important contribution of this thesis reflects in successful implemen-

tation of color features into the HMT framework. In relevant literature [7, 11, 18],

the HMT model is related only to wavelets. Incorporating color features resulted
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in more reliable image segmentation, which is illustrated for diverse sky/ground

images and for cut/uncut grass images.

We incorporated in our design results from the available literature, modifying

the original algorithms for our purposes where appropriate. We designed our

computer vision system with real-time constraints in mind. Therefore, some aspects

are suboptimal with respect to the classification error.
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