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ABSTRACT

AdaBoost has been successfully used in many signal pro-
cessing systems for data classification. It has been observed
that on highly noisy data AdaBoost leads to overfitting. In
this paper, a new regularized boosting algorithm LPnorm2-
AdaBoost (LPNA), arising from the close connection be-
tween AdaBoost and linear programming, is proposed to
mitigate the overfitting problem. In the algorithm, the data
distribution skewness is controlled during the learning pro-
cess to prevent outliers from spoiling decision boundaries
by introducing a smooth convex penalty function (l2 norm)
into the objective of the minimax problem. A stabilized
column generation technique is used to transform the op-
timization problem into a simple linear programming prob-
lem. The effectiveness of the proposed algorithm is demon-
strated through experiments on a wide variety of datasets.

1. INTRODUCTION

AdaBoost is a method for improving the accuracy of a learn-
ing algorithm (a.k.a. base learner) by calling iterativelythe
base learner on re-weighted training data, and by combin-
ing the so-produced hypothesis functions together to form
an ensemble classifier [1, 2]. AdaBoost has been success-
fully implemented in many signal processing systems [3, 4].
It has been reported that in the low noisy regime, AdaBoost
rarely suffers from overfitting problems. However, recent
studies with highly noisy patterns have clearly shown that
overfitting can occur [5, 6]. In general, there are two distinct
cases in which the overfitting phenomena of AdaBoost man-
ifest: (i) when a simple classifier (e.g., C4.5), and (ii) when
a powerful classifier (e.g., radial basis functions–RBF) is
used as the base learner. In the first case, by investigating
the asymptotic behavior of AdaBoost, it has been found that
after a large number of iterations, the testing performance
may start to deteriorate, despite the continuing increase in
the minimum margin of the ensemble classifier [7]. In the
second case, AdaBoost quickly leads to overfitting only af-
ter a few iterations. These observations indicate that a regu-
larization scheme is needed for AdaBoost in noisy settings.

One method to alleviate the overfitting of AdaBoost is to
choose a simple base learner, and implement an early stop

strategy. However, in this case, the boosting may not outper-
form a single well-designed classifier, such as RBF, which
undermines the justification for implementing the approach.
The second case of overfitting, when a strong base learner
is used in AdaBoost, has not been to date well treated in
the literature. Only a few algorithms have been proposed to
address the problem, among which AdaBoostReg achieves
the state-of-the-art generalization results on noisy data[6].
Although, in comparison with other regularized algorithms,
AdaBoostReg empirically shows the best performance [6], it
is not known whether it converges, nor what its actual opti-
mization problem is, since the regularization in AdaBoostReg

is introduced on the algorithm level [2].
In this paper, we present a new regularized boosting al-

gorithm to improve the performance of a strong base learner.
Our work is motivated by the close connection between Ada-
Boost and linear programming (LP) [8]. This connection
was used for derivation of LP-AdaBoost [7], where the min-
imum sample margin is directly maximized. This idea was
further explored in [9] by introducing slack variables into
an optimization problem in the primal domain. By pursu-
ing a soft margin instead of a hard margin, the resulting al-
gorithm, referred to LPreg-AdaBoost, does not attempt to
classify all of the training samples according to their la-
bels (which may be corrupted by noise), but allows for some
training errors. In this paper, we provide for a new interpre-
tation of the regularization of LPreg-AdaBoost, which can be
viewed as imposing a hard limited penalty function on the
data distribution skewness. In contrast, we consider con-
trolling the distribution skewness by using a smooth convex
penalty function within the minimax problem formulation.
Thus, we propose LPnorm2-AdaBoost that has a clear under-
lying optimization scheme, unlike AdaBoostReg. Empirical
results over a wide range of data demonstrate that our al-
gorithm achieves a similar, and in some cases significantly
better classification performance than AdaBoostReg.

2. REGULARIZED LP BOOSTING ALGORITHMS

Given a set of training dataD={(xn, yn)}N
n=1∈R

l×{±1},
and a class of hypothesis functionsH={h(x):x→{±1}},
we are interested in finding an ensemble functionF (x) =
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∑

t αtht(x) to classify data into two classes. This can be
accomplished by using AdaBoost,1 which learns combina-
tion coefficients and hypothesis functions by performing a
functional gradient decent procedure on a cost function of
sample margins,ρ(xn),ynF (xn)/

∑

t αt.
It has been empirically observed that AdaBoost can ef-

fectively increase the margin [10]. For this reason, since the
invention of AdaBoost, it has been conjectured that AdaBoost,
in the limit (i.e.,t → ∞), solves the following LP problem:

max
(ρ,α)

ρ, s.t.ρ(xn)≥ρ, n=1, · · ·, N,
∑

t

αt=1, α≥0, (1)

referred to as the maximum margin classification scheme.
However, recently, the equivalence of the two algorithms
has been proven not to hold always [11]. Nevertheless, these
two algorithms are closely connected in the sense that both
algorithms try to maximize the margin. This observation
motivates researchers to design new ensemble classifiers by
using some of the well-studied optimization techniques.

Likewise, to derive our regularization scheme, we be-
gin by investigating the minimax problem. For the time
being, we assume that the cardinality ofH is finite and is
equal to|H|. We define a gain matrix,Z, whereznt =
ynht(xn). Now, let us look at the following minimax opti-
mization problem:

maxα∈Γ|H| mind∈ΓN d
T
Zα , (2)

whereΓN is the distribution simplex defined asΓN = {d :

d ∈ RN ,
∑N

n=1 dn = 1,d ≥ 0}. The optimization scheme
in Eq. (2) can be roughly understood as finding a set of com-
bination coefficientsα ∈ Γ|H|, such that the performance
of the ensemble classifier in the worst case is optimized. It
can be readily shown that this classification scheme leads to
the maximum margin classification scheme in Eq. (1). In
the separable data case, a large margin is usually conducive
to good generalization [12]. However, in the noisy data case
with overlapped class distributions and mislabeled training
data, the optimization scheme in Eq. (2) can be easily misled
by outliers. Consequently, it will produce a classifier with
a suboptimal performance. A natural strategy to address
this problem is to add a penalty term to the cost function in
Eq. (2) to control the data distribution skewness, prevent-
ing the algorithm from using all of its resources on learning
several hard-to-learn training samples. In the following sec-
tions, we present two regularized boosting algorithms that
fall within this framework.

2.1. LPreg-AdaBoost (LPRA)

Note that in Eq. (2), the minimization problem is optimized
over the entire probability space, which is not sufficiently

1For a more detailed description of AdaBoost, the interestedreader is
referred to [2], and references therein.

restrictive. By constraining the distribution into a box, i.e.,
d ≤ c, we get the following optimization problem:

maxα∈Γ|H| min{d∈ΓN ,d≤c} d
T
Zα , (3)

wherec is a constant vector. Eq. (3) can be interpreted as
finding α, such that the classification performance in the
worst case within the distribution box is maximized. From
Eq. (3), it is straightforward to derive the following primal
optimization problem:

max
{ρ,λ,α∈Γ|H|}

ρ −
∑N

n=1 cnλn ,

subject to
∑|H|

t=1 αtznt≥ρ−λn, λn≥0, n=1, · · ·, N.
(4)

LPRA algorithm [6] is derived from a special case of Eq. (4)
by settingc1=· · ·=cN=C. The above scheme introduces a
nonnegative slack variable,λn, into the optimization prob-
lem to achieve a sample soft margin,ρs(xn) = ρ(xn)+λn.
The relaxation of the hard margin allows the algorithm not
to classify all of the training patterns according to their as-
sociated labels.

For convenience, we reformulate Eq. (3) as

maxα∈Γ|H| mind∈ΓN d
T
Zα + β(‖d‖∞), (5)

where‖ · ‖p is the p-norm andβ(P ) is a function ofP
defined as:β(P ) = 0 if P ≤ C, and∞ if P > C. Note that
the box defined by{d : ‖d‖∞ ≤ C,d ∈ ΓN} is centered
at the distribution centerd0 = [1/N, · · · , 1/N ] (starting
point of AdaBoost), and thatC controls the skewness of
d between the box boundary andd0. Eq. (5) indicates that
LPRA can be considered as a penalty scheme with a penalty
of 0 within the box and∞ outside the box. Therefore, this
scheme is somewhat heuristic, and may be too restrictive.
Note that Eq. (5), in fact, provides for a novel interpretation
LPRA.

In practical applications, however, the cardinality ofH
can be very large or even infinite. Hence, the gain matrix,
Z, may not exist in an explicit form and linear programming
cannot be implemented directly. This difficulty could be cir-
cumvented by using the column generation (CG) technique
[9]. It has been shown that by using a commercialized LP
package, the CG based LP-Booting algorithm can achieve
a comparable performance to that of AdaBoost with respect
to both classification quality and solution time [9].

2.2. LPnorm2-AdaBoost (LPNA)

Regarding the interpretation of Eq. (5), one plausible strat-
egy to control the skewness ofd is to add a penalty term,
P (d), to Eq. (2) as

maxα∈Γ|H| mind∈ΓN d
T
Zα + βP (d) , (6)

whereβ is a predefined parameter, andP (d) is a function of
the distance between query distributionsd and distribution
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centerd0. With a mild assumption thatP (d) is a convex
function ofd, it can be shown that Eq. (6) is equivalent to
(Generalized Minimax Theorem [13]):

min{γ,d∈ΓN} γ + βP (d) ,

subject to
∑N

n=1 dnznj ≤ γ, j = 1, · · · , |H|.
(7)

We refer to Eq. (7) as regularized scheme in the dual do-
main. In this paper, we defineP (d) , ‖d−d0‖2. Thus,
Eq. (7) can be reformulated as

min{γ,d∈ΓN} γ ,

subject to
∑N

n=1 dnznj + β‖d− d0‖2 ≤ γ,
j = 1, · · · , |H|.

(8)

Now, the optimization problem in Eq. (8) can be linearly
approximated as follows. First, we define an auxiliary term
s(d) , max1≤j≤|H|

∑N
n=1 dnznj + β‖d − d0‖2. Given

a set of query distributions{d(t)}T
t=1, for each query dis-

tribution d
(t) there exists a supporting hyperplane, to the

epigraph ofs(d), given by

γ = s(d(t)) + ∂s(d(t))(d − d
(t)) , (9)

where∂s(d(t)) is the subdifferential ofs(d) atd(t). Due to
the convexity ofs(d), the supporting hyperplane gives an
underestimate ofs(d). ¿From Eq. (9), we derive:

γ=z
T
.td

(t)+β‖d(t)−d0‖2+[z.t+β d
(t)−d0

‖d(t)−d0‖2
]T(d−d

(t)),

=[z.t + β d
(t)−d0

‖d(t)−d0‖2
]Td = z̃

T
.td , (10)

wherez.t=[y1ht(x1), · · ·, yNht(xN )]T, and

ht(xn) = arg maxh∈H

∑N
n=1 d

(t)
n h(xn)yn. It follows that

Eq. (8) can be linearly approximated as:

min{γ,d∈ΓN} γ ,
subject to z̃

T
.td ≤ γ, t = 1, · · · , T ,

(11)

which is much easier to deal with than the original problem
in Eq. (8). The query distributionsd(t) can be obtained
by using the column generation technique, as proposed for
LPreg-AdaBoost in [9]. Due to the degeneracy of Eq. (11),
column generation, however, shows a pattern of slow con-
vergence. The spareness of the optimum solution produces
many unnecessary columns, particularly in the initial sev-
eral iterations. The problem of slow convergence is illus-
trated in Fig. 1, where, given the columns (constraints) of
1 and4, the columns of2 and3 will not be activated due
to the Karush-Kuhn-Tucker (KKT) condition [14]. Conse-
quently, the corresponding hypothesis coefficientsα2 and
α3 are equal to zero. That is, the generation ofh2 andh3 is
not necessary.

One natural idea to alleviate the slow convergence prob-
lem is to constrain the solution within a box, centered at the
previous solution, also called the BOXSTEP method [15]:
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Fig. 1. The slow convergence problem of column gener-
ation; the numbers in the circles denote the sequences of
generating the columns or constraints.

min{γ,d} γ ,

s.t. z̃
T
.td≤γ, t=1, · · ·, T, d∈ΓN , ‖d−d

(T )‖∞≤B,
(12)

where parameterB defines the box size. Note that
‖d−d

(T )‖∞≤B ⇒ d
(T )−1B ≤ d ≤ 1B+d

(T ), which
together withd∈ΓN givesmax{d(T )−1B,0}≤d≤1B+d

(T ).
Consequently, the optimization problem in Eq. (12) can be
further simplified as the following LP problem:

min{γ,d} γ ,

s.t. z̃
T
.td ≤ γ, t=1, · · ·, T,

∑N
n=1 dn = 1,

max{d(T ) − 1B,0} ≤ d ≤ 1B + d
(T ) .

(13)
Eq. (13) gives rise to a new LP based boosting algorithm,
which we refer to as LPnorm2-AdaBoost (LPNA), given in
Fig. 2. By using Theorem 4.5.17 and Corollary 4.5.19 in
[16], LPNA can be shown to converge to an optimum solu-
tion after a finite number of iterations.

The proposed algorithm could be better understood in
the primal domain. The dual form of Eq. (11) is given by

max(ρ,α∈ΓT ) ρ

subject to
∑T

t=1 αtznt + β
∑T

t=1 αt
d(t)

n
−1/N

‖d(t)−d0‖2
≥ ρ,

n = 1, · · · , N
(14)

Similar to Eq. (4), Eq. (14) leads to the following definition
of a sample soft margin:

ρs(xn) =
∑T

t=1 αtznt + β
∑T

t=1 αt
d(t)

n
−1/N

‖d(t)−d0‖2
, (15)

where the term
(

β
∑T

t=1 αt
d(t)

n
−1/N

‖d(t)−d0‖2

)

can be interpreted

as “mistrust” in examples. Note that the mistrust is calcu-
lated with respect to the initial uniform distribution. This
implies that ifd(t)

n ≤1/N , t=1, · · · , T , then the mistrust can
take negative values. As a result, the soft margin provides
the mechanism to penalize difficult-to-learn samples with
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Initialization: D = {(xn, yn)}N
n=1; maximum number of

iterationsT ; d
(1)
n = 1/N ; parameterβ; box sizeB.

for t = 1 : T

1. Train base learner with respect to distributiond
(t) and

get hypothesisht(x) : x → {±1}.

2. Solve the optimization problem:

(d∗, γ∗) = arg min{γ,d} γ ,

subject to z̃
T
.jd ≤ γ, j = 1, · · · , t,

∑N
n=1 dn = 1,

max{d(t)−1B,0}≤d≤1B+d
(t)

3. Update weights asd(t+1) = d
∗.

end

Output: F (x) =
∑T

t=1 α∗
t ht(x), where theα∗ are the La-

grangian multipliers from the last LP.

Fig. 2. Pseudo-code for LPnorm2-AdaBoost algorithm.

larged
(t)
n values, and at the same time to award easy-to-

learn samples with smalld(t)
n values. Since AdaBoost in-

creases the margin of the most hard-to-learn examples at the
cost of reducing the margins of the rest of the data [6, 10],
by defining the soft margin as in Eq. (15), we seek to reverse
the AdaBoost process to some extent, the strength of which
is controlled byβ.

Interestingly, our soft margin given by Eq. (15), derived
in the principled manner from the minimax optimization
problem, is very similar to that of AdaBoostReg, defined as

ρReg(xn) =
∑T

t=1 αtznt + β
∑T

t=1 αtd
(t)
n , which is intro-

duced in AdaBoost on the algorithm level [6]. The main
difference is that our soft margin is calculated with respect
to the center distribution.

In implementation, ifB is chosen too large, LPNA may
still slowly converge; ifB is too small, the updating of
query distributions may not be adequate, affecting the con-
vergence rate of the algorithm. In our experiments,B ∈
[ 3
N , 10

N ] proves appropriate. Throughout, we chooseB= 5
N .

3. EXPERIMENTAL RESULTS

In our experiments, we compare our LPNA with AdaBoost,
AdaBoostReg, RBF, and LPRA algorithms. For fairness sake,
our experimental setup is the same as the one used for eval-
uation of AdaBoostReg in [6]. We use12 artificial and real-
world data sets originally from the UCI, DELVE and STAT-
LOG benchmark repositions:banana, breast cancer, dia-
betis, flare solar, german, heart, image ringnorm, splice,

thyroid, titanic, twonorm, andwaveform. Each data set has
100 realizations of training and testing data. For each real-
ization, a classifier is trained and the test error is computed.
The detailed information about the experimental setup and
the benchmark data sets can also be found in [17].

The RBF net is used as the base learner. All of the RBF
parameters, including the number of the RBF centers and it-
eration number, are the same as those used in [6]. These pa-
rameters, as well as the regularization parameterβ are tuned
in cross validation. Throughout, the maximum number of it-
erations of LPNA and LPRA is heuristically set toT = 150.
The commercialized optimization package XPRESS is used
as an LP solver.

We present several examples in which we illustrate the
properties of the proposed algorithm. First, we show clas-
sification results onbananadata set, whose samples are
characterized by two features. We plot the decision bound-
aries of AdaBoost and LPNA in the feature space, in Fig. 3.
AdaBoost tries to classify each pattern according to its as-
sociated label, and forms a ”zigzag” decision boundary, il-
lustrating the overfitting phenomenon of AdaBoost. LPNA
gives a smooth decision boundary by ignoring some hard-
to-learn samples. In the second example, we present the
training and testing results, and margin plots of AdaBoost
and LPNA on one realization ofwaveformdata in Fig. 4.
AdaBoost tries to maximize the margin of each pattern, and
hence effectively reduces the training error to zero. How-
ever, it quickly leads to overfitting. In contrast, LPNA tries
to maximize the soft margin, purposefully allowing some
hard-to-learn examples to remain with small margins (Note
that the hard margin takes a negative value.). Thereby, LPNA
effectively alleviates the overfitting problem of AdaBoost.

A more comprehensive comparison of the algorithms is
given in Table 1, detailing the average classification results
and their standard deviations over the100 realizations of the
12 datasets. The best results are marked in boldface. From
the table, we note the following:
1) AdaBoost performs worse than a single RBF classifier in
almost all cases. This is due to the overfitting of AdaBoost.
In many cases AdaBoost quickly leads to overfitting only
after a few iterations, which clearly indicates that a regular-
ization is needed for AdaBoost.
2) LPNA can significantly improve the performance of RBF,
while at the same time avoiding the overfitting problem. In
almost all cases, LPNA performs better than AdaBoost.
3) We observe significant improvements in the classification
performance of LPNA over AdaBoostReg on some datasets
(e.g.,waveform), whereas fortitanic andtwonorm, the re-
sults of both algorithms are similar. This indicates the suc-
cess of our approach. Note that AdaBoostReg has been es-
tablished as one of the best regularized AdaBoost algorithms,
reportedly outperforming Support Vector Machine (with RBF
kernel) on the given 12 datasets [6].
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Fig. 3. The decision boundaries of AdaBoost and LPNA
on one realization ofbananadata; AdaBoost produces a
zigzag decision boundary while LPNA gives smooth deci-
sion boundaries.

4) LPNA is superior to LPRA in almost all cases, while
LPRA, in turn, achieves better performance than Ada-Boost.
The inferiority of LPRA to LPNA can be explained due to a
heuristic hard-limited penalty function used in LPRA.

4. CONCLUSION

In this paper, we have addressed the problem of overfitting
in AdaBoost in noisy settings, which may hinder the im-
plementation of AdaBoost for real-world applications. We
have proposed a new regularized AdaBoost algorithm –
LPnorm2–AdaBoost, or short LPNA - by exploring the close
connection between AdaBoost and linear programming. The
algorithm is based on an intuitive idea of controlling the data
distribution skewness in the learning process by introduc-
ing a smooth convex penalty function into the objective of
the minimax problem. Thereby, outliers are prevented from
spoiling decision boundaries in training. We have used the
stabilized column generation technique to transform the op-
timization problem into a simple linear programming prob-
lem. Empirical results show that LPNA effectively alle-
viates the overfitting problem of AdaBoost, and achieves
a slightly better overall classification performance than to
date the best regularized AdaBoost algorithm called AdaBo-
ostReg. Unlike AdaBoostReg, where regularization is heuris-
tically introduced on the algorithm level, our algorithm has
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Fig. 4. Training and testing results, and margin plots of
AdaBoost and LPNA on one realization ofwaveformdata.
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Table 1. Classification errors and standard deviations of the RBF, AdaBoost(AB), AdaBoostReg(ABR), LPreg-AdaBoost
(LPRA), LPnorm2-AdaBoost (LPNA). The best resutls are marked in boldface.

RBF [6] AB [6] ABR [6] LPNA LPRA
Banana 10.8±0.6 12.3±0.7 10.9±0.4 10.7±0.4 10.9±0.9

Bcancer 27.6±4.7 30.4±4.7 26.5±4.5 25.9±4.5 26.7±4.7

Diabetis 24.3±1.9 26.5±2.3 23.8±1.8 23.8±1.8 24.3±2.0

German 24.7±2.4 27.5±2.5 24.3±2.1 23.9±2.3 24.5±2.3

Heart 17.6±3.3 20.3±3.4 16.5±3.5 16.9±3.2 17.5±3.6

Ringnorm 1.7±0.2 1.9±0.3 1.6±0.1 1.6±0.2 1.7±0.2

Fsolar 34.4±2.0 35.7±1.8 34.2±2.2 34.3±1.8 34.6±2.0

Thyroid 4.5±2.1 4.4±2.2 4.6±2.2 4.3±2.2 4.4±2.1

Titanic 23.3±1.3 22.6±1.2 22.6±1.2 22.5±1.1 23.3±0.9

Waveform 10.7±1.1 10.8±0.6 9.8±0.8 9.4±0.4 9.8±0.5

Splice 10.0±1.0 10.1±0.5 9.5±0.7 9.4±0.7 9.5±0.6

Twonorm 2.9±0.3 3.0±0.3 2.7±0.2 2.7±0.2 2.8±0.2

a clear underlying optimization scheme.
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[2] R. Meir and G. Rätsch, “An introduction to boosting
and leveraging,” inAdvanced Lectures on Machine
Learning, S. Mendelson and A. Smola, Eds., pp. 119–
184. Springer, 2003.

[3] H. Schwenk, “Using boosting to improve a hy-
brid HMM/Neural Network speech recognizer,” in
Proc. Intl. Conf. Acoustics, Speech, Signal Processing,
Phoenix, AZ, USA, 1999, pp. 1009–1012.

[4] R. Zhang andA. I. Rudnicky, “Improving the per-
formance of an LVCSR system through ensembles
of acoustic models,” inProc. Intl. Conf. Acoustics,
Speech, Signal Processing, Hong Kong, 2003, vol. 1,
pp. 876–879.

[5] Thomas G. Dietterich, “An experimental comparison
of three methods for constructing ensembles of de-
cision trees: Bagging, boosting, and randomization,”
Machine Learning, vol. 40, no. 2, pp. 139–157, 2000.
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