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Abstract

We combine random forest (RF) and conditional random fieRKCinto a new
computational framework, called random forest random fi&#)2. Inference
of (RF)? uses the Swendsen-Wang cut algorithm, characterized byoptsis-
Hastings jumps. A jump from one state to another depends @matiio of the
proposal distributions, and on the ratio of the posteristriiutions of the two
states. Prior work typically resorts to a parametric ediomaof these four dis-
tributions, and then computes their ratio. Our key idea im$tead directly es-
timate these ratios using RF. RF collects in leaf nodes df gacision tree the
class histograms of training examples. We use these clagsghams for a non-
parametric estimation of the distribution ratios. We derilie theoretical error
bounds of a two-claséRF)%. (RF)? is applied to a challenging task of multiclass
object recognition and segmentation over a random field mitimage regions.
In our empirical evaluation, we use only the visual inforimafprovided by image
regions (e.g., color, texture, spatial layout), whereasctimpeting methods addi-
tionally use higher-level cues about the horizon locatioth 83D layout of surfaces
in the scene. Nevertheleg®F)? outperforms the state of the art on benchmark
datasets, in terms of accuracy and computation time.

1 Introduction

This paper presents a new computational framework, caiedam forest random fiel(RF)?,
which provides a principled way to jointly reason about riplét, statistically dependent random
variables and their attributes. We derive theoreticalgrenfince bounds dRF)?, and demonstrate
its utility on a challenging task of conjoint object recoigmm and segmentation.

Identifying subimage ownership among occurrences ofrdistbject classes in an image is a fun-
damental, and one of the most actively pursued problem irpcen vision, machine learning, and
artificial intelligence [1-11]. The goal is to assign thedhbf one of multiple semantic classes to
each image pixel. Our approach builds on the following commezognition strategies: (i) Labels
of neighboring image parts are likely to be correlated — ohthe main principles of perceptual
organization; and (ii) Recognized objects dictate whidmeotobjects to expect in the scene, and
their scale and spatial configuration — one of the main ppiesiof context-driven recognition that
“binds” all object detections in a coherent scene integiieh. We formalize perceptual grouping
and context by a graphical model aimed at capturing stagistiependencies among random vari-
ables (i.e., labels or attributes) associated with difiepxel neighborhoods. Thus, we derive a
unified framework for combined object recognition and segta#on, as a graph-structured predic-
tion of all random variables in a single, consistent modé¢hefscene.

The graphical model we use is Conditional Random Field (CRE)}—one of the most popular
models for structured inference over pixels [2, 3], patqdes], or image regions [6-8], for object
recognition and segmentation. CRF defines a posterioilaison of hidden random variablég
(labels), given observed image featuXsin a factored formp(Y'| X ; 0):% [I.%.(Ye, X 0).
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Each potential).. is a function over a subs&.CY’, conditioned onX, and parameterized k.
The potentials are often defined as linear functions of patars;/.(Y,, X;0)=0"¥., where¥,

is the output of some detectors over observalBeR2—4]. This means thai(Y'|X; 0) is modeled
as a log-linear function, which is not adequate when theat@teutputs do not provide a linear
separability of the classes. Learnifids hard, because computation of the partition functidd)

is intractable for most graphs (except for chains and trdafgrence is typically posed as the joint
MAP assignment that minimizes the enedgy, v (Y., X; 0), which is also intractable for general
graphs. The intractability of CRF learning and inferenceiofmotivates prior work to resort to
approximatealgorithms, e.g., graph-cuts, and loopy belief propagaidP). The effect of these
approximations on the original semantics of CRF is poorlyarstood. For example, an approximate
inference stuck in a local maximum may not represent theded consistent scene interpretation.

Motivation: Some of the aforementioned shortcomings can be addressad @RF inference is
conducted using the Metropolis-Hastings (MH) algorithnH Braws sample¥ (*) from the CRF’s
posterior,p(Y'|X), and thus generates a Markov chain in which skatét!) depends only on the
previous statd (*). The jumps between the states are reversible, and goveyreegoposal density
q(Y® — Y (+1), The proposal is accepted if the acceptance ratdrawn fromU (0, 1), satisfies

. g(Y ) oy M) p(y ¢+ x) . .
a<min{l, (YOS (P OTX) }. MH provides strong theoretical guarantees of convergence

to the globally optimal state. As can be seen, the entirgénige process is regulated tatios of
the proposal and posterior distributions. Consequeritly biottleneck of every CRF learning and
inference — namely, computing the partition functidr— is eliminated in MH.

Our key idea is to directly estimate the ratios of the propasa posterior distributions, instead
of computing each individual distribution for conductingdMumps. Previous work on MH for
CRFs usually commits to linear forms of the potential fuoiet, and spends computational re-
sources on estimating the four distributiongY “+1) =Y ®)), ¢(Y ) -y ¢4y, p(Y D] X)

. . . . t+1) _,y ()
andp(Y | X). In contrast, our goal is to directly estimate the two ran% and

p(Y VX)) i i ;
o) ina non-parametric manner, since the acceptance rate ojultids depends only on

these ratios. To this end, we use the random forests (RF) [38En a training set of labeled ex-
amples, RF grows many decision trees. We view the trees ay afwascriminatively structuring
evidence about the class distributions in the training keparticular, each leaf of each tree in RF
stores a histogram of the number of training examples froch ekass that reached that leaf. When
a new example is encountered, it is “dropped” down each ofrtfes in the forest, until it reaches a
leaf in every tree. The class histograms stored in all theseels can then be used as a robust esti-
mate of the ratio of that example’s posterior distributiomkis is related to recent work on Hough
forests for object detection and localization [14], whexavkes collect information on locations and
sizes of bounding boxes of objects in training images. Hanethey use this evidence to predict
a spatial distribution of bounding boxes in a test image,reag we use the evidence stored in tree
leaves to predict the distributiagatios. Evidence trees are also used in [15], but only as a first stage
of a stacked-classifier architecture which replaces thedsta majority voting of RF.

RF is difficult to analyze [13, 16]. Regarding consistencyrRé it is known that their rate of con-
vergence to the optimal Bayes’ rule depends only on the nuwiftieformative variables. It is also
shown that RF that cuts down to pure leaves uses a weighteztetd nearest neighbor rule [16].
We are not aware of any theoretical analysis of RF as an gstiroératios of posterior distributions.

Contributions: We combine RF and CRF into a new, principled and elegant ctatipnal frame-
work (RF)2. Learning is efficiently conducted by RF which collects thess histograms of training
examples in leaf nodes of each decision tree. This evidentleen used for the non-parametric
estimation of the ratios of the proposal and posteriorithistions, required by MH-based inference
of (RF)2. We derive the theoretical error bounds of estimating ithistion ratios by a two-class RF,
which is then used to derive the theoretical performancatsof a two-clas$RF)?.

Paper Organization: Sections 2—4 specify the CRF model, its MH-based inferesuece RF-based
learning. Sections 5-6 present our experimental evaluaiod theoretical analysis (RF)?.
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2 CRF Model

We formulate multiclass object recognition and segmeurtadis the MAP inference of a CRF, de-
fined over a set of multiscale image regions. Regions are asé@uage features, because they are
dimensionally matched with 2D object occurrences in theg@and thus facilitate modeling of var-
ious perceptual-organization and contextual cues (eagtjriuation, smoothness, containment, and
adjacency) that are often used in recognition [6-11]. As¢esegions is provided by the state-of-
the-art, multiscale segmentation algorithm of [17], whilgltects and closes object (and object-part)
boundaries using the domain knowledge. Since the righéstalvhich objects occur is unknown,
we use all regions from all scales.

The extracted regions are organized in a graphs= (V, E), with V and E are sets of nodes and
edges. The nodes=1,..., N correspond to multiscale segments, and edges € E capture
their spatial relations. Each nodds characterized by a descriptor vectey, whose elements
describe photometric and geometric properties of the spmeding region (e.g., color, shape, filter
responses). A pair of regions can have one of the followitagicmships: (1) ascendent/descendent,
(2) touching, and (3) far. Since the segmentation algoritfifl 7] is strictly hierarchical, region

1 is descendent of region if 7 is fully embedded as subregion within ancestorTwo regions:
andj touch if they share a boundary part. Finally; i&nd;j are not in the hierarchical and touch
relationships then they are declared as far. Edges conthextde pairst = V x V, |E| = N2
Each edggi, j) is associated with a tag;;, indicating the relationship type betwegand.

CRF is defined as the graphical model o¢erLetY = {y;} denote all random variables associated
with the nodes, indicating the class label of the correspancegion,y; € {0,1,..., K}, where

K denotes the total number of object classes, and label Oasvies for the background class. Let
pi = p(ys|z:) andp;; = p(yi, yjlzi, ¢4, ei;) denote the posterior distributions over nodes and pairs
of nodes. Then, we define CRF as

p(Y|G) = [Liey p(wilzi) [ jyep PWis yilai, 25, e55) = [Liev vi [l jyeppis - (1)
Multi-coloring of CRF is defined as the joint MAP assignmént = argmaxy p(Y'|G). In the
following section, we explain how to conduct this inference

3 CRF Inference

For CRF inference, we use the Swendsen-Wang cut algoritthd8), presented in [18]. SW-
cut iterates the Metropolis-Hastings (MH) reversible juntprough the following two steps. (1)
Graph clustering: SW-cut probabilistically samples carted components¢’C’s, where each
CC represents a subset of nodes with the same color. This is ldppeobabilistically cutting
edges between all graph nodes that have the same color bastio posterior distributions
pi; = p(Yi,y;lxi, xj,ei5). (2) Graph relabeling: SW-cut randomly selects one of@i&'s ob-
tained in step (1), and randomly flips the color of all nodethat C'C', and cuts their edges with the
rest of the graph nodes having that same color. In eachigaré&W-cut probabilistically decides
whether to accept the new coloring of the seleci&d, or to keep the previous state. Unlike other
MCMC methods that consider one node at a time (e.g., GibbplsnSW-cut operates on a num-
ber of nodes at once. Consequently, SW-cut converges fasteenables inference on relatively
large graphs. Below, we review steps (1) and (2) of SW-cutcéonpleteness.

In step (1), edges aff are probabilistically sampled. This re-connects all nad&snew connected
components'C'. If two nodesi andj have different labels, they cannot be in the saif@, so
their edge remains intact. ifandj have the same label, their edge is probabilistically sathple
according to posterior distributiom;. If in the latter case edgg, j) is not sampled, we say that
it has been probabilistically “cut”. Step (1) results in atstA. In step (2), we choose at random
a connected compone@C' from step (1), and randomly reassign a new color to all nodékat
CC. To separate the re-coloréd” from the rest of the graph, we cut existing edges that connect
CC to the rest of the graph nodes with that same color. Step §2)Jtsein a new staté. SW-cut
accepts stat® if the acceptance rate is sufficiently large via a randonstmwéling. Lety(A — B)

be the proposal probability for moving from stateto B, and letg(B — A) denote the converse.
The acceptance rate(A— B), of the move fromA to B is defined as

q(B — A)p(Y = B|G>>
WA= Bp¥ = AG) )

a(A — B) =min (1 2

3
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The computation complexity of each move is relatively Iow.e'lfauoqgf*g) in (2) involves only

those edges that are “cut” aroud” in statesA and B — not all edges. Also, the rau%
accounts only for the recolored nodedii@’ — not the entire graphy, since all other probabilities
have not changed from stateto stateB. Thus, from Eq. (1), the ratios of the proposal and posterior

distributions characterizing statésand B can be specified as

a(B—4) _ ijecus (1=p5) and p(Y*BIG I pe 11 Py 3)
= AN A
q(A—B) H(i,j)eCutA (l_pij) p(Y = A[G) icCC pZ JEN(D) Pij

where Cuf and Cuj; denote the sets of “cut” edges in statésand B, and N (i) is the set of
neighbors of node N'(i) = {j : j € V, (4,5) € E}.

As shown in [18], SW-cut is relatively insensitive to diféet initializations. In our experiments, we
initialize all nodes in the CRF with label 0. Next, we show htmacompute the ratios in Eq. (3).

4 Learning

RF can be used for estimating the ratios of the proposal asiegor distributions, given by Eqg. (3),
since RF provides near Bayesian optimal decisions, asdtiealty shown by Breiman [13]. In the
following, we describe how to build RF, and use it for compgtihe ratios in Eq. (3).

Our training data represent a set/df labeled regions. If regionfalls within the bounding box of
an objectin clasy € {1,2,..., K}, it receives labe}. If i covers a number of bounding boxes
of different classes thenis added to the training set multiple times to account fodestinct class
labels it covers. Each regianis characterized by a d-dimensional descriptor vectpre R?,
which encodes the photometric and geometric propertiés he training dataset(x;, ;) : i =

., M} is used to learn an ensembleBiecision trees representing RF.

In particular, each training sample is passed through edecision tree from the ensemble until it
reaches a leaf node. Each léakecords a class histograi®;, = {¢;(y) :y =1,..., K}, where
¢1(y) counts the number of training examples belonging to cjabsit reached. The total number
of training examples i is then||®,||. Also, for each pair of leave§,!’), we record a two-class
histogram,®;;, = {vw (y,y',e) 1y, =1,...,K; e =1,2,3}, whereyy (y,y’, e) counts the
number of pairs of training examples belonging to clagsasdy’ that reached leavésand!’, and
also have the relationship type- namely, ascendent/descendent, touching, or far redtipn

Given®,; and¥;;,, we in a position to estimate the ratios of the proposal arstigpior distributions,
defined in (3), which control the Metropolis-Hastings junim)ﬂ;he SW-cut. Suppose two regions,
represented by their descriptarsandzx;, are labeled ag;! andyA in state A, and;? andy in
stateB of one iteration of the SW-cut. Also, after passmgandacj throughT decision trees of the
learned RF, suppose they reached Ie@(/asdlt ineach tre¢ = 1,...,7T. Then, we compute

T
PP S o (y) pﬁ e Y W, 7, eis) for estimating p(Y = B|G)
’ p(Y = AlG)

A T ’ A T
b; Zt:l (blf (y{A) pij Zt:l wl;‘l; (yiAv yjAa €ij

To estimate the ratio of the proposal distributioﬁéf—g), it is necessary to compute each individ-

(4)

ual probabilityp;;, since the nominator and denominato(; :gg do not contain the same set of
“cut” edges, Cuj # Cutg, as specified in (3). Thus, we compute
T
i1 %513 (Yi: Y5, €i) N q(B—A)

Pij = T for estimating ———=.
> i1 ||‘I>z§ ||||‘I>z§. | q(A—B)

In the following, we first present our empirical evaluatidn(BF)2, and then derive the theoretical
performance bounds of a simple, two-cl4R$)?.

(®)

5 Results

(RF)? is evaluated on the task of object recognition and segnientah two benchmark datasets.
First, the MSRC dataset consists of 591 images showing thffexn 21 categories [3]. We use the
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standard split of MSRC into training and test images [3].dpek the Street-Scene dataset consists
of 3547 images of urban environments, and has manually atetbtegions [6,19]. As in [6], one
fifth of the Street-Scene images are used for testing, ankghefor training. Both datasets provide
labels of bounding boxes around object occurrences as ditouitn.

Images are segmented using the multiscale segmentatioritatg of [17], which uses the per-
ceptual significance of a region bounday, € [0,100], as an input parameter. We vafy =
30:10:150, and thus obtain a hierarchy of regions for each image. Aoreg characterized by a
descriptor vector consisting of the following propertié3:30-bin color histogram in the CIELAB
space; (ii) 250-dimensional histogram of filter respon$éiseMR8 filter bank, and the Laplacian of
Gaussian filters computed at each pixel, and mapped to 2¥wawds whose dictionary is obtained
by K-means over all training images; (iii) 128-dimensioredion boundary descriptor measuring
oriented contour energy along 8 orientations of each cedl4f 4 grid overlaid over the region’s
bounding box; (iv) coordinates of the region’s centroidmalized to the image size. Regions ex-
tracted from training images are used for learning RF. Aaeghat falls within a bounding box is
assigned the label of that box. If a region covers a numbepohbing boxes of different classes,
it is added to the training set multiple times to account factedistinct label. We use the standard
random splits of training data to train 100 decision treeRBf constructed in the top-down way.
The growth of each tree is constrained so its depth is less3@aand its every leaf node contains at
least 20 training examples. To recognize and segment shjeatnew test image, we first extract a
hierarchy of regions from the image by the segmentationrdlgo of [17]. Then, we build the fully
connected CRF graph from the extracted regions (Sec. 2)uemithe SW-cut inference (Sec. 4).

We examine the following three variants @F)?: (RF)2-1 — The spatial relationships of regions,
e;j, are not accounted for when computing in Eq. (4) and Eq. (5)(RF)?-2 — The region rela-
tionships touching and far are considered, while the as®dkscendent relationship is not cap-
tured; and RF)2-3 — All three types of region layout and structural relagibips are modeled. In
this paper, we considéRF)2-3 as our default variant, and explicitly state when the othe are
used instead. Note that considering region layouts andtstieichanges only the class histograms
recorded by leaf nodes of the learned decision trees, bae# dot increase complexity.

For quantitative evaluation, we compute the pixel-wisesification accuracy averaged across all
test images, and object classes. This metric is suitabt@use it does not favor object classes that
occur in images more frequently. Tab. 1 and Tab. 2 show owlpiise classification accuracy
on MSRC and Street-Scene images. Table. 2 also compardwéigevariants ofRF)? on MSRC
and Street-Scene images. The additional consideratidreakgion relationships touching and far
increases performance relative to thatRF)2-1, as expected. Our performance is the best when alll
three types of region relationships are modeled. The taiespresent the pixel-wise classification
accuracy of the state of the art CRF models [3,6,20,21]. Matethe methods of [6,21] additionally
use higher-level cues about the horizon location and 3Deslegmout in their object recognition and
segmentation. As can be seéRF)? outperforms the latest CRF models on both datasets.

Our segmentation results on example MSRC and Street-Sowges are shown in Fig. 5. Labels
of the finest-scale regions are depicted using distinctrspsince pixels get labels of the finest-scale
regions. As can be seefRF)? correctly identifies groups of regions that belong to theesatass.

Since the depth of each decision tree in RF is less than 3@otmplexity of dropping an instance
through one tree i®(1), and through RF witll” trees isO(7"). Our C-implementation of the RF-
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T | 5|2| 2 Bl 8|25 &2 8|38 3|8 8 2|5 2|88
S | <|@d|@ a|la a|la|lo|o|0|o|la|d|lt|ola|n|ldn|nl|E|=2
10 8891|3449 |54]93[30(82|56|74|68|54|77]90|71|31|/64]|82]|84]|69]58
22 8272|2418 | 66|93 (49| 74| 75|51]97|35[87|74[88|78|97|36]| 78| 79|54
23 837930276780 |69|70|68|45| 785284 |47|96|78|80|61|95]| 87|67

20] {100 98| 11|63 |55|78|73|88|11|80| 74|43 72| 72|96|76]90|92|[50| 76|61
[3] 60| 75[19| 7[62]92[62|63|54]|15|/58]|19|74|63|97|86|50|35|83|86]|53
Ours | 10099 |42 |69 |68 | 95| 74|88 | 77|80|99|61[91]93[99|78[99|93| 96| 90| 68

Table 1: The average pixel-wise classification accuracherMSRC datasetRF)? yields the best
performance for all object classes except one.
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Figure 1: Our object recognition and segmentation resuit®xample images from the MSRC
dataset (top two rows), and the Street-Scene datasetifbotto rows). The figure depicts bound-
aries of the finest-scale regions found by the multiscalerélygm of [17], and the color-coded labels
of these regions inferred byRF)2. The results are good despite the presence of partial aenlus

and changes in illumination and scale. (best viewed in golor

| Method | MSRC | StreetScene| Testtime]
(RF)Z-1 | 69.5%F13.7% | 78.2%t0.5% | 45s
(RF)2-2 | 80.2%£14.4% | 86.7%t0.5% | 31s
(RF)2-3 | 82.9%£15.8% | 89.8%t0.6% | 31s
[20] 70.0% N/A N/A
21] 76.4% 83.0% N/A
6 N/A 84.2% N/A O R
3 70.0% N/A 10-30s

Table 2: The average pixel-wise classification accuracy and-igure 2: The probability of classi-
average computation times on the MSRC and Street-Scenication error o RF)?, P(e), given

datasets of the three variants of our approach with those oby EQ. (6) and Theorem 1 as a
the state-of-the-art CRF-based methods. function of the marginy, of RF.

guided SW-cut inference of CRF takes 10s—30s on a 2.40GHz iBC3w8GB RAM for MSRC
and Street-Scene images. Table 2 shows that our averagaguimes are comparable to those of
the other CRF methods that use approximate inference [8, 812

6 Theoretical Analysis

We are interested in a theoretical explanation of the gostbpeance of(RF)? presented in the
previous section. In particular, we derive the theoregigaformance bounds of a two-clagsF)?,

for simplicity. As explained in Sec. 3, we use the SW-cut(fRF)? inference. The SW-cut iterates
the Metropolis-Hastings (MH) reversible jumps, and thugleses the state-space of solutions. An
MH jump between stated4 and B is controlled by the acceptance rateA— B) which depends on
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. . C —A)p(Y=B|qQ)
the ratios of the proposal and posterior distributi £ ,HB)f)(Y:A‘G). Below, we show that the

error made by the two-class RF in estimating these ratiosisitted. Our derivation of the error
bounds of RF is based on the theoretical analysis of evidieees, presented in [15].

6.1 An Upper Error Bound of (RF)?

An error occurs along MH jumps whenbalancedreversible jump is encountered, i.e., when there
q(B—A)

is no preference between jumping from stdté state3 and reversemzl, and RFwrongly
predicts that the posterior distribution of stdBeis larger than that of4, %21. In this

casea(A— B)=1, and the SW-cut will erroneously visit state We are interested in finding the
probability of this error, specified as

ELRy ol
P(e)—P(_izl =P HLA' H A=t ©)
p(Y = A|G) ieco Vi jeniy Pis

From Eq. (6),P(¢) can be computed using the probability density function ofedpct of ran-
dom variablesZ; = pfP/p#* € [0,00), andW;; = pZ/p;; € [0,00), within a specific con-
nected componen®C, where|CC|=n, i = 1,...,n, andj € N(i). As we will prove in the
sequel, all random variableB; have the same exponential distributigp, (z)=A; exp(—A12).
Also, we will prove that all random variabled’;; have the same exponential distribution
Jw,; (w)=Xz exp(—A2w). Then, it follows that the produé¢t=[];" ; Z;=(Z;)" has the distribution

fz(z):%z% exp(—Aizn). Also, the product =[]}, [Lienry Wig=(Wij)™ ~=(Wi;)™ has

the diStributioan(w):%wan exp(—Xow™ ), where we approximate that the number of edges
within CC is the same as the number of node€i@', as a result of the probabilistic “cutting” of
graph edges by the SW-cut algorithm. Givgn(z) and fw (w), from Eqg. (6), we analytically de-
rive the probability thatRF)? makes a wrong predictio?(¢) = P(Z - W > 1), as stated in the
following theorem.

Theorem 1. The probability that RF)? makes a wrong prediction B(e)=P(Z-W > 1)=\K; (),
whereZ (0, co) andW €[0, oo) are random variables characterized by the probability dgrfsinc-

tions fz(2)=22"+" exp(~A\iz7) and fi(w)=22w =" exp(—Axw™), with parameters\; and

A2, and wherekK; is the modified Bessel function of the second kind,Jagd2+/ A1 \>.

Proof. DefineH = Z - W. Then, fy(h)= [;° Lfz(2) fw(L)dz = 2" Ko(Ah77), where
K, is the modified Bessel function of the second kind. It follothat P(¢) = P(H>1) =
1= [ fu(R)dh = AK (A).O0

As we will show in the following section, the parameteiis directly proportional to a measure
of accuracy of RF predictions, referred to as probabilisigrgin. SinceK;()) is a decreasing
function, it follows that the probability thaRF)? makes a wrong prediction is upper bounded, and
decreases as the probabilistic margin of RF increases.

6.2 A Mathematical Model of RF Performance

In this section, we derive that the RF estimates of the raifogosteriorsZ; and W;; have the
exponential distribution. We consider a binary classiftgaproblem, for simplicity, where training
and test instances may have positive and negative labelas¥uene that the two classes are balanced
P(y=+1) = P(y=—1) = 1/2. We definer to be a fraction of pairs of instances that have certain
relationship, corresponding to a particular spatial arcttrral relationship between pairs of regions,
defined in Sec. 2. The learning algorithm that creates RFtisnoaleled. Instead, we assume that
the learned decision trees have the following propertiashHeaf node of a decision tree: (i) stores
a total of C training instances that reach the leaf; and (ii) has a pridib marginy € [0,1/2).

By margin, we mean that in every leaf reached®byraining instances a fraction af/2 + ~ of the
training instances will belong to one class (e.g., positimad fractionl /2 — ~ of them will belong

to the other class (e.g., negative). We say that a leaf igip@&ia majority of the training instances
collected by the leaf is positive, or otherwise, we say thatleaf is negative. It is straightforward
to show that when a positive instance is dropped through érleeodecision trees in RF, it will
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reach a positive leaf with probability/2 + ~, and a negative leaf with probability/2 — ~ [15].
Similarly holds for negative instances. A new test instaiscglassified by dropping it through
decision trees, and taking a majority vote of the labels bfal T' training instances stored in the
leaves reached by the test instance. We refer to this clzasiin procedure as evidence voting [15],
as opposed to decision voting over the leaf labels in thedstalhRF [13]. The following proposition
states that the probability that evidence voting miscfessan instance? (e, ), is upper bounded.

Proposition 1. The probability that RF witii" trees, where every leaf storéstraining instances,
incorrectly classifies an instance is upper bound@(k; )< exp(—8CTv*).

Proof. Evidence voting for labeling an instance can be formalizedrawing a total o7 inde-
pendent Bernoullirandom variables, with the successgrat@hose outcomes afe-1, +1}, where

+1 is received for correct, and1 for incorrect labeling of the instance. L8t denote a sum of
these Bernoullirandom variables. Thus, a positive ingamtcorrectly labeled if; <0, and a neg-
ative instance is misclassified$f >0. Since the two classes are balanced, by applying the s@ndar
Chernoff bound, we obtaif?(e;)=P(S; <0)< exp [-2CT (p1—1/2)?]. The success rajg can be
derived as follows. When a positive (negative) instanceapped through a decision tree, it will fall

in a positive (negative) leaf with probability/2 + -, where it will be labeled as positive (negative)
with probability1/2+~; else, the positive (negative) instance will be routed tegative (positive)
leaf with probabilityl /2—+, where it will be labeled as positive (negative) with proitigb1/2—~.
Consequently, the probability that an instance is colydabeled, i.e., the success rate of the asso-
ciated Bernoulli random variable, ig =(1/2+)(1/2+v)+(1/2—7)(1/2—v)=1/2 + 2v*.0

Evidence voting is also used for labeling pairs of instancese probability that evidence voting
misclassifies a pair of test instancéX¢,), is upper bounded, as stated in Proposition 2.

Proposition 2. Given RF as in Proposition 1, the probability that RF incantlg labels a pair of
instances having a certain relationship is upper boundegz) < exp(—8C2Tr4?®).

Proof. Evidence voting for labeling a pair of instances can be fdizad as drawing a total of
C?T independent Bernoulli random variables, with successratehose outcomes afe-1, +1},
where—+1 is received for correct, and1 for incorrect labeling of the instance pair. L&t denote

a sum of these Bernoulli random variables. Théle;)=P(S2<0)<exp [-2C*T(p2—1/2)?].
Similar to the proof of Proposition 1, by considering threxsgible cases of correct labeling of a
pair of instances when dropping the pair through a decise the success ragtg can be derived
aspo=m(1/2+72)(1/2+7y?)+r(1/2—7?)(1/2—7*)+(1—7)(1/2) = 1/2+2724*, wherer is a
fraction of pairs of instances that have the same type ofioelship(]

From Proposition 1, it follows that the probability that RRakes a wrong prediction about the pos-
terior ratio of an instance is upper bound&dZ; > 1) = P(e;) = exp(—8CT~*), Vi € CC. This
gives the probability density functiofy, (z) = A1 exp(—\1z), where\; = 8CT~*. In addition,
From Proposition 2, it follows that the probability that RRakes a wrong prediction about the pos-
terior ratio of a pair of instances is upper boundB@W,; > 1) = P(e2) = exp(—8C*Tr1+®),

Vi € CC andj € N(i). This gives the probability density functiofyy,; (w) = A2 exp(—Xow),
where), = 8C?T'7n*~+8. By plugging these results in Theorem 1, we complete thevalon of the
upper error bound fRF)2. From Theorem 1P(¢) decreases when any of the following parameters
increasesC, T, v, andr. Fig. 2 shows the influence afon P(¢), when the other parameters are
fixed to their typical values®' = 20, 7' = 100, andw = 0.1.

7 Conclusion

We have presente(RF)? — a framework that uses the random forest (RF) for the MCMg&kta
inference of a conditional random field (CRF). Our key idetoiemploy RF to directly compute
the ratios of the proposal and posterior distributions afest visited along the Metropolis-Hastings
reversible jumps, instead of estimating each individuatritiution, and thus improve the conver-
gence rate and accuracy of the CRF inference. Such a nomptairaformulation of CRF and its
inference has been demonstrated to outperform, in termsnopatation time and accuracy, existing
parametric CRF models on the task of multiclass object neition and segmentation. We have also
derived the upper error bounds of the two-class RF @f?, and showed that the classification
error of (RF)? decreases as any of the following RF parameters increasesiumber of decision
trees, the number of training examples stored in every ledénand the probabilistic margin.
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