
Dynamic Trees for Unsupervised Segmentation
and Matching of Image Regions

Sinisa Todorovic, Student Member, IEEE, and Michael C. Nechyba, Member, IEEE

Abstract—We present a probabilistic framework—namely, multiscale generative models known as Dynamic Trees (DT)—for

unsupervised image segmentation and subsequent matching of segmented regions in a given set of images. Beyond these novel

applications of DTs, we propose important additions for this modeling paradigm. First, we introduce a novel DT architecture, where

multilayered observable data are incorporated at all scales of the model. Second, we derive a novel probabilistic inference algorithm for

DTs—Structured Variational Approximation (SVA)—which explicitly accounts for the statistical dependence of node positions andmodel

structure in the approximate posterior distribution, thereby relaxing poorly justified independence assumptions in previous work. Finally,

we propose a similarity measure for matching dynamic-tree models, representing segmented image regions, across images. Our results

for several data sets show that DTs are capable of capturing important component-subcomponent relationships among objects and their

parts, and that DTs performwell in segmenting images into plausible pixel clusters.We demonstrate the significantly improved properties

of the SVA algorithm—both in terms of substantially faster convergence rates and larger approximate posteriors for the inferred

models—when comparedwith competing inferencealgorithms. Furthermore, results on unsupervised object recognitiondemonstrate the

viability of the proposed similarity measure for matching dynamic-structure statistical models.

Index Terms—Generative models, Bayesian networks, dynamic trees, variational inference, image segmentation, image matching,

object recognition.
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1 INTRODUCTION

WEpresent a probabilistic framework for image segmen-
tation and subsequent matching of segmented regions

in a given set of images, when only weak or no prior
knowledge is available. Thus, we formulate the image-
segmentation and matching problems as inference of poster-
ior distributions over pixel random fields given the observed
image. Our principal challenge, therefore, lies in choosing a
suitable and numerically manageable statistical model,
which provides the means for 1) clustering pixels into image
regions, which we interpret as objects and 2) detection of
instantiated objects across a given set of images. The solution
to these two problems can be viewed as critical core
components of an integrated computer vision system that is
capable of first registering unknown/known objects over an
image set and then updating its knowledge base accordingly.
While considerationsof sucha systemarebeyond the scopeof
this paper, we point out that the core components introduced
here form the basis of many prospective vision systems. Our
focus herein is the formulation of a statistical modeling
paradigm with the specified capabilities.

Given the assumption that dependencies among image
regions occur only through component-subcomponent rela-
tionships, multiscale generative models known as dynamic
trees (DTs) appear very suitable for our goals [1], [2], [3], [4]. In
DTs, nodes represent random variables, and arcs between

them model causal (Markovian) dependence assumptions
through scales, as illustrated in Fig. 1. DTs provide a
distribution over image-class labels associated with each
node, as well as a distribution over network connectivity.
Therefore, for a given image, posteriors of both network
structure and image-class labels need to be inferred in the
inference algorithm. After inference, the model structure can
be determined through Bayesian (MAP) estimation, which
gives a topology solution comprisinga forest of subtrees, each
ofwhich segments the image, as depicted in Fig. 1. Since each
root determines a subtree, whose leaf nodes form a detected
object, we can assign physical meaning to roots as represent-
ingwhole objects. Also, each descendant of the root down the
subtreecanbe interpretedas therootofanothersubtreewhose
leaf nodes cover only a part of the object. Thus, roots’
descendants can be viewed as object parts at various scales.
Theexperimental resultsover several typesof imagedatasets,
which we report herein, show that DTs are capable of
capturing important component-subcomponent relation-
ships among objects and their parts, and that DTs perform
well in segmenting images into plausible pixel clusters.
Hence, the generative (Markovian) property of DTs provides
a solution to our first problem of unsupervised image
segmentation.

With respect to our second problem, we stress that
traditional approaches to object recognition based on
statistical modeling of object appearances and subsequent
probability-based classification as, for example, in [5], [6], [7],
are ill-posed for unsupervised settings. Here, ill-posed
indicates two difficulties. First, the problem is not uniquely
solvable since the absence of prior knowledge on possible
image classes renders the design of a classifier ambiguous
and, second, the solution does not depend on the data in a
continuousway; that is, insufficiently large training data sets
lead to very unreliable statistical models. Consequently, in
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unsupervised settings, it is not possible to reliably estimate
the variability of data within a class and across various
classes, and thereby to set thresholds for subsequent
classification. In contrast, it iswidely reported in the literature
that image matching based on a suitably defined similarity
measure is resilient to the outlinedproblems [8], [9], [10], [11],
[12], [13]. As such, herewith, we formulate the object-
recognition problem in unsupervised settings as one of
computing a similarity measure between DTs representing
instantiated objects across images. For this purpose, we
define a novel similarity measure between two dynamic-
structure models. From the given data set, we first choose an
arbitrary image to be the reference, and then search for
segmented image regions in the rest of the images that are
similar to the ones in the reference image. Note that the
unsupervised setting precludes the term reference signifying
known image classes (i.e., objects). Therefore, we are not in
position to successfully recognize every appearance of a
reference object across the data set. Since the appearances of
the examined object may differ by many factors including
pose, occlusion, lighting, and scale, by matching we can only
search for the particular reference appearance of the object in
the rest of the images. This limitationof theoutlinedapproach
is, however, inherent to unsupervised settings in general, not
to our approach in particular. Nevertheless, results of image
matching in unsupervised settings, which we report herein,
demonstrate the viability of the proposed approach over
different image sets.

This paper makes a number of contributions:

1. We introduce multilayered data into the model, as
illustrated in Fig. 1b—an approach that has been
extensively investigated in fixed-structure quad-trees
(e.g., [14], [15], [16]). Throughout, we assume that
multiscale data forms a quad-tree structure of dyadic
squares, as is the case, for example, in the wavelet
transform. The proposed models of data quad-trees
haveproved rather successful forvarious applications
including image denoising, classification, and seg-
mentation. Hence, it is important to develop a similar
formulation for DTs. To our best knowledge, the
literature reports only research on DTs whose ob-
servables exist at the leaf level, as depicted in Fig. 1a,
[1], [2], [3], [4]. This may be so because of a
fundamental problem with propagating observables
to higher levels in a generative model. Since over-
lapping image parts are being reused for deriving
observables at different levels, a generative model

may generate pixel values that are inconsistent with
any possible image.Nevertheless, this problem can be
alleviated by appropriate normalization or by span-
ning image data over a set of orthonormal functions
(e.g., in the wavelet transform).

2. We develop a novel probabilistic inference algorithm
for the proposed model. As is the case for many
complex-structure models, exact inference for DTs is
intractable. Therefore, we assume that there are
averaging phenomena inDTs thatmay render a given
set of variables approximately independent of the rest
of the network, and thereby derive a Structured
Variational Approximation (SVA) [17], [18], [19].
SVA provides for principled solutions, while redu-
cing computational complexity.Unlike thevariational
approximation discussed in [4], we explicitly account
for the dependence of node positions on the model’s
structure, which results in the algorithm’s faster
convergence, when compared to existing approaches.

3. We propose a similarity measure for comparing DTs,
which we employ for matching segmented image
regions across a given set of images. Standard
probabilistic approaches tomatching use the log-ratio
of model distributions representing the examined
image regions [8], [9], [10], [11]. However, as ex-
plained before, in unsupervised settings, these dis-
tributions may have large variations across images,
due to the uninformed estimation of the model
parameters. To alleviate this problem, we measure
correlation between the cross-likelihoods of the two
image regions, normalized by the likelihoods of each
individual region.

The remainder of the paper is organized as follows: In
Section 2, we first discuss prior research related to tree-
structured statistical modeling. Next, in Section 3, we define
our dynamic-tree framework. In Section 4, we derive our
structured-variational approximation inference algorithm
for DTs, and discuss various implementation issues inherent
to the algorithm, as well as to unsupervised settings. Then, in
Section 5, we consider the problem of comparing DT models
and define a similarity measure for that purpose. Finally, in
Section 6, we present experimental results on segmentation
and matching of image regions for several classes of images.

2 RELATED WORK

Recently, therehasbeena flurryof research in the field of tree-
structured belief networks (TSBNs) [5], [14], [15], [16], [20].
TSBNs are characterized by a fixed, balancedtree-structure of
nodes, representing random variables. The edges of TSBNs
represent parent-child (Markovian) dependencies between
neighboring layers of nodes, while random variables belong-
ing to the same layer are conditionally independent. TSBNs
have efficient linear-time inference algorithms, of which, in
the graphical-models literature, the best-known is Pearl’s
�-� message passing scheme, also known as belief propaga-
tion [5], [21]. Cheng and Bouman have used TSBNs for
multiscale document segmentation [14]; Schneider et al. have
used TSBNs to replace the initial Markovian random field
prior and have achieved efficient simultaneous image
denoising and segmentation [20]. The aforementioned
examplesdemonstrate thepowerful expressivenessofTSBNs
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Fig. 1. Two types of DTs: (a) Observable variables present at the leaf
level only. (b) Observable variables present at all levels, round and
square-shaped nodes indicate hidden and observable random variables,
triangles indicate roots, and unconnected nodes in this example belong
to other subtrees; each subtree segments the image into regions
marked by distinct shading.



and the efficiency of their inference algorithms, which is
critically important for our purposes.

Despite these attractive properties, TSBNs give rise to
blocky segmentations, due to their fixed structure. In the
literature, there are several approaches to alleviate this
problem. Irving’s research group has proposed an over-
lapping tree model, where distinct nodes correspond to
overlapping parts in the image [22]. In [23], the authors
have discussed two-dimensional hierarchical models,
where nodes are dependent both at any particular layer
through a Markov-mesh and across resolutions. In both
approaches, segmentation results are superior to those
when standard TSBNs are used because the descriptive
component of the models is improved at some increased
computational cost. Ultimately, however, these approaches
do not deal with the source of the “blockiness”—namely,
the fixed tree structure of TSBNs.

Aside from the work of Williams et al. [1], [2], [3], [4], to
whichwewill refer throughout the paper, we point out other
research concerning dynamic-tree structures. Konen et al.
have proposed a flexible neural mechanism for invariant
pattern recognition based on correlated neuronal activity and
the self-organization of dynamic links in neural networks
[24]. Also, Montanvert et al. [25] have explored irregular
multiscale tessellations that adapt to image content.

3 DYNAMIC TREES

The model formulation discussed herein is similar to that of
the position-encoding dynamic trees in [4], where obser-
vables are present only at the lowest model level. However,
since we also consider multilayered observable data in DTs,
for completeness, we introduce both types of models,
emphasizing, where appropriate, the differences.

DTs are directed, acyclic graphs with two disjoint sets of
nodes representing hidden and observable random vectors.
Graphically, we represent all hidden variables as round-
shaped nodes, connected via directed edges indicating
Markovian dependencies, while observables are denoted as
rectangular-shaped nodes, connected only to their corre-
sponding hidden variables, as depicted in Fig. 1. Below, we
first introduce nodes characterized by hidden variables.

ThereareV round-shapednodes,organizedinhierarchical
levels, V ‘, ‘ ¼ f0; 1; . . . ; L�1g, whereV 0 denotes the leaf level
andV 0 ¼4V =V 0.Thenumberofround-shapednodes is identical
to that of the corresponding quad-treewithL levels, such that
jV ‘j¼jV ‘�1j=4¼ . . .¼jV 0j=4‘. Connections are established un-
der the constraint that a node at level ‘ can become a root, or it
can connect only to the nodes at the next ‘þ1 level. The
network connectivity is represented by random matrix Z,
whereentryzij isanindicatorrandomvariable,suchthatzij¼1
if i2V ‘ and j2f0; V ‘þ1g are connected. Z contains an
additional zero (“root”) column, where entries zi0¼1 if i is a
root. Sinceeachnodecanhaveonlyoneparent, a realizationof
Z canhave atmost one entry equal to 1 in each row.Wedefine
the distribution over connectivity as

P ðZÞ¼4
YL�1
‘¼0

Y
ði;jÞ2V ‘�f0;V ‘þ1g

�ij
� �zij ; ð1Þ

where �ij is the probability of i being the child of j, subject
to
P

j2f0;V ‘þ1g �ij¼1.

Further, each round-shaped node i (see Fig. 1) is
characterized by random position rrrri in the image plane.
The distribution of rrrri is conditioned on the position of its
parent rrrrj as

P ðrrrrijrrrrj; zij¼1Þ¼4
expð� 1

2 ðrrrri�rrrrj�ddddijÞ
T��1ij ðrrrri�rrrrj�ddddijÞÞ

2�j�ijj
1
2

; ð2Þ

where �ij is a diagonal matrix that represents the order of
magnitude of object size and parameter ddddij is the mean of
relative displacement ðrrrri�rrrrjÞ. In [4], the authors, for
simplicity, set ddddij to zero, which favors undesirable position-
ing of children and parent nodes at the same locations. From
our experiments, this may seriously degrade the image-
modeling capabilities of DTs, and as such some nonzero
relative displacement ddddij needs to be accounted for. The joint
probability of R ¼4 frrrrij8i2V g, is given by

P ðRjZÞ¼4
Y
i;j2V

P ðrrrrijrrrrj; zijÞ
� �zij ; ð3Þ

where for roots i we have P ðrrrrijzi0¼1Þ ¼4 expð� 1
2 ðrrrri�ddddiÞ

T

��1i ðrrrri�ddddiÞÞ=ð2�j�ij
1
2Þ. At the leaf level, V 0, we fix node

positions R0 to the locations of the finest-scale observables,
and then use P ðZ;R0jR0Þ as the prior over positions and
connectivity,whereR0¼4 frrrrij8i2V nV 0gandR0¼4 frrrrij8i2V nV 0g.

Next, eachnode i is characterizedbyan image-class labelxi

and an image-class indicator random variable xk
i , such that

xki¼1 ifxi¼k,wherek is a label takingvalues in the finite setM.
Thus, we assume that the setM of unknown image classes is
finite. The labelkofnode i is conditionedon image class lof its
parent jand is givenbyconditional probability tablesPkl

ij . The
joint probability ofX ¼4 fxk

i ji2V ; k2Mg is given by

P ðXjZÞ ¼
Y
i;j2V

Y
k;l2M

Pkl
ij

h ixki xljzij
; ð4Þ

where for roots i (zi0¼1) we use priors P ðxk
i Þ.

Finally, we introduce nodes that are characterized by
observable random vectors representing image texture and
color cues. Here, we make a distinction between two types
of DTs. The model where observables are present only at
the leaf-level is referred to as DTV 0 ; the model where
observables are present at all levels is referred to as DTV . To
clarify the difference between the two types of nodes in
DTs, we index observables with respect to their locations in
the data structure (e.g., wavelet dyadic squares), while
hidden variables are indexed with respect to a node-index
in the graph. This generalizes correspondence between
hidden and observable random variables of the position-
encoding dynamic trees in [4]. We define position ����ðiÞ to be
equal to the center of mass of the ith dyadic square at level ‘
in the corresponding quad-tree with L levels:

����ðiÞ¼4 ½ðnþ0:5Þ2‘ ðmþ0:5Þ2‘�T; n;m ¼ 1; 2; . . . ; ð5Þ

where n and m denote the row and column in the dyadic
square at scale ‘ (e.g., for wavelet coefficients). Clearly,
other application-dependent definitions of ����ðiÞ are possible.
Note that while the rrrrs are random vectors, the ����s are
deterministic values fixed at locations where the corre-
sponding observables are recorded in the image. Also, after
fixing R0 to the locations of the finest-scale observables, we
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have 8i2V 0, ����ðiÞ¼rrrri. The definition, given by (5), holds for
DTV 0 , as well, for ‘¼0.

For both types of DTs, we assume that observables
Y ¼4 fyyyy����ðiÞj8i2V g at locations R0 and ����0 ¼4 f����ðiÞj8i2V 0g are
conditionally independent given the corresponding xk

i :

P ðY jX;R0; ����0Þ ¼
Y
i2V

Y
k2M

P ðyyyy����ðiÞjxk
i ; ����ðiÞÞ

h ixki
; ð6Þ

where for DTV 0 , V 0 should be substituted for V . The
likelihoods P ðyyyy����ðiÞjxk

i¼1; ����ðiÞÞ are modeled as mixtures
of Gaussians: P ðyyyy����ðiÞjxk

i¼1; ����ðiÞÞ ¼4
PGk

g¼1 �kðgÞN ðyyyy����ðiÞ; ����kðgÞ;
�kðgÞÞ. For large Gk, a Gaussian-mixture density can
approximate any probability density [26]. In order to
avoid the risk of overfitting the model, we assume that
the parameters of the Gaussian-mixture are equal for all
nodes. The Gaussian-mixture parameters can be grouped
in the set � ¼4 fGk; f�kðgÞ; ����kðgÞ;�kðgÞgGk

g¼1 j 8k2Mg.
The joint prior of the model can be written as

P ðZ;X;R; Y Þ¼P ðY jX;R0; ����0ÞP ðXjZÞP ðZ;R0jR0ÞP ðR0Þ: ð7Þ

All the parameters of the joint prior can be grouped in the
set � ¼4 f�ij; ddddij;�ij; P

kl
ij ; �g, 8i; j2V , 8k; l2M.

4 PROBABILISTIC INFERENCE

In order to conduct Bayesian estimation of the model for a
given image, as required in our formulation of the image
segmentation problem, we need to infer the posterior
distributions of Z, X, and R0, given Y and R0. However,
due to the complexity of DTs, the exact computation of the
posteriorP ðZ;X;R0jY ;R0Þ is intractable.Therefore,weresort
to an approximate inference method, of which two broad
classes exist: deterministic approximations [17], [18], [19] and
Monte-Carlo methods [27], [28], [29]. Generally, in MCMC
approaches, with increasing model complexity, the choice of
proposals in the Markov chain becomes hard, so that the
equilibrium distribution is reached very slowly [27], [28]. To
achieve faster inference, we consider variational approxima-
tion, a specific type of deterministic approximation [17], [18],
[19]. Variational approximation methods have been demon-
strated to give good and significantly faster results, when
compared to Gibbs sampling ([2], chapter 3). The proposed
variational approaches range from a factorized approximat-
ing distribution over hidden variables [1] (also known as
mean field variational approximation) to more structured
solutions [4], where dependencies among hidden variables
are enforced. The underlying assumption in thosemethods is
that there are averaging phenomena inDTs thatmay render a
given set of variables approximately independent of the rest
of the network. Therefore, the resulting variational optimiza-
tion of DTs provides for principled solutions, while reducing
computational complexity. In the following section, we
derive a novel Structured Variational Approximation (SVA)
algorithm for DTs.

4.1 Structured Variational Approximation

In variational approximation, the intractable distribution
P ðZ;X;R0jY ;R0Þ is approximated by a simpler distribution
QðZ;X;R0jY ;R0Þ closest to P ðZ;X;R0jY ;R0Þ. To simplify
notation, below, we omit the conditioning on Y and R0, and
write QðZ;X;R0Þ. The novelty of our approach is that we
constrain the variational distribution to the form

QðZ;X;R0Þ ¼4 QðZÞQðXjZÞQðR0jZÞ; ð8Þ

which enforces that both class-indicator variables X and
position variables R0 are statistically dependent on the tree
connectivityZ. Since thesedependencies are significant in the
prior, one should expect them to remain so in the posterior.
Therefore, our formulation appears to be more appropriate
for approximating the true posterior than the mean-field
variational approximationQðZ;X;R0Þ¼QðZÞQðXÞQðR0Þdis-
cussed in [1] and the form QðZ;X;R0Þ¼QðZÞQðXjZÞQðR0Þ
proposed in [4].Wedefine the approximatingdistributions as
follows:

QðZÞ¼4
YL�1
‘¼0

Y
ði;jÞ2V ‘�f0;V ‘þ1g

�ij
� �zij ; ð9Þ

QðXjZÞ¼4
Y
i;j2V

Y
k;l2M

Qkl
ij

h ixki xljzij
; ð10Þ

QðR0jZÞ¼4
Y
i;j2V 0
½QðrrrrijzijÞ�zij ð11Þ

QðR0jZÞ¼4
Y
i;j2V 0

exp � 1
2 ðrrrri�����ijÞ

T��1ij ðrrrri�����ijÞ
� �

2�j�ijj
1
2

; ð12Þ

where parameters �ij correspond to the �ij connection
probabilities, and theQkl

ij are analogous to the P
kl
ij conditional

probability tables. For the parameters of QðR0jZÞ, note that
covariances�ij andmean values ����ij form the set of Gaussian
parameters for a given node i2V ‘ over its candidate
parents j2V ‘þ1. Which pair of parameters ð����ij;�ijÞ, is used
togeneraterrrri isconditionedonthegivenconnectionbetween i
and j—that is, the current realizationofZ.Weassume that the
�s are diagonal matrices, such that node positions along the
“x” and “y” image axes are uncorrelated. Also, for roots,
suitable forms of Q functions are used, similar to the
specifications given in Section 3. All the parameters of
QðZ;X;R0Þ can be grouped in the set� ¼4 f�ij; Qkl

ij ; ����ij;�ijg.
To findQðZ;X;R0Þ closest toP ðZ;X;R0jY ;R0Þweresort to

a standard optimization method, where Kullback-Leibler
(KL)divergencebetweenQðZ;X;R0ÞandP ðZ;X;R0jY ;R0Þ is
minimized ([30], chapter 2, pp. 12-49, and chapter 16, pp. 482-
509). The KL divergence is given by

KLðQkP Þ¼4
Z
R0
dR0
X
Z;X

QðZ;X;R0Þ log QðZ;X;R0Þ
P ðZ;X;R0jY ;R0Þ : ð13Þ

It is well-known that KLðQkP Þ is nonnegative for any two
distributions Q and P , and KLðQkP Þ¼0 if and only if Q¼P ;
these properties are a direct corollary of Jensen’s inequality
([30], chapter 2, pp. 12-49). As such, KLðQkP Þ guarantees a
globalminimum—that is, a unique solution toQðZ;X;R0Þ. In
the following section, we show how to compute QðZ;X;R0Þ.

4.2 Update Equations for Computing QðZ;X;R0Þ
By minimizing the KL divergence, we derive the update
equations for estimating the parameters of the variational
distribution QðZ;X;R0Þ. Below, we summarize the final
derivation results. Detailed derivation steps are reported in
the Appendix, where we also provide the list of nomen-
clature. In the following equations, we use 	 to denote an
arbitrary normalization constant, the definition of which
may change from equation to equation. Parameters on the
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right-hand side of the update equations are assumed
known, as learned in the previous iteration step.

4.2.1 Optimization of QðXjZÞ
QðXjZÞ is fully characterized by parameters Qkl

ij , which are
updated as

Qkl
ij ¼ 	Pkl

ij �
k
i ; 8i; j 2 V ; 8k; l 2M; ð14Þ

where the auxiliary parameters �k
i are computed as

�k
i ¼

P ðyyyy����ðiÞjxk
i ; ����ðiÞÞ; i 2 V 0;Q

c2V
P

a2M Pak
ci �

ak
ci

� ��ci ; i 2 V 0;

(
ð15aÞ

�k
i ¼ P ðyyyy����ðiÞjxk

i ; ����ðiÞÞ
Y
c2V

X
a2M

Pak
ci �

a
c

" #�ci
; 8i 2 V ; ð15bÞ

where (15a) is derived for DTV 0 and (15b) forDTV . Since the
�ci are nonzero only for child-parent pairs, from (15), we
note that �s are computed for both models by propagating
the � messages of the corresponding children nodes
upward. Thus, Qs, given by (14), can be updated by making
a single pass up the tree. Also, note that for leaf nodes,
i2V 0, the �ci parameters are equal to 0 by definition,
yielding �k

i¼P ðyyyy����ðiÞjxk
i ; ����ðiÞÞ in (15b).

Further, from (9) and (10), we derive the update equation
for the approximate posterior probability mk

i that class k2M
is assigned to node i2V , given Y and R0, as

mk
i ¼

Z
R0
dR0

X
Z;X

xk
iQðZ;X;R0Þ;¼

X
j2V 0

�ij
X
l2M

Qkl
ijm

l
j: ð16Þ

Note that the mk
i can be computed by propagating image-

class probabilities in a single pass downward. This upward-
downward propagation, specified by (15) and (16), is very
reminiscent of belief propagation for TSBNs [5], [21]. For the
special case when �ij¼1 only for one parent j, we obtain the
standard �-� rules of Pearl’s message passing scheme for
TSBNs.

4.2.2 Optimization of QðR0jZÞ
QðR0jZÞ is fully characterized by parameters ����ij and �ij. The
update equations for ����ij and �ij, 8ði; jÞ2V ‘�f0; V ‘þ1g, ‘>0,
where �ij 6¼ 0, are

����ij¼
X
p2V 0

�jp�
�1
ij þ

X
c2V 0

�ci�
�1
ci

" #�1

�
X
p2V 0

�jp�
�1
ij ð����jpþddddjpÞþ

X
c2V 0

�ci�
�1
ci ð����ci�ddddijÞ

" #
;

ð17Þ

Trf��1ij g ¼ Trf��1ij g
 
1þ

X
p2V 0

�jp

"
Trf��1ij �jpg
Trf��1ij �ijg

#1
2
!

þ
X
c2V 0

�ciTrf��1ci g
 
1þ

"
Trf��1ci �cig
Trf��1ci �ijg

#1
2
!
;

ð18Þ

where c and p denote children and grandparents of node i,
respectively. Since the �s and �s are assumed diagonal, it is
straightforward to derive the expressions for the diagonal
elements of the �s from (18). Note that both ����ij and �ij are

updated summing over children and grandparents of i and,
therefore, should be iterated until convergence.

4.2.3 Optimization of QðZÞ
QðZÞ is fully characterized by connectivity probabilities �ij,
which are computed as

�ij ¼ 	�ij expðAij �BijÞ; 8‘; 8ði; jÞ 2 V ‘ � f0; v‘þ1g; ð19Þ

where Aij represents the influence of observables Y , while
Bij represents the contribution of the geometric properties
of the network to the connectivity distribution. These are
defined in the Appendix.

4.3 Inference Algorithm and Bayesian Estimation

For the given set of parameters � characterizing the joint
prior, observables Y , and leaf-level node positions R0, the
standard Bayesian estimation of optimal ẐZ, X̂X, and R̂R0

requires minimizing the expectation of a cost function C:

ðẐZ; X̂X; R̂R0Þ ¼
arg min

Z;X;R0
IEfCððZ;X;R0Þ; ðZ�; X�; R0�ÞÞjY ;R0;�g; ð20Þ

where Cð�Þ penalizes the discrepancy between the estimated
configuration ðZ;X;R0Þ and the true one ðZ�; X�; R0�Þ. We
propose the following cost function:

CððZ;X;R0Þ; ðZ�; X�; R0�ÞÞ¼4X
i;j2V
½1�
ðzij�z�ijÞ� þ

X
i2V

X
k2M
½1�
ðxk

i�xk�i Þ�

þ
X
i2V 0
½1�
ðrrrri�rrrr�i Þ�;

ð21Þ

where � indicates true values, and 
ð�Þ is the Kronecker delta
function. Using the variational approximation P ðZ;X;R0jY ;
R0Þ�QðZÞQðXjZÞQðR0jZÞ, from (20) and (21), we derive:

ẐZ ¼ argmin
Z

X
Z

QðZÞ
X
i;j

½1�
ðzij�z�ijÞ�; ð22Þ

X̂X ¼ argmin
X

X
Z;X

QðZÞQðXjZÞ
X
i;k

½1�
ðxk
i�xk�

i ÞÞ�; ð23Þ

R̂0R0¼ argmin
R0

Z
R0
dR0

X
Z

QðZÞQðR0jZÞ
X
i

½1�
ðrrrri�rrrr�i Þ�: ð24Þ

Given the constraints on connections, discussed in Section 3,
minimization in (22) is equivalent to finding parents:

ð8‘Þð8i2V ‘ÞðZ�i 6¼0Þĵj¼ arg max
j2f0;V ‘þ1g

�ij; for DTV 0 ; ð25aÞ

ð8‘Þð8i2V ‘Þĵj¼ arg max
j2f0;V ‘þ1g

�ij; for DTV ; ð25bÞ

where �ij is given by (19); Z�i denotes the ith column of Z and
Z�i 6¼0 indicates that there is at least one nonzero element in
column Z�i; that is, i has children, and thereby is included in
the tree structure. Note that due to the distribution over
connections, after estimation of Z, for a given image, some
nodes may remain without children. To preserve the
generative property in DTV 0 , we impose an additional
constraint on Z that nodes above the leaf level must have
children in order to be able to connect to upper levels. On the
other hand, in DTV , due to multilayered observables, all
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nodes V must be included in the tree structure, even if they
do not have children. The global solution to (25a) is an open
problem in many research areas. Therefore, for DTV 0 , we
propose a stage-wise optimization, where, as we move
upward, starting from the leaf level ‘¼f0; 1; . . . ; L�1g, we
include in the tree structure optimal parents at V ‘þ1

according to

ð8i2V ‘ÞðẐZ�i 6¼0Þ ĵj¼ arg max
j2f0;V ‘þ1g

�ij; ð26Þ

where ẐZ�i denotes ith column of the estimated ẐZ and ẐZ�i 6¼0
indicates that i has already been included in the tree
structure when optimizing the previous level V ‘.

Next, from (23), the resulting Bayesian estimator of
image-class labels, denoted as x̂xi, is

ð8i2V Þ x̂xi ¼ argmax
k2M

mk
i ; ð27Þ

where the approximate posterior probability mk
i that image

class k is assigned to node i is given by (16).
Finally, from (24), optimal node positions are estimated

8‘>0, and 8i2V ‘ as

r̂rrrrrrri ¼ argmax
rrrri

X
Z

QðrrrrijZÞQðZÞ ¼
X

j2f0;V ‘þ1g
����ij�ij; ð28Þ

where ����ij and �ij are given by (17) and (19), respectively.
The inference algorithm for DTs is summarized in Fig. 2.

The specified ordering of parameter updates for QðZÞ,
QðXjZÞ, and QðR0jZÞ in Fig. 2, Steps 4-10, is arbitrary;
theoretically, other orderings are equally valid.

4.4 Specification of Model Parameters

Variational inference presumes that parameters V ,L,M, and
�¼f�ij; ddddij; �ij; P

kl
ij ; �g, 8i; j2V , 8k; l2M, are available. Due

to the lackof example images inunsupervisedsettings,weare
not in a position to learn these parameters on a training image
set. This problem has been addressed in the literature with
indecisive results (e.g., [31], [32], [33]). In the absence of prior
application knowledge, multiple solutions are equally
reasonable, as even human interpreters arrive at different
answers [33].

First, for the given number of leaf-level nodes jV 0j, we set
L¼ log2ðjV 0jÞ. Next, due to a huge diversity of possible
configurations of objects in images, for each node i2V ‘, we
set �ij to be uniform over is candidate parents 8j2f0; V ‘þ1g.
Then, for all pairs ði; jÞ2V ‘�V ‘þ1 at level ‘, we set
ddddij¼����ðiÞ�����ðjÞ—namely, the ddddij are initialized to the relative
displacement of the centers of mass of the ith and jth dyadic
squares in the corresponding quad-tree with L levels,
specified in (5). For roots i, we have ddddi¼����ðiÞ. Also, we set
diagonal elements of ����ij to the diagonal elements of a
matrix ddddijdddd

T
ij. The number of components Gk in a Gaussian

mixture for each class k is set to Gk¼3, which is empirically
validated to be appropriate.

Now, the most critical parameters that remain to be
specified are the number of image classes jMj, conditional
probability tables Pkl

ij , and the parameters of a Gaussian-
mixture density �. For this purpose, we conduct an iterative
learning procedure using the EM algorithm on the quad-tree
thoroughly discussed in ([16], pp. 399-401). Given V , L, Y ,
and jMj of the quad-tree, the algorithm readily estimates Pkl

ij

and �, for agiven image.Here,Pkl
ij and �are equal for all levels.

Once estimated, these values can be used to optimize jMj.
Then, for the new jMj value, we again conduct the EM
algorithmon the quad-tree, and so forth. To optimize jMj, we
assume thatP ðjMjÞ is the Poissondistribution,with themean
IEfjMjg¼2—the assumption stemming fromour initial guess
that each image contains at least two image regions, and that
large values of jMj should be penalizeddue to computational
complexity. We optimize jMj by maximizing the function
fðjMjÞ¼P ðY jX; ����; jMjÞP ðjMjÞ for jMj¼2; 3; 4; , where like-
lihood P ðY jX; ����; jMjÞ¼

Q
i P ðyyyy����ðiÞjxi; ����ðiÞ; jMjÞ is computed

from the results of the EM algorithm on the quad-tree. Since
larger jMj values give larger P ðY jX; ����; jMjÞ, fðjMjÞ increases
until some maximum jMj�, when the Poisson distribution of
P ðjMjÞ starts to dominate decreasing fðjMjÞ for jMj > jMj�.
Note that P ðjMjjX;Y Þ / fðjMjÞ, so that the maximum of
fðjMjÞ, jMj�, gives the MAP solution to our parameter
estimation problem. This iterative learning algorithm stops
when jMj� is reached, yielding alsoPkl

ij and �parameters.Our
experiments show that jMj� is on average a conservative
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Fig. 2. Inference of the DT given Y , R0, and �; t and tin are counters in
the outer and inner loops, respectively; N", ", and "� control the
convergence criteria for the two loops.



estimate of the true number of classes. Since DTs are
generalized quad-trees, our experimentation suggests that
this optimization with respect to the quad-tree is justified.

4.5 Implementation Issues

In this section, we list algorithm-related details that are
necessary for the experimental results, presented in Section 6,
to be reproducible. Other specifications, such as, for example,
feature extraction, will be detailed in Section 6.

First, direct implementation of (14) would result in
numerical underflow. Therefore, we introduce the follow-
ing scaling procedure: ~��k

i ¼ �k
i =Si, 8i2V , 8k2M, where

Si ¼
4 P

k2M �k
i . Substituting the scaled ~��s into (14), we obtain

Qkl
ij¼

Pkl
ij �

k
iP

a2M Pal
ij �

a
i

¼
Pkl
ij
~��k
iP

a2M Pal
ij
~��a
i

:

In other words, computation of Qkl
ij does not change when

the scaled ~��0s are used.
Second, to reduce computational complexity, as is done in

[4], we consider, for each node i, only the 7�7 box
encompassing parent nodes j that neighbor the parent of
the corresponding quad-tree. Consequently, the number of
possible children nodes c of i is also limited. Our experiments
show that the omitted nodes, either children or parents,
contribute negligibly to the update equations. Thus, we limit
overall computational cost as the number of nodes increases.

Finally, the convergence criterion of the inner loop, where
����ij and�ij are computed, is controlledbyparameter "�.When
"�¼0:01, the averagenumber of iteration steps, tin, in the inner
loop, is from 3 to 5, depending on the image size, where the
latter is obtained for 128�128 images. The convergence
criterion of the outer loop is controlled by parametersN" and
". The aforementioned simplifications, which we employ in
practice, may lead to suboptimal solutions of SVA. From our
experience, though, the algorithm recovers from unstable
stationarypoints for sufficiently largeN". In our experiments,
we set N"¼10 and "¼0:01.

After the inference algorithm converged, we then
estimate the DT structure for a given image, which consists
of DT subtrees representing distinct objects in that image.
Having found the DT representation of segmented image
regions, we are then in a position to measure the similarity
of the detected objects across a given set of images.

5 STOCHASTIC SIMILARITY MEASURE

Recently, similarity measures between two statistical models
have been given considerable attention in the literature [8],
[9], [10], [11], [12], [13]. To compare a pair of image regions
represented by statistical models, in standard probabilistic
approaches, one examines the log-ratio logP1=P2 or the
expected value of the log-ratio hlogP1=P2i, where P1 and P2

are some distributions of the two models (e.g., likelihoods,
posteriors, cross probabilities). For instance,Moghaddam [8],
for the purposes of face recognition, proposes a similarity
measure expressed in terms of probabilities of intrapersonal
and extrapersonal facial image variations. Hermosillo et al. [9]
perform matching of images by computing the variational
gradient of a hierarchy of statistical similarity measures.
These approaches can be viewed as a form of ML or MAP
principles. Also, a symmetric function of the KL divergence,
hlogP1=P2iP1

þhlogP2=P1iP2
, has been proposed in [10].

Since the size of objects determines the number of
random variables in DTs, the log-ratios may turn out to be
equal for two different scenarios: When subtrees represent
different objects of similar size and when subtrees represent
the same object appearing at different size across the
images. The same problem has also been discussed in [12],
[13], where hidden Markov models of different-length
observation sequences have been compared. Therefore, for
each pair of image regions, it is necessary to normalize the
probability log-ratios. Usually, this is done by multiplying
the log-ratio with a suitable constant 	>0. Since the 	s are
different for every pair of compared regions, a decision
criterion based on the normalized log-ratios becomes
nonprobabilistic.1 Our experiments on image matching
show that this normalization improves performance over
matching when probability log-ratios are not normalized.

There are several disadvantages of the outlined approach
to image matching. We have observed great sensitivity of
h	 logP1=P2i to the specification of the optimal 	. Further-
more,matchingapproachesbasedoncomputingh	 logP1=P2i
implicitly assume that distributions P1 and P2 are reliable
representations of underlying image processes, which is
justifiableforsupervisedsettings.However, this isnot thecase
for unsupervised settings, where P1 and P2 may have huge
variations over the examined images, due to the uninformed
estimation of the prior distribution, that is, in our case, model
parameters�.

Tomitigate the sensitivity to 	, aswell as to variations in�
across images, we propose a novel similarity measure,
thereby departing from the outlined approaches where
probability log-ratios are used. Thus, in our approach, the
impact of unreliable � is neutralized by measuring correla-
tion between the cross-likelihoods of the two image regions,
which are normalized by the likelihoods of each individual
region. Below, we mathematically formulate this idea.

Let Yt and Yr denote observables of two DT subtrees T t

and T r, respectively, where t in the subscript refers to an
image region in the test image, and r, to a region in the
reference image, as defined in Section 1. Here, T t refers to
the estimated configuration ðẐZt; X̂Xt; R̂R

0
tÞ and the parameter

set �t for the test image. Similarly, T r refers to the
estimated configuration ðẐZr; X̂Xr; R̂R

0
rÞ and the parameter

set �r for the reference image. As discussed above, we
normalize the likelihood P ðY jX; ����;�Þ, given by (6), as
Ptr ¼

4 P ðYtjX̂Xr; ����r;�rÞ1=Cr , where Cr denotes the cardinality of
the model T r. Since the Y s at coarser resolutions affect more
pixels than at finer scales, for DTV , we compute the
cardinality as C ¼4

PL�1
‘¼0

P
i2T K‘

i , where K‘
i denotes the size

of the kernel used to compute observables at level ‘; for
example, K‘

i¼2‘ for wavelet coefficients. For DTV 0 , C is
equal to the number of leaf-level nodes. We now define the
similarity measure between two models as

�tr¼4
ffiffiffiffiffiffiffiffiffiffiffiffi
PtrPrt

PttPrr

r
: ð29Þ

The defined similarity measure exhibits the following
properties: 1) by definition �tr¼�rt, 2) from 0<Ptr�Ptt and
0<Prt�Prr it follows that 0<�tr�1 and, finally, 3) if T t�T r

than �tr¼1. Note that, for property 2), we assume that the
inference algorithm guarantees that Ptt and Prr are global
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1. Scaled P1 and P2 do not satisfy the three axioms of probability over the
total set of events if the 	s vary for different events in that set.



maxima for the test and reference images, respectively. In
practice, from our experience, this is not a significant
concern, as the algorithm converges to near-optimal
solutions, as discussed in Section 4.5.

In computation of the cross probabilities, say, Ptr, it is
necessary to substitute observables Yr with Yt in the
estimated subtree structure ðẐZr; X̂Xr; R̂R

0
rÞ according to a

specified mapping. While a complete treatment of possible
mappings is beyond the scope of this paper, below we
consider one plausible approach. For this purpose, it is
convenient to index observables in terms of their locations
in the image. Recall, in Section 3, we define locations of
observables ����ðiÞ, given by (5). Thus, the mapping can be
conducted as follows: For each observable node i in T r that
is on location ����rðiÞ in the reference image, we first find the
corresponding location in the test image ����tðiÞ and then
substitute yyyy����rðiÞ  yyyy����tðiÞ. We define the correspondence
between the locations ����rðiÞ and ����tðiÞ, as follows:

����tðiÞ¼ r̂rrrrrrrtþ
cosð�rÞ � sinð�rÞ
sinð�rÞ cosð�rÞ

� �
ð����rðiÞ�r̂rrrrrrrrÞ

� 	
2‘
; ð30Þ

where �r is a rotation angle; r̂rrrrrrrt and r̂rrrrrrrr are estimated positions
of the roots of T t and T r in the test and reference images; b�c2‘
finds integer, multiples-of-2 values of the form given by (5).

Pictorially, computation ofPtr can be viewed as alignment
of T r with the location of T t in the test image. Thus, according
to (30), we first translate T r until the root of T r coincideswith
the root of T t in the reference image.2 After the roots are
aligned, we then rotate T r for several angles �r about the
vertical axis containing the roots. A similar expression to (30)
holds for translation and rotation of T t in the reference image,
when computing Prt. Note that, because of the rotation, we
compute two arrays of cross probabilities,Prtð�tÞ andPtrð�rÞ,
for each finite rotation increment of �t and �r. Although we
could eliminate either �t or �r, we do not because of finite
rotation increments that may differ for the two parameters.
We emphasize that the outlined translation/rotation is just a
visual interpretation of the mapping, in which one set of
observables is substituted by the other; however, this
mapping should not be misunderstood as transformation of
already estimated dynamic trees.

Due to the mapping, given by (30), when computing
Ptrð�rÞ, locations of observables ����tðiÞ may fall outside the
boundaries of the test image. In this case, it is necessary to
prune that observable node i inT r (rectangular-shapednode)

and its corresponding node characterized by hidden vari-
ables (round-shaped node). This deletion of nodes gives rise
to a number of tree-pruning strategies. In our approach, for
DTV , we simply delete outlying rectangular-shaped nodes
and their corresponding round-shaped nodes; other nodes
arekept intact. ForDTV 0 , thedeletionofnodes at the leaf level,
V 0, may leave some higher-level nodes without children. To
preserve the generative property, as discussed in Section 4.3,
from T r, we also prune, in the bottom-up sweep, those nodes
that happen to lose all their children. A similar pruning
procedure is necessary when computing Prtð�tÞ. In Fig. 3, we
illustrate alignment tests pictorially for two sample images.

Having defined our similarity measure, we are now in
position to conduct matching of segmented image regions
across a given set of images.

6 EXPERIMENTS

We report experiments on segmentation and matching of
image regions for five sets of images. Data Set I contains 50,
4�4, binary images with a total of 50 single object appear-
ances. A sample of Data Set I images is depicted in Fig. 4a
(top).Data Set II consists of 50, 8�8, binary imageswith a total
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2. As we demonstrate in Section 6, roots’ positions give a good estimate
of the center of mass of true object appearances in the image; therefore, we
align the roots—not the centers of mass of segmented image regions under
T r and T t.

Fig. 3. Alignment tests: (a) and (b) 128�128 test and reference images, (c) segmented region under T t using DTV 0 , (d) segmented region under T r

using DTV 0 , (e) image regions in the reference image used for substitution yyyy����tðiÞ  yyyy����rðiÞ for different �t, and (f) image regions in the test image used
for substitution yyyy����rðiÞ  yyyy����tðiÞ for different �r. The crosses mark the estimated roots’ positions r̂rrrrrrrt and r̂rrrrrrrr.

Fig. 4. Image segmentation using DTV 0 : (a) sample 4�4 and 8�8 binary
images, (b) clustered leaf-level pixels that have the same parent at level
‘¼1, (c) clustered leaf-level pixels that have the same grandparent at
level ‘¼2; clusters are indicated by different shades of gray; the point in
each region marks the position of the parent node, and (d) estimated DT
structure for the 4�4 image in (a); nodes are depicted inline representing
4, 2, and 1 actual rows of the levels 0, 1, and 2, respectively; nodes are
drawn as pie-charts representing P ðxki¼1Þ, k 2 f0; 1g; note that there
are two roots representing two distinct objects.



of 78 multiple object appearances. A sample of Data Set II
images is shown in Fig. 4a(bottom). Data Set III comprises 50,
64�64, simple indoor-scene, color images with a total of 105
object appearances of 20 distinct objects shown in Fig. 5.
Samples of Data Set III images are given in Figs. 6, 7, and 9.
Data Set IV contains 50, 128�128, challenging indoor-scene,
color images with a total of 223 partially occluded object
appearances of the same 20 distinct objects as for Data Set III
images. Examples of Data Set IV images are shown in Figs. 3
and 10. Note that objects appearing in Data Sets III and IV are
carefully chosen to test if DTs are expressive enough to
capture very small variations in appearances of some classes
(e.g., two different types of cans in Fig. 5), aswell as to encode
large differences among some other classes (e.g., wiry-
featured robot and books in Fig. 5). Finally, Data Set V
contains 50, 128�128, natural-scene, color imageswith a total
of 297 object appearances, samples of which are shown in
Figs. 8, 11, and13.Ground truth in images is obtained through
hand-labeling of pixels.

For Data Sets I and II, we experiment only with DTV 0

models, with observables Y given by binary pixel values. For
theotherdatasets,wetestbothDTV 0 andDTV .Tocompute the
Y s, we account for both color and texture cues. For texture
analysis in DTV , we choose the complex wavelet transform
(CWT) applied to the intensity (gray-scale) image, due to its
shift-invariant representation of texture at different scales,
orientations, and locations [34]. The CWT’s directional
selectivity is encoded in six subimagesof coefficients oriented

at angles	15
,	45
, and	75
. For texture extraction inDTV 0 ,
we compute the difference-of-Gaussian function convolved
with the image:Dðx; y; k; �Þ¼ðGðx; y; k�Þ�Gðx; y; �ÞÞ�Iðx; yÞ,
where x and y represent pixel coordinates, Gðx; y; �Þ¼ expð�
ðx2 þ y2Þ=2�2Þ=2��2 and Iðx; yÞ is the intensity image. In
addition to reduced computational complexity, as compared
to theCWT, the functionDprovides a close approximation to
the scale-normalized Laplacian of Gaussian, �2r2G, which
has been shown to produce the most stable image features
across scales when compared to a range of other possible
image functions, such as the gradient and the Hessian [35],
[36]. We compute Dðx; y; k; �Þ for three scales k¼

ffiffiffi
2
p

; 2;
ffiffiffi
8
p

,
and� ¼ 2. For color features inbothDTV andDTV 0 ,wechoose
the generalized RGB color space: r¼R=ðRþGþBÞ and
g¼G=ðRþ GþBÞ, which effectively normalizes variations in
brightness; the Y s of higher-level nodes are computed as the
meanof thersandgsof their childrennodesof the initialquad-
tree structure. Each color observable is normalized to have
zeromean and unit variance over the data set. Thus, the yyyy����ðiÞs
are eight and five-dimensional vectors for DTV and DTV 0 ,
respectively.

In the following experiments, we compare our SVA
inference algorithm with three other inference algorithms:
1) Gibbs sampling discussed in [29], 2)mean-field variational
approximation (MFVA) proposed in [1], and 3) variational
approximation (VA)3 discussed in [4]. All the figures in this
section illustrate segmentation and matching performance
when DTs are inferred using our SVA algorithm.

6.1 Image Segmentation Tests

DT-based image segmentation is tested on all five data sets.
Results presented in Figs. 4, 5, 6, 7, and 8 suggest that DTs are
able to encode component-subcomponent relationships
among objects and their parts in the image. From Fig. 8, we
observe that nodes at different levels of the dynamic tree can
be interpreted as object parts at various scales. Moreover,
fromFigs. 6 and 7,we also observe thatDTs, inferred through
SVA, preserve structure for objects across images subject to
translation, rotation and scaling. In Fig. 6, note that the level-4
clustering for the larger-object scale in Fig. 6c (top) corre-
sponds to the level-3 clustering for the smaller-object scale in
Fig. 6b. In other words, as the object transitions through
scales, the tree structure changes by eliminating the lowest-
level layer, while the higher-order structure remains intact.
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Fig. 5. Twenty image classes in Type III and IV Data Sets.

Fig. 6. Image segmentation usingDTV 0 : (a) Data Set III images, (b) pixel
clusters with the same parent at level ‘¼3, (c) pixel clusters with the
same parent at level ‘¼4, points mark the position of parent nodes. DT
structure is preserved through scales.

Fig. 7. Image segmentation using DTV 0 : (top) Data Set III images and
(bottom) pixel clusters with the same parent at level 3. DT structure is
preserved over rotations.

3. Although the algorithm proposed in [4] is also structured variational
approximation, to differentiate that method from ours, we slightly abuse the
notation.



We also note that the estimated positions of higher-level
hidden variables are very close to the center of mass of object
parts, as well as of whole objects. We compute the error of
estimatedroot-nodepositions r̂rrrrrrras thedistance fromtheactual
center of mass rrrrCM of hand-labeled objects, derr¼jjr̂rrrrrrr�rrrrCM jj.
The averaged error values over the given test images for VA
and SVA are reported in Table 1. We observe that the error
significantly decreases as the image size increases because in
summingnodepositionsoverparentandchildrennodes,as in
(17) and (18), more statistically significant information
contributes to the position estimates. For example, dIVerr¼6:18
for SVA is only 4.8 percent of the Data Set IV image size,
whereas dIIIerr¼4:23 for SVA is 6.6 percent of the Data Set III
image size.

Typical results of the DT-based image segmentation for
Data Sets III, IV, and V are shown in Figs. 9, 10, and 11. In
Table 2, we report the percentage of erroneously grouped
pixels, and, in Table 3, we report the object detection error,
when compared to ground truth, averagedover eachdata set.
For estimating the object detection error, the following
instances are counted as error: 1)merging twodistinct objects
into one (i.e., failure to detect an object) and 2) segmenting an

object into subregions that are not actual object parts. On the
other hand, if an object is segmented into several “mean-
ingful” subregions, verified by visual inspection, this type of
error is not included. The averaged pixel error for Gibbs
sampling is 6 percent for both type I and II images, while for
MFVA, it is 18percent and12percent for theData Sets I and II,
respectively. With regard to object detection error, Gibbs
sampling yields no error in the Data Set I, and wrongly
segments sevenobjects in theDataSet II (8percent). Theobject
detectionerrorforMFVAis1undetectedobject intheDataSetI
(2 percent), and 13 merged/undetected objects in the Data
Set II (16 percent). With the increase in image size, Gibbs
sampling becomes infeasible and MFVA exhibits very poor
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Fig. 8. Image segmentation using DTV : (a) a Data Set V image, (b), (c), and (d) pixel clusters with the same parent at levels ‘¼3; 4; 5, respectively,
white regions represent pixels already grouped by roots at the previous scale; points mark the position of parent nodes; nodes at different levels of
DTV can be interpreted as object parts at various scales.

Fig. 9. Image segmentation by DTV 0 learned using SVA for Data Set III
images; all pixels labeled with the same color are descendants of a
unique root.

TABLE 1
Root-Node Distance Error

Fig. 10. Image segmentation byDTV 0 learned using SVA for Data Set IV
images, (b) negative example, where, due to challenging similarity in
appearance and occlusion, the DT merges two distinct objects into one;
all pixels labeled with the same color are descendants of a unique root.

Fig. 11. Image segmentation by DTs learned using SVA for Data Set V:
(a) DTV 0 , (b) and (c) DTV , all pixels labeled with the same color are
descendants of a unique root.



performance; therefore, Tables 2 and 3 report results only for
VAandSVA.Overall,weobserve thatSVAoutperformsother
inference algorithms for image segmentation using DTs.
Interestingly, the segmentation results for DTV models are
only slightly better than forDTV 0 models.

It should be emphasized that our experiments are carried
out in an unsupervised setting, and, as such, cannot be
equitably evaluated against supervised object recognition
results reported in the literature. Take, for instance, the
segmentation in Fig. 10b, where two overlapping, similar-
looking objects are merged into one DT subtree. Given the
absence of prior knowledge, the ground-truth segmentation
for this image is arbitrary, and the resulting segmentation
ambiguous; nevertheless, we still count it toward the object-
detection error percentages in Table 3.

Next, in Figs. 12a and 12b, we illustrate the convergence
rate of computing P ðZ;X;R0jY ;R0Þ�QðZ;X;R0Þ for the four
inference algorithms, averaged over the given data sets.
Numbers above bars represent the mean number of iteration
steps it takes for a given algorithm to converge. For all the
approaches, we consider the algorithm converged when
jQðZ;X;R0; tþ1Þ�QðZ;X;R0; tÞj=QðZ;X;R0; tÞ<" forN" con-
secutive iteration steps t, whereN"¼10 and "¼0:01 (see Fig. 2,
Step (11)). Overall, SVA converges in the fewest number of
iterations. The average number of iterations for SVA on Data
SetV is 28 and24 forDTV 0 andDTV , respectively,which takes
approximately 6s and 5s on aDual 2GHz PowerPCG5.Here,
the processing time also includes image-feature extraction.

For the same experiments, in Figs. 12c and 12d, we report
the percentage increase in logQðZ;X;R0Þ computed using
our SVA over logQðZ;X;R0Þ obtained by Gibbs sampling,
MFVA, and VA, respectively. We note that SVA results in
larger approximateposteriors thanMFVAandVA.The larger
logQðZ;X;R0Þ means that the assumed form of the approx-
imate posterior distribution QðZ;X;R0Þ¼QðZÞQðXjZÞQ
ðR0jZÞ more accurately represents underlying stochastic
processes in the image than VA and MFVA approximations.
We note that SVA yields approximately the sameQðZ;X;R0Þ
as Gibbs sampling.

6.2 Tests of Model Matching

We test our approach to model matching for object
recognition in unsupervised settings for Data Sets III, IV,
and V. As explained in Section 1, we consider a constrained
type of object recognition, where we detect a particular
appearance of a reference object in a test image. Given the
assumption that each test image cannot contain multiple
appearances of the same object, we conduct unsupervised
object recognition as follows. One at a time, every image in
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TABLE 2
Percent of Erroneously Grouped Pixels

TABLE 3
Object Detection Error

Fig. 12. Comparison of inference algorithms: (a) and (b) convergence

rate averaged over the given data sets. (c) and (d) Percentage increase

in logQðZ;X;R0Þ computed in SVA over logQðZ;X;R0Þ computed in

Gibbs sampling, MFVA, VA, respectively.



a given data set is chosen as the reference, while the rest of
the images are then marked as test images. After DT-based
image segmentation of the reference and test images, for a
given T r, we search for the maximum �trð�t; �rÞ over all
possible image regions under T t and rotational alignments
ð�t; �rÞ, as illustrated in Fig. 13. Note that �t and �r should
be related by �t¼��r, provided the compared objects are
identical. Thus, the test image region under T t, for which
�trð�t; �rÞ is maximum and j�tþ�rj � ", where "¼�=16 is a
rotation increment in the alignment tests, is recognized as
the reference image region under T r. From Figs. 13g and
13h, we observe that �tr is a “peaky” function, reaching its
maximum when the same objects are matched.

To compare our approach with methods which use
probability log-ratios for image matching, we repeat the
aforementioned set of experiments, but now using the
symmetric KL distance dtr, specified in [10] as

dtr �
1

Nt

X
i2T t

log
P ðyyyy����tðiÞjxitÞ
P ðyyyy����tðiÞjxirÞ

þ 1

Nr

X
i2T r

log
P ðyyyy����rðiÞjxirÞ
P ðyyyy����rðiÞjxitÞ

;

where Nt and Nr are the number of observables in T t and
T r, respectively; yyyy����tðiÞ and yyyy����rðiÞ are observables in the test

and reference images;and xit and xir are image-class
indicator random variables in T t and T r, respectively. In
light of the discussion in Section 5 on the necessity to
normalize differently sized models, we also carry out the
object recognition experiments using the normalized sym-
metric KL distance, ~ddtr, given by

~ddtr �
1

Nt

Cr

Ct

X
i2T t

log
P ðyyyy����tðiÞjxitÞ
P ðyyyy����tðiÞjxirÞ

þ 1

Nr

Ct

Cr

X
i2T r

log
P ðyyyy����rðiÞjxirÞ
P ðyyyy����rðiÞjxitÞ

;

where Ct and Cr are the cardinality of T t and T r,
respectively, as defined in Section 5. For both distance
measures, the image region under T t, for which dtr, or ~ddtr, is
closest to zero compared to the rest of the segmented
regions in the test image, is recognized as T r.

In Table 4, we summarize our object recognition results
usingbothDTV 0 andDTV , inferredusingSVAandVA, for�tr,
dtr, and ~ddtr.Wedefine the recognition rate as thepercentage of
correctly detected appearances of an object in the total
number of actual appearances of that object in the test
images. The falsedetection rate isdefinedas thepercentage of
incorrectly detected appearances of an object in the total
number of the detected appearances of that object in the test
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Fig. 13. Imagematching forDataSetV images in (a) and (b). (c)Computation ofPrr andPtt for a sampleof two segmented image regions in the reference
and test images, respectively, (d) and (e) computation of Ptrð�rÞ and Prtð�tÞ when T r and T t represent the same object, (f) computation of Ptrð�rÞ and
Prtð�tÞ when T r and T t represent different objects, (g) and (h) 3D plots of �trð�t; �rÞ for �t; �r 2 f��=4; �=4g, where ð�r; �t; �Þ marks the maximum.
(a) Reference image. (b) Test image. (c) Prr (left), Ptt (right). (d) Ptrð�rÞ (top) Prtð�tÞ (bottom). (e) Ptrð�rÞ (top) Prtð�tÞ (bottom). (f) Ptrð�rÞ (top) Prtð�tÞ
(bottom). (g) �trð�t; �rÞ plot for the ðT t; T rÞ pair in (d). (h) �trð�t; �rÞ plot for the ðT t; T rÞ pair in (e). (i) �trð�t; �rÞ plot for the ðT t; T rÞ pair in (f).



images. Here, ground truth is established by visual inspec-
tion. Recognition and false detection rates are averaged over
all segmented regions and all images. Overall, we observe
significantly better object recognition performance when �tr

is used as amodel-matchingmeasure compared to dtr and ~ddtr.
Again,DTV models outperformDTV 0 models.

7 CONCLUSION

In this paper, we presented a probabilistic framework for

image segmentation and subsequent matching of segmented

regions, when only weak or no prior knowledge is available.

We proposed and demonstrated the use of Dynamic Trees

(DTs) to address these problems. More precisely, we

formulated image segmentation as inference ofmodel poster-

ior distributions, given an image, and subsequent Bayesian

estimation of DT structure. Beyond this novel application of

DTs, we built on previous DT work to formulate a novel DT

architecturethat introducesmultilayeredobservabledatainto

the model. For the proposed model, we derived a novel

Structured Variational Approximation (SVA) inference algo-

rithmthat removes independenceassumptionsbetweennode

positions and model structure, as was done in prior work.

Furthermore, we formulated image matching as similarity

analysis between two DTs representing examined image

regions. To conduct this analysis, we specified a novel

similarity measure between two statistical models, which

we find more suitable for unsupervised settings than

measures based on probability log-ratios. We proposed one

possible alignment procedure for comparing two DTs, and

developed criteria based on the resulting similarity measure

for ultimate unsupervised object recognition.
Through a set of detailed experiments, we demonstrated

the significantly improved properties of the SVA algor-
ithm—both in terms of substantially faster convergence rates,
and larger approximate posteriors for the inferred models—
when compared with competing inference algorithms. Our
results show that DTs are capable of capturing important
component-subcomponent relationships among objects and

their parts, and, hence, that DTs perform well in segmenting
images into plausible pixel clusters. Furthermore, we
reported results on unsupervised object recognition, demon-
strating the viability of the proposed similarity measure for
matching statistical models.

This paper opens a number of research issues that need
further investigation. First among these is the optimal
alignment procedure required for comparing dynamic-
structure models. Possible choices of the alignment proce-
dure, ultimately, should look to enhance the discriminative
power of the similarity measure—that is, how well the
similarity measure distinguishes like objects (i.e., DT
models) from dissimilar objects. Second, our experiments
show (see Figs. 13g and 13h) that the proposed similarity
measure, �, is a “peaky” function, which suggests that � can
be successfully used in supervised settings. It is likely that
using a suitable (learned) threshold for the classifier could
improve object recognition results beyond those reported in
Table 4. Next, we currently assume that node positions in
DTs are uncorrelated (i.e. diagonal covariances) along “x”
and “y” image coordinates, in order to facilitate the
computation of (18). Often, this may not be an appropriate
assumption, and we will further examine how to modify
our inference algorithm to accommodate dependencies
between coordinates. Finally, although DTV type of models
outperforms DTV 0 in every reported experiment, this may
have been the result of more expressive texture extraction
(i.e., the complex wavelet transform) used in DTV than that
used in DTV 0 . Further research is necessary for establishing
when and why one model is better than the other.

APPENDIX

DERIVATION OF STRUCTURED VARIATIONAL

APPROXIMATION

A.1 Notation

. V¼fV 0; V 0g: set of all nodes; V 0: set of leaf-level
nodes;

. yyyy����ðiÞ: observable random vector at location ����ðiÞ;
Y ¼4 fyyyy����ðiÞj8i2V g;

. zij: indicator random variable (RV) denoting a
connection between nodes i and j; Z ¼4 fzijj8i; j2V g;
�ij: true probability of i being the child of j; �ij:
approximate probability of i being the child of j given
Y and R0;

. M: set of image classes; xki : indicator RV denoting i is
labeled as class k2M; X ¼4 fxk

i j8i2V ; k2Mg; Pkl
ij : true

conditional probability tables; Qkl
ij : approximate

conditional probability tables given Y and R0; mk
i :

approximate posterior that node i is labeled as image
class k given Y and R0;

. rrrri: position of node i;R0 ¼4 frrrrij8i2V 0g;R0 ¼4 frrrrij8i2V 0g;
�ij and ddddij: true diagonal covariance and mean of a
relative child-parent displacement ðrrrri � rrrrjÞ; �ij and
����ij: approximate diagonal covariance and mean of rrrri,
given that j is the parent of i and given Y and R0;

. h�i: expectation value with respect to QðZ;X;R0Þ; 	:
normalization constant; paðiÞ: candidate parents of i;
cðiÞ: children of i; dðiÞ: all descendants down the
subtree of i.
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TABLE 4
Recognition Rate (R) and False Detection Rate (F)



A.2 Preliminaries

Computation of KLðQkP Þ, given by (13), is intractable,

because it depends on P ðZ;X;R0jY ;R0Þ. Note, though, that

QðZ;X;R0Þ does not depend on P ðY jR0Þ and P ðR0Þ.
Consequently, by subtracting logP ðY jR0Þ and logP ðR0Þ
from KLðQkP Þ, we obtain a tractable criterion JðQ;P Þ,
whose minimization with respect to QðZ;X;R0Þ yields the

same solution as minimization of KLðQkP Þ:

JðQ;P Þ¼4KLðQkP Þ� logP ðY jR0Þ� logP ðR0Þ;

¼
Z
R0
dR0

X
Z;X

QðZ;X;R0Þ log QðZ;X;R0Þ
P ðZ;X;R; Y Þ :

ð31Þ

JðQ;P Þ is known alternatively as Helmholtz free energy,

Gibbs free energy, or free energy [17], [19]. By minimizing

JðQ;P Þ, we seek to compute parameters of approximate

distributions QðZÞ, QðXjZÞ, and QðR0jZÞ. It is convenient,

first, to reformulate (31) as JðQ;P Þ¼LZ þ LX þ LR, where

LZ ¼
4
P

Z QðZÞ log QðZÞ
P ðZÞ ,

LX ¼4
X
Z;X

QðZÞQðXjZÞ log QðXjZÞ
P ðXjZÞP ðY jX; ����Þ ;

and

LR ¼
4

Z
R0
dR00

X
Z

QðZÞQðR0jZÞ logQðR
0jZÞ

P ðRjZÞ :

To derive expressions for LZ , LX, and LR, we first observe:

zij

 �

¼ �ij; xk
i


 �
¼ mk

i ; xk
i x

l
j

D E
¼ Qkl

ijm
l
j;

) mk
i ¼

X
j2V

�ij
X
l2M

Qkl
ijm

l
j; 8i 2 V ; 8k 2M;

ð32Þ

where h�i denotes expectation with respect to QðZ;X;R0Þ.
Consequently, from (1), (9), and (32), we have

LZ ¼
X
ij2V

�ij log½�ij=�ij�: ð33Þ

Next, from (4), (10), and (32), we derive

LX ¼
X
i;j2V

X
k;l2M

�ijQ
kl
ijm

l
j log½Qkl

ij=P
kl
ij �

�
X
i2V

X
k2M

mk
i logP ðyyyy����ðiÞjxki ; ����ðiÞÞ:

ð34Þ

Note that for DTV 0 , V in the second term is substituted with

V 0. Finally, from (3), (11), and (32), we get

LR ¼
1

2

X
i;j2V 0

�ij

�
log
j�ijj
j�ijj

�Tr
n
��1ij �ij

o

þ Tr
n
��1ij hðrrrri�rrrrj�ddddijÞðrrrri�rrrrj�ddddijÞ

Ti
o


;

ð35Þ

where h�idenotes expectationwith respect toQ1 ¼
4Qðrrrrijzij¼1Þ

Qðrrrrjjzjp¼1ÞQðzjp¼1Þ. Let us now consider the expectation in

the last term:

hðrrrri�rrrrj�ddddijÞðrrrri�rrrrj�ddddijÞTiQ1
¼

¼ hðrrrri�����ijþ����ij�rrrrj�ddddijÞðrrrri�����ijþ����ij�rrrrj�ddddijÞ
TiQ1
¼

¼ �ijþ2hðrrrri�����ijÞð�rrrrj�ddddijþ����ijÞ
TiQ1

þ hðrrrrjþddddij�����ijÞðrrrrjþddddij�����ijÞ
TiQ1
¼

¼ �ijþ2hðrrrri�����ijÞð	����jp�rrrrj�ddddijþ����ijÞ
TiQ1

þ hð	����jpþrrrrjþddddij�����ijÞð	����jpþrrrrjþddddij�����ijÞ
TiQ1
¼

¼ �ijþ2
X
p2V 0

�jphðrrrri�����ijÞð����jp�rrrrjÞ
TiQðrrrri;rrrrjjzij;zjpÞ

þ
X
p2V 0

�jphðrrrrj�����jpÞðrrrrj�����jpÞ
TiQðrrrrjjzjp¼1Þ

þ
X
p2V 0

�jpð����ij�����jp�ddddijÞð����ij�����jp�ddddijÞ
T ¼

¼ �ij þ
X
p2V 0

�jp 2�ijp þ �jp þMijp

� �
;

ð36Þ

where the definitions of auxiliary matrices �ijp andMijp are

given in the second to the last derivation step above, and

i-j-p is a child-parent-grandparent triad. It follows from (35)

and (36) that

LR ¼
1

2

X
i;j2V 0

�ij log
j�ijj
j�ijj

� 2þ Trf��1ij �ijg
�

þ
X
p2V 0

�jpTrf��1ij ð2�ijpþ�jpþMijpÞg
!
:

ð37Þ

In (37), the last expression left to compute is Trf��1ij �ijpg.
For this purpose, we apply the Cauchy-Schwartz inequality

as follows:

Trf��1ij �ijpg ¼ Trf��
1
2

ij �
�1

2
ij hðrrrri�����ijÞð����jp�rrrrjÞ

Tig;

¼ Trfh��
1
2

ij ðrrrri�����ijÞð����jp�rrrrjÞ
T�
�1

2
ij ig;

� Trf��1ij �ijg
1
2Trf��1ij �jpg

1
2;

ð38Þ

where we used the fact that the �s and �s are diagonal

matrices. Although the Cauchy-Schwartz inequality, in

general, does not yield a tight upper bound, in our case it

appears reasonable to assume that variables rrrri and rrrrj (i.e.,

positions of object parts at different scales) are uncorrelated.

Substituting (38) into (37), we finally derive the upper bound

for LR as

LR �
1

2

X
i;j2V 0

�ij log
j�ijj
j�ijj

� 2þ Trf��1ij �ijg
�

þ
X
p2V 0

�jpTrf��1ij �jp þMijp

� �
g

þ2
X
p2V 0

�jpTrf��1ij �ijg
1
2Trf��1ij �jpg

1
2

!
:

ð39Þ

A.3 Optimization of QðXjZÞ
QðXjZÞ is fully characterized by parameters Qkl

ij . From the

definition of LX, we have @JðQ;P Þ=@Qkl
ij¼@LX=@Q

kl
ij . Due to

parent-child dependencies in (32), it is necessary to

iteratively differentiate LX with respect to Qkl
ij down the

subtree of node i. For this purpose, we introduce three
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auxiliary terms Fij, Gi, and �k
i , which facilitate computation

of @LX=@Q
kl
ij , as shown below:

Fij¼
4 X

k;l2M
�ijQ

kl
ijm

l
j log½Qkl

ij=P
kl
ij �;

Gi¼4
X

d;c2dðiÞ
Fdc �

X
k2M

mk
i logP ðyyyy����ðiÞjxk

i ; ����ðiÞÞ
( )

V 0

;

�k
i ¼
4

expð�@Gi=@m
k
i Þ;

) @LX

@Qkl
ij

¼ @Fij

@Qkl
ij

þ @Gi

@mk
i

@mk
i

@Qkl
ij

;

ð40Þ

where f�gV 0 denotes that the term is included in the
expression for Gi if i is a leaf node for DTV 0 . For DTV , the
term in braces f�g is always included. This allows us to derive
update equations for both models simultaneously. After
finding the derivatives @Fij=@Q

kl
ij ¼ �ijm

l
jðlog½Qkl

ij=P
kl
ij �þ1Þ

and @mk
i =@Q

kl
ij¼�ijml

j, we arrive at

@LX=@Q
kl
ij ¼ �ijm

l
jðlog½Qkl

ij=P
kl
ij � þ 1� log�k

i Þ: ð41Þ

Finally, optimizing (41) with the Lagrange multiplier that

accounts for the constraint
P

k2M Qkl
ij¼1 yields the desired

update equation: Qkl
ij ¼ 	Pkl

ij �
k
i , introduced in (14).

To compute �k
i ¼ expð�@Gi=@m

k
i Þ, we first find

@Gi

@mk
i

¼
X
c2cðiÞ

@Fci

@mk
i

þ
X
a2M

@Gc

@ma
c

@ma
c

@mk
i

 !

� flogP ðyyyy����ðiÞjxki ; ����ðiÞÞgV 0 ;

¼
X
c2cðiÞ

X
a2M

�ciQ
ak
ci log

Qak
ci

Pak
ci

þ @Gc

@ma
c

� 


� flogP ðyyyy����ðiÞjxki ; ����ðiÞÞgV 0 ;

ð42Þ

and then substitute Qkl
ij , given by (14), into (42), which

gives (15).

A.4 Optimization of QðR0jZÞ
QðR0jZÞ is fully characterized by parameters ����ij and �ij.
From the definition of LR, we observe that @JðQÞ=@�ij¼
@LR=@�ij and @JðQÞ=@����ij¼@LR=@����i. Since the �s are
positive definite, from (39), it follows that

@LR

@�ij
¼ 1

2
�ij

 
�Trf��1ij g þ Trf��1ij g þ

X
c2V 0

�ciTrf��1ci g

þ
X
p2V 0

�jpTrf��1ij gTrf��1ij �ijg�
1
2Trf��1ij �jpg

1
2

þ
X
c2V 0

�ciTrf��1ci gTrf��1ci �ijg�
1
2Trf��1ci �cig

1
2

!
:

From @LR=@�ij ¼ 0, it is straightforward to derive the
update equation for �ij given by (18).

Next, to optimize the ����ij parameters, from (36) and (39),
we compute

@LR

@����ij

¼
X
c;p2V 0

�ij�jp�
�1
ij ð����ij�����jp�ddddjpÞ

h

��ci�ij��1ci ð����ci�����ij�ddddijÞ
i
:

ð43Þ

Then, from @LR=@����ij¼0, it is straightforward to compute

the update equation for ����ij given by (17).

A.5 Optimization of QðZÞ
QðZÞ is fully characterized by the parameters �ij. From the

definitions of LZ , LX , and LR we see that @JðQÞ=@�ij ¼
@ðLXþLRþLZÞ=@�ij. Similar to the optimization of Qkl

ij , we

need to iteratively differentiate LX as follows:

@LX

@�ij
¼ @Fij

@�ij
þ
X
k2M

@Gi

@mk
i

@mk
i

@�ij
; ð44Þ

where Fij and Gi are defined as in (40). By substituting the

derivatives @Gi=@m
k
i ¼ � log�k

i , and @Fij=@�ij ¼
P

k;l2M
Qkl

ijm
l
j log½Qkl

ij=P
kl
ij �, and @mk

i =@�ij ¼
P

l2M Qkl
ijm

l
j into (44),

we obtain

@LX

@�ij
¼
X
k;l2M

Qkl
ijm

l
j log

Qkl
ij

Pkl
ij

� log�k
i

 !
;

¼ �
X
k;l2M

Qkl
ijm

l
j log

X
a2M

Pal
ij �

a
i

 !
;

¼ �Aij:

ð45Þ

Next, we differentiate LR, given by (39), with respect to

�ij as

@LR

@�ij
¼ 1

2
log
j�ijj
j�ijj

� 1þ 1

2
Trf��1ij �ijg

þ 1

2

X
p2V 0

�jp Trf��1ij ð�jpþMijpÞg
�

þ2Trf��1ij �ijg
1
2Trf��1ij �tug

1
2

�
þ 1

2

X
c2V 0

�ci Trf��1ci �ijþMcij

� �
g

�
þ2Trf��1ci �cig

1
2Trf��1ci �ijg

1
2

�
;

¼ Bij � 1;

ð46Þ

where indexes c, j, and p denote children, parents, and

grandparents of node i, respectively. Further, from (33),

we get

@LZ=@�ij ¼ 1þ log �ij=�ij: ð47Þ

Finally, substituting (45), (46), and (47) into @JðQÞ=@�ij¼0
and adding the Lagrange multiplier to account for the

constraint
P

j2V 0 �ij¼1, we solve for the update equation of

�ij given by (19).
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