
A FeatureSelection Algorithm
Capable of Handling Extremely Large Data Dimensionality

Yijun Sun∗ Sinisa Todorovic† Steve Goodison‡

Abstract

With the advent of high throughput technologies, feature selection
has become increasingly important in a wide range of scientific dis-
ciplines. We propose a new feature selection algorithm that per-
forms extremely well in the presence of a huge number of irrele-
vant features. The key idea is to decompose an arbitrarily com-
plex nonlinear models into a set of locally linear ones through local
learning, and then estimate feature relevance globally within a large
margin framework. The algorithm is capable of processing many
thousands of features within a few minutes on a personal computer,
yet maintains a close-to-optimum accuracy that is nearly insensitive
to a growing number of irrelevant features. Experiments on eight
synthetic and real-world datasets are presented that demonstrate the
effectiveness of the algorithm.

1 Introduction

With the advent of high throughput technologies, feature
selection has become increasingly important in a wide range
of scientific disciplines. Its goal is to extract the most
relevant information about each observed datum from a
potentially overwhelming quantity of features to facilitate
the underlying data analysis. In this paper, we consider
feature selection for the purposes of data classification. Not
only can its proper design reduce system complexity and
processing time, but it can also enhance system performance
in many cases.

Existing feature selection algorithms are traditionally
categorized as wrapper or filter methods [1]. In wrapper
methods, a classification algorithm is employed to evaluate
the goodness of a selected feature subset, whereas in filter
methods criterion functions evaluate feature subsets by their
information content, instead of optimizing the performance
of any specific classification algorithm directly. Hence, filter
methods are computationally much more efficient, but usu-
ally perform worse than wrapper methods. One major issue
with wrapper methods is their high computational complex-

∗Interdisciplinary Center for Biotechnology Research, University of
Florida, Gainesville, FL 32611. Email: sunyijun@biotech.ufl.edu
†Beckman Institute, University of Illinois at Urbana-Champaign, Ur-

bana, IL 61801. Email: sintod@uiuc.edu
‡Department of Surgery, University of Florida, Jacksonville, FL 32209.

Email: steve.goodison@jax.ufl.edu

ity. Many heuristic algorithms (e.g., forward and backward
selection [2]) have been proposed to alleviate the computa-
tional issue. In the presence of tens of thousands features, a
hybrid approach is usually adopted, wherein the number of
features is first reduced by using a filter method, and then a
wrapper method is used on the reduced feature set. Never-
theless, it still may take several hours to perform the search,
depending on the classifier used in the wrapper method. An-
other issue with a wrapper method is its capability to perform
feature selection for multiclass problems. To a large extent,
this property depends on the capability of a classifier used in
a wrapper method to handle multiclass problems. In many
cases, a multiclass problem is first decomposed into several
binary ones by using an error-correct-code method [3], and
then feature selection is performed for each binary problem.
This strategy further increases the computational burden of
a wrapper method. One issue that is rarely addressed in the
literature is algorithm implementation. Wrapper methods re-
quire the train of a large number of classifiers and manually
specification of many parameters. This makes their imple-
mentation and use rather complicated, demanding an exper-
tise in machine learning.

Embedded methods have recently received an increased
interest (see, for example, [4] and the references therein.). In
contrast to wrapper methods, embedded methods incorporate
feature selection directly into the learning process of a
classifier. A feature weighting strategy is usually adopted
that uses real-valued numbers, instead of binary ones, to
indicate the relevance of features in a learning process. This
strategy has many advantages. For example, there is no
need to pre-specify the number of relevant features. Also,
standard optimization techniques (e.g., gradient descent) can
be used to avoid combinatorial search. Hence, embedded
methods are usually computationally more tractable than
wrapper methods. Still, computational complexity is a major
issue when the number of features becomes excessively
large. Other issues, such as algorithm implementation and
extension to multiclass problems, remain.

In this paper, we propose a new feature selection algo-
rithm that addresses many aforementioned issues with prior
work, including the problems with computational complex-
ity, solution accuracy, algorithm implementation, capability
to handle an extremely large number of features, and exten-

530

sion to multiclass problems. The key idea is to decompose
an arbitrary complex, nonlinear model into a set of locally
linear ones through local learning, and then estimate the rel-
evance of features globally within a large margin framework.
We demonstrate that through linearization the feature selec-
tion problem can be easily solved by using well-established
machine learning and numerical analysis techniques.

1.1 Related Work Our approach is motivated by the ideas
implemented in the RELIEF algorithm [5, 6]. RELIEF has
been long regarded as a heuristic filter method, until recently
we mathematically proved that RELIEF is an online algo-
rithm that solves a convex optimization problem aimed at
maximizing the average margin [7]. One major problem
with RELIEF is that the nearest neighbors of a given sample
are predefined in the original feature space, which typically
yields erroneous nearest hits and misses in the presence of
copious irrelevant features. The idea of using local infor-
mation for estimating feature relevance is also exploited in
the Simba algorithm [8]. One major problem with Simba
is its implementation. The objective function optimized by
Simba is characterized by many local minima. Also, Simba
represents a constrained nonlinear optimization problem that
cannot be easily solved by conventional optimization tech-
niques. We empirically find that Simba performs well when
the number of irrelevant features is small, but fails com-
pletely when there exist a relatively large number of irrel-
evant features (say 500). One possible explanation is that
the chance for Simba to be stuck into local minima is in-
creased dramatically with the number of features. Based on
our mathematical analysis of RELIEF, we have recently pro-
posed a new feature weighting algorithm referred to as I-
RELIEF that performs significantly better than the above-
mentioned algorithms [7]. However, as with all other al-
gorithms in the RELIEF family, the objective function op-
timized by I-RELIEF is not directly related to the classifica-
tion performance of a learning algorithm. Moreover, unlike
the proposed algorithm, both RELIEF and I-RELIEF cannot
provide a sparse solution.

The idea of using a large margin algorithm for feature
selection is not new. For example, Weston et. al propose
to perform feature selection directly in the SVM formula-
tion, where the scaling factors are adjusted using the gradi-
ent of a (loose) theoretical upper bound on the error rate [9].
SVM-RFE is a well-known algorithm specifically designed
for large-scale feature selection problems [10]. It works by
iteratively training a SVM classifier with the current set of
features and heuristically removing the features with small
feature weights. As with wrapper methods, the structural
parameters of SVM (i.e., the regularization and kernel para-
meters) may need to be re-estimated using cross-validation
during the iterations. Also, a linear kernel is usually used.
From our personal communication with the authors, it may

be computationally expensive to use SVM-REF with a non-
linear kernel for high-dimensional data.`1-SVM with a lin-
ear kernel [11], with a proper parameter tuning, can lead to
a sparse solution, where only relevant features receive non-
zero weights. A similar algorithm is logistical regression
with `1 regularization. It has been proved that`1 regular-
ized logistical regression has a logarithmical sample com-
plexity with respect to the number of irrelevant features [12].
The logarithmic dependence on the input dimension matches
the best known bounds proved in various feature selection
contexts [12, 13]. However, the linearity assumption of data
models limits their application to general problems.

2 Our Algorithm

In the section, we present the detailed formulation of our
feature selection algorithm. We also analyze the convergence
and computational complexity of our algorithm, as well as
present its extension to multiclass problems.

Let D = {(xn, yn)}N
n=1 ⊂ RJ × {±1} be a training

dataset, wherexn is the n-th data sample containingJ
features, andyn is its corresponding class label. For clarity,
we here consider only binary problems, while in Sec. 2.3
we generalize our algorithm to address multiclass problems.
We first define the margin. Given a distance function, we
find two nearest neighbors of each samplexn, one from the
same class (callednearest hitor NH), and the other from
the different class (callednearest missor NM) [5]. The
margin ofxn is then defined asρn = d(xn, NM(xn)) −
d(xn, NH(xn)), whered(·) is the distance function. For the
purpose of this paper, we use the block distance to define a
sample’s margin and nearest neighbors, while other standard
definitions may also be used. An intuitive interpretation of
this margin is a measure as to how muchxn can “move” in
the feature space before being misclassified. By the large
margin theory [14], a classifier that minimizes a margin-
based error function usually generalizes well on unseen test
data. One natural idea then is to scale each feature, and
thus obtain a weighted feature space, parameterized by a
nonnegative vectorw, so that a margin-based error function
in the inducedfeature space is minimized. The margin of
xn, computed with respect tow, is given by:

(2.1) ρn(w) = d(xn, NM(xn)|w)− d(xn, NH(xn)|w) .

By definingzn = |xn −NM(xn)| − |xn −NH(xn)|, where
| · | is an element-wise absolute operator,ρn(w) can be
simplified as:

(2.2) ρn(w) = wT zn ,

which is a linear function ofw and has the same form as
the sample margin defined in SVM using a kernel function.
An important difference, however, is that by construction
the magnitude of each element ofw in the above margin

531

definitionreflectsthe relevance of the corresponding feature
in a learning process. This is not the case in SVM except
when a linear kernel is used, which however can capture only
linear discriminant information. Note that the margin thus
defined requires only information about the neighborhood
of xn, while no assumption is made about the underlying
data distribution. This means that by local learning we can
transform anarbitrary complex, nonlinear problem into a set
of locally linear problems.

The local linearization of a nonlinear problem allows us
to avoid the computational difficulties of prior work. It also
facilitates the mathematical analysis of our algorithm. The
main problem with the above margin definition, however, is
that the nearest neighbors of a given sample are unknown be-
fore learning. In the presence of thousands of irrelevant fea-
tures, the nearest neighbors defined in the original space can
be completely different from those in the induced space. To
account for the uncertainty in defining local information, we
develop a probabilistic model where the nearest neighbors of
a given sample are treated as latent variables. Following the
principles of the expectation-maximization algorithm [15],
we estimate the margin through taking the expectation of
ρn(w) by averaging out the latent variables:
(2.3)
ρ̄n(w) = wT

(∑
i∈Mn

P (xi=NM(xn)|w)|xn − xi|
−∑

i∈Hn
P (xi=NH(xn)|w)|xn − xi|

)
= wT z̄n ,

whereMn = {i : 1 ≤ i ≤ N, yi 6= yn}, Hn = {i :
1 ≤ i ≤ N, yi = yn, i 6= n}, P (xi=NM(xn)|w) and
P (xi=NH(xn)|w) are the probabilities that samplexi is the
nearest miss or hit ofxn, respectively. These probabilities
are estimated through the standard kernel density estimation
method:
(2.4)

P (xi=NM(xn)|w) =
k(‖xn − xi‖w)∑

j∈Mn
k(‖xn − xj‖w)

, ∀i∈Mn ,

and
(2.5)

P (xi=NH(xn)|w) =
k(‖xn − xi‖w)∑

j∈Hn
k(‖xn − xj‖w)

, ∀i∈Hn ,

wherek(·) is a kernel function. Specifically, we use the
exponential kernelk(d) = exp(−d/σ), where the kernel
width determines the resolution at which the data is locally
analyzed.

To motivate the above formulation, we consider the
well-known Fermat’s problem where the two-class samples
are distributed in a two-dimensional space, forming a spiral
shape, as illustrated in Fig. 1a. A possible decision boundary
is also plotted. If one walks from point A to B along
the decision boundary, at any given point (say, point C),
one obtains a liner problem locally. One possible linear

A

B

C

(a)

−0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

First Feature

S
ec

on
d

F
ea

tu
re

w

(b)

Figure1: Fermat’s spiral problem. (a) Samples belonging
to two classes are distributed in a two-dimensional space,
forming a spiral shape. A possible decision boundary is also
plotted. If one walks from point A to B along the decision
boundary, at any given point (say, point C), one obtain a liner
problem locally. (b) By projecting the transformed dataz̄n

onto the direction specified byw, most samples have positive
margins.

formulation is given in Eq. (2.3). It is clear that for the
spiral problem, both features are equally important. By
projecting the transformed datāzn onto the feature weight
vector w = [1, 1]T , we observe that most samples have
positive margins (Fig. 1b). The above arguments generally
hold for arbitrary nonlinear problems for a wide range of
values of kernel width, as long as the local linearity condition
is preserved. We will shortly see that the performance of our
algorithm is indeed robust against this parameter.

After the margins are defined, the problem of learning
feature weights can be directly solved within a margin frame-
work. Two most popular margin formulations are SVM [14]
and logistic regression [16]. Due to the nonnegative con-
straint onw, the SVM formulation represents a large-scale

532

optimizationproblem,while the problem size can not be re-
duced by transforming it into the dual domain. For compu-
tational convenience, we therefore perform the estimation in
the logistic regression formulation [16]. In applications with
a huge amount of features (e.g., molecular classification), we
expect that most of features are irrelevant. To encourage the
sparseness, one commonly used strategy is to add`1 penalty
of w to an objective function. Examples, where this strat-
egy has been shown successful, include LASSO for regres-
sion [17], `1-SVM [11] and `1 regularized logistic regres-
sion [12] for classification. Accomplishing sparse solutions
by introducing thè 1 penalty has been theoretically justified
(see, for example, [18] and the references therein). With the
`1 penalty, we obtain the following optimization problem:

(2.6)
min
w

N∑
n=1

log
(
1 + exp(−wT z̄n)

)
+ λ‖w‖1

s.t. w ≥ 0 ,

whereλ is a parameter that controls the penalty strength and
consequently the sparseness of the solution. The optimiza-
tion formulation (2.6) can also be written as:

(2.7)
min
w

N∑
n=1

log
(
1 + exp(−wT z̄n)

)

s.t. ‖w‖1 ≤ β,w ≥ 0 .

For every solutionw to (2.6) found using some particular
value of λ, there is a corresponding value ofβ in (2.7)
that will give the same solution. The optimization problem
of (2.7) has an interesting interpretation. If we adopt a
classification rule wherexn is correctly classified if and only
if margin ρ̄n(w) ≥ 0, then

∑N
n=1 I(ρ̄n(w) < 0) is the

leave-one-out (LOO) classification error induced by using
w, whereI(·) is the indicator function. Since the logistic
loss function is an upper bound of the misclassification
loss function, up to a difference of a constant factor, (2.7)
can be interpreted as finding a weighted feature space so
that the upper bound of the LOO classification error in the
induced space is minimized. Hence, the algorithm has two
levels of regularization, i.e., the implicit LOO and explicit
`1 regularization. We will shortly see that this property,
together with the convergence property, leads to superior
performance of the algorithm in the presence of copious
irrelevant features, and that due to the LOO regularization,
the performance of the algorithm is largely insensitive to a
specific choice ofλ.

Sincez̄n implicitly depends onw through the probabil-
itiesP (xi=NH(xn)|w) andP (xi = NM(xn)|w), we use a
fixed-point recursion method to solve forw. In each itera-
tion, z̄n is first computed by using the previous estimate of
w, which is then updated by solving the optimization prob-
lem of (2.6). The iterations are carried out until convergence.

It is interesting to note that though local learning is a highly
nonlinear process, in each iteration we deal with a linear
model.

For fixedz̄n, (2.6) is a constrained convex optimization
problem. Due to the nonnegative constraint onw, it cannot
be solved directly by using a gradient descent method. To
overcome this difficulty, we reformulate the problem slightly
as:
(2.8)

min
v

N∑
n=1

log

1 + exp

−

∑

j

vj
2z̄n(j)

 + λ‖v‖22 ,

thus obtaining an unconstrained optimization problem. It is
easy to show that at the optimum solution we havewj =
vj

2, 1 ≤ j ≤ J . The solution ofv can be readily found
through gradient descent with a simple update rule:
(2.9)

v ← v− η

(
λ1−

N∑
n=1

exp(−∑
j vj

2z̄n(j))
1 + exp(−∑

j vj
2z̄n(j))

z̄n

)
⊗v ,

where⊗ is the Hadamard operator, andη is the learning rate
determined by the standard line search. Note that the ob-
jective function of (2.8) is no longer a convex function, and
thus a gradient descent method may find a local minimizer
or a saddle point. The following theorem shows that if the
initial point is properly selected, the solution obtained when
the gradient vanishes is the global minimizer.

THEOREM 2.1. Let f(x) be a strictly convex function of
x ∈ RJ and g(x) = f(y), wherey = [y1, · · · , yJ]T =
[x2

1, · · · , x2
J]T . If ∂g

∂x |x=x+ = 0, then x+ is not a local
minimizer, but a saddle point or a global minimizer ofg(x).
Moreover, ifx+ is found through gradient descent with an
initial point x

(0)
j 6= 0, 1 ≤ j ≤ J , thenx+ is the global

minimizer ofg(x).

Proof. Due to the space limitation, we only present the
sketch of the proof. The proof is done by examining the
properties of Hessian matrices. It can be proved that a given
stationary pointx+ is a global minimizer ofg(x) if Hessian
matrix H(x+) is positive semidefinite, and a saddle point
otherwise. If stationary pointx+ is found with an initial
point x(0)

j 6= 0, 1 ≤ j ≤ J , thenx+ is the global minimizer
of g(x) since the saddle points are not reachable via gradient
descent.

For fixedz̄n, the objective function of (2.6) is a strictly con-
vex function ofw. Theorem 2.1 assures that in each itera-
tion, via gradient descent, reaching the global optimum so-
lution of w is guaranteed. After the feature weighting vector
is found, the pairwise distances among data samples are re-
evaluated using the updated feature weights, and the prob-
abilitiesP (xi=NM(xn)|w) andP (xj=NH(xn)|w) are re-
computed using the newly obtained pairwise distances. The

533

Feature Selection Algorithm

Input: DataD = {(xn, yn)}N
n=1, stop criterionθ, kernel

width σ, regularization parametersλ;

(1) Initialization: setw(0) = 1, t = 0;

(2) Repeat
(3) Computed(xn,xi|w(t)), ∀xn,xi ∈ D;

(4) CalculateP (xi=NM(xn)|w(t)) and
P (xj = NH(xn)|w(t)) as in (2.4) and (2.5);

(5) Solve forv as in (2.9);

(6) w
(t+1)
j = (vj)2, 1 ≤ j ≤ J ;

(7) t=t+1;

(8) Until ‖w(t−1) −w(t)‖ < θ

Output: w = w(t).

Figure2: Pseudo-code of the proposed algorithm.

two steps are iterated until convergence. The implementa-
tion of the algorithm is very simple. It is coded in Matlab
with less than one hundred lines. Except for the standard lin-
ear search, no other built-in Matlab functions are used. The
pseudo-code of the algorithm is presented in Fig. 2.

2.1 Convergence AnalysisThis section presents the con-
vergence analysis of our algorithm. We begin by studying
its asymptotic behavior. Ifσ → +∞, for all w ≥ 0 and

i∈Mn, we have lim
σ→+∞

P (xi=NM(xn)|w) =
1

|Mn| , since

lim
σ→+∞

k(d) = 1. On the other hand, ifσ → 0, by assum-

ing that for allxn, d(xn,xi|w) 6= d(xn,xj |w) if i 6= j,
we have lim

σ→0
P (xi = NM(xn)|w) = 1 if d(xn,xi|w) =

min
j∈Mn

d(xn,xj |w) and0 otherwise. Similar asymptotic be-

havior holds forP (xi=NH(xn)|w). From the above analy-
sis, it follows that forσ → +∞ the algorithm converges to
a unique solution in one iteration, sinceP (xi=NM(xn)|w)
andP (xi=NH(xn)|w) are constants for any initial feature
weights. On the other hand, forσ → 0, rarely do we em-
pirically observe that the algorithm converges. This suggests
that the convergence behavior and convergence rate of the
algorithm are fully controlled by the kernel width, which is
formally stated in the following theorem.

THEOREM 2.2. For the proposed feature selection algo-
rithm, there existsσ∗ such thatlimt→+∞ ‖w(t)−w(t−1)‖ =
0 wheneverσ > σ∗. Moreover, for a fixedσ > σ∗, the al-
gorithm converges to a unique solution for any nonnegative
initial feature weightsw(0).

We use the Banach fixed point theorem to prove the
convergence theorem. We first state the fixed point theorem

without proof, which can be found for example in [19].

DEFINITION 2.1. Let U be a subset of a normed spaceZ,
and‖ · ‖ is a norm defined inZ. An operatorT : U → Z
is called a contraction operator if there exists a constant
q ∈ [0, 1) such that‖T (x) − T (y)‖ ≤ q‖x − y‖ for every
x, y ∈ U . q is called the contraction number ofT .

DEFINITION 2.2. An element of a normed spaceZ is called
a fixed point ofT : U → Z if T (x) = x.

THEOREM 2.3. (FIXED POINT THEOREM) LetT be a con-
traction operator mapping a complete subsetU of a normed
spaceZ into itself. Then the sequence generated asx(t+1) =
T (x(t)), t = 0, 1, 2, · · · , with arbitrary x(0) ∈ U , con-
verges to the unique fixed pointx∗ of T . Moreover, the fol-
lowing estimation error bounds hold:

(2.10)
‖x(t) − x∗‖ ≤ qt

1−q‖x(1) − x(0)‖ ,

and ‖x(t) − x∗‖ ≤ q
1−q‖x(t) − x(t−1)‖ .

Proof. (of Theorem 2.2): The gist of the proof is to identify
a contraction operator for the algorithm, and make sure that
the conditions of Theorem 2.3 are met. To this end, we define
P = {p : p = [P (xi=NM(xn)|w), P (xj=NH(xn)|w)]},
and specify the first step of the algorithm in a functional form
as T1 : RJ

≥0 → P, whereT1(w) = p, and the second
step asT2 : P → RJ

≥0, whereT2(p) = w. HereRJ
≥0 =

{w : w ∈ RJ ,w ≥ 0}. Then, the algorithm can be written
as w(t) = (T2 ◦ T1)(w(t−1)) , T (w(t−1)), where(◦)
denotes functional composition andT : RJ

≥0 → RJ
≥0. Since

RJ
≥0 is a closed subset of normed spaceRJ and complete,

T is an operator mapping complete subsetRJ
≥0 into itself.

Next, note that forσ → +∞, the algorithm converges with
one step. We have lim

σ→+∞
‖T (w1, σ) − T (w2, σ)‖ = 0,

for everyw1,w2 ∈ RJ
≥0. Therefore, in the limit,T is a

contraction operator with contraction constantq = 0, that is,
lim

σ→+∞
q(σ) = 0. Therefore, for everyε > 0, there existsσ∗

such thatq(σ) ≤ ε wheneverσ > σ∗. By settingε < 1, the
resulting operatorT is a contraction operator. By the Banach
fixed point theorem, our algorithm converges to a unique
fixed point provided the kernel width is properly selected.
The above arguments establish the convergence theorem of
the algorithm.

The theorem ensures the convergence of the algorithm
if the kernel width is properly selected. This is a very loose
condition, as our empirical results show that the algorithm
always converges for a sufficiently large kernel width. Also,
the error bound in (2.10) tells us that the smaller the contrac-
tion number, the tighter the error bound and hence the faster
the convergence rate. Our experiments suggest that a larger
kernel width yields a faster convergence. Unlike many other

534

machinelearningalgorithms (e.g., neural networks), the con-
vergence and the solution of our algorithm are not affected
by the initial value if the kernel width is fixed. Even if the
initial feature weights were wrongly selected (e.g., investi-
gators have no or false prior), and the algorithm started com-
puting erroneous nearest misses and hits for each sample, the
theorem assures that the algorithm will eventually converge
to a unique solution. This property is experimentally demon-
strated in Sec. 3.1 (see Fig. 4).

2.2 Computational Complexity and Fast Implementa-
tion The main complexity of the algorithm comes from
computing pairwise distances between data samples. Thus,
the computational complexity of the algorithm isO(TN2J),
whereT is the number of iterations,J is the feature dimen-
sionality, andN is the number of data samples. We empiri-
cally find that our algorithm usually converges within a few
iterations (see Fig. 3). Hence, its computational complexity
is comparable to that of RELIEF. A close look at the update
equation ofv, given by (2.9), allows us to further reduce
complexity. If some elements ofv are very close to zero
(say less than10−4), the corresponding features can be elim-
inated from further consideration with a negligible impact
on the subsequent iterations, thus providing a built-in mech-
anism for automatically removing irrelevant features during
learning.

2.3 Feature Selection for Multiclass ProblemsSome ex-
isting feature selection algorithms, originally designed for
binary problems, can be naturally extended to multiclass set-
tings, while for others the extension is not straightforward.
In particular, for both embedded and wrapper methods, the
extension largely depends on the capability of a classifier
to handle multiclass problems. In many cases, a multiclass
problem is first decomposed into several binary ones, and
then feature selection is performed for each binary problem.
This strategy further increases the computational burden of
embedded and wrapper methods. Our algorithm does not
suffer from this problem. A natural extension of the margin
defined in (2.1) to multiclass problems is [20]:
(2.11)

ρn(w)
= min

{c∈Y,c6=yn}
d(xn, NM(c)(xn)|w)− d(xn, NH(xn)|w) ,

= min
xi∈D\Dyn

d(xn,xi|w)− d(xn, NHn|w) ,

whereY is the set of class labels, NM(c)(xn) is the nearest
neighbor of xn from classc, and Dc is a subset ofD
containing only samples from classc. The derivation of our
feature selection algorithm for multiclass problems by using
the margin defined in (2.11) is straightforward.

3 Experiments

The effectiveness of the proposed algorithm is empirically
validated on eight synthetic and real-world datasets. We
demonstrate that our algorithm is capable of handling prob-
lems with an extremely large feature dimensionality.

3.1 Spiral Problem We perform a simulation study on
an artificially generated dataset, carefully designed to ver-
ify various important properties of the algorithm. This ex-
ample, also called Fermat’s spiral problem, is a binary clas-
sification problem. Each class has230 samples distrib-
uted in a two-dimensional space, forming a spiral shape,
as illustrated in Fig. 1. In addition to the first two rel-
evant features, each sample is represented by a varying
number of irrelevant features, where this number is set to
{50, 100, 500, 1000, 5000, 10000, 20000, 30000}. The num-
ber30000 exceeds by far the amount of features experienced
in many scientific fields. For example, human beings have
about25000 genes, and hence nearly all gene expression mi-
croarray platforms have less than25000 probes. The added
irrelevant features are independently sampled from the zero-
mean and unit-variance Gaussian distribution. Our task is to
identify the first two relevant features. Note that only if these
two features are used simultaneously can the two classes of
samples be well separated. For most existing feature selec-
tion algorithms, identifying the two relevant features in this
example is an extremely challenging task.

Fig. 3 illustrates the dynamics of our algorithm
performed on the spiral data with10000 irrelevant fea-
tures. The algorithm iteratively refines the estimates of
weight vectorw and probabilitiesP (xi=NH(xn)|w) and
P (xi=NM(xn)|w) until convergence. Each sample is col-
ored according to its probability of being the nearest miss
or hit of a given sample indicated by a black cross. We ob-
serve that, with a uniform initial feature weights, the nearest
neighbors defined in the original feature space can be com-
pletely different from the true ones. The plot also shows that
the algorithm converges to a perfect solution in just three it-
erations.

Fig. 4 presents the feature weights that our algorithm
learns on the spiral data for a varying number of irrelevant
features. The results are obtained for parametersσ and
λ respectively set to2 and 1, while the same solution
holds for a wide range of other values of kernel widths and
regularization parameters (insensitivity to a specific choice
of these parameters will be discussed shortly). Fig. 4 shows
that our algorithm performs remarkably well over a wide
range of feature-dimensionality values that are of practical
interest, with thesame parameters. We also note that
the feature weights learned across all feature-dimensionality
values are almost identical. This result is a consequence of
Theorem 2.2, which can be explained as follows. Suppose
that we have two spiral datasets having5000 and 10000

535

2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Features

F
ea

tu
re

 S
co

re
Initialization

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration #1

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration #2

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Iteration #3

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 3: The algorithm iteratively refines the estimates of weight vectorw and probabilitiesP (xi=NH(xn)|w) and
P (xi=NM(xn)|w) until convergence. The result is obtained on the spiral data with10000 irrelevant features. Each sample
is colored according to its probability of being the nearest miss or hit of a given sample indicated by a black cross. The plot
shows that the algorithm converges to a perfect solution in just three iterations.

irrelevant features, respectively. Also, suppose that we
first perform the algorithm on the second dataset, and that
after some iterations the algorithm finds5000 irrelevant
features whose weights are very close to zero. Then, both
problems are almost identical, except that the first problem
has a uniform initial point (see line 1 of Fig. 2) and the
second problem has a non-uniform initial point. By Theorem
2.2, the algorithm converges to the same solution for both
problems. Of course, due to the randomness of irrelevant
features and the finite number of iteration steps, the two
solutions are slightly different. For example, in Fig. 4, for
the dataset with30000 features, the algorithm selects one
false feature as relevant, in addition to the two relevant ones.
However, the weight associated with the selected irrelevant
feature is much smaller than the weights of the two relevant
ones.

One may be interested to know how many irrelevant
features should be added to the dataset before the algorithm
fails. We conduct an experiment where the number of
irrelevant features are continuously increased. We find that
the algorithm attains the almost identical solutions to those
presented in Fig. 4 until 100000 irrelevant features are
injected into the dataset. The algorithm fails simply because
the computer is out of memory. This result suggests that our
algorithm is capable of handling an extremely large number
of irrelevant features, far beyond that needed in most data-
analysis settings one may currently encounter. This result is
very encouraging, and deserves further theoretical analyses.

Our algorithm is computationally very efficient. Fig. 5
shows the CPU time it takes the algorithm to perform feature
selection on the spiral dataset with different numbers of irrel-
evant features. The computer setting is Pentium4 2.80GHz
with 2.00GB RAM. The stopping criterion isθ = 0.01. As
can be seen, the algorithm runs for only3.5s for the prob-
lem with 100 features,37s for 1000 features, and372s for
20000 features. The computational complexity is linear with
respect to the feature dimensionality. To the best of our
knowledge, no wrapper method has computational complex-
ity even close to ours. Depending on the classifier used in
search for relevant features, it may take several hours for a
wrapper method to analyze the same dataset with only1000
features, and yet there is no guarantee that the optimal solu-
tion will be reached, due to heuristic search.

The kernel widthσ and the regularization parameterλ
are two input parameters of the algorithm. Alternatively,
they can be estimated through cross validation on training
data. It is well-known that cross validation may produce
an estimate with a large variance. Fortunately, this does not
pose a serious concern for our algorithm. In Figs. 6 and 7, we
plot the feature weights learned with different kernel widths
and regularization parameters. The algorithm performs well
over a wide range of parameter values, yielding always the
largest weights for the first two relevant features, while the
other weights are significantly smaller. This suggests that the
algorithm’s performance is largely insensitive to a specific
choice of parametersσ andλ, which makes parameter tuning

536

10
0

10
1

0

5

10

15

20

25

30

50

10
0

10
1

10
2

0

5

10

15

20

25

30

500

10
0

10
1

10
2

10
3

0

5

10

15

20

25

30

5000

10
0

10
1

10
2

10
3

10
4

0

5

10

15

20

25

30

10000

10
0

10
1

10
2

10
3

10
4

0

5

10

15

20

25

30

30000

Figure4: Feature weights learned on the spiral dataset with different numbers of irrelevant features, ranging from50 to
30000. The y-axis represents the values of feature weights, and the x-axis is the number of features, where the first two are
always fixed to represent the two relevant features. Zero-valued feature weights indicate that the corresponding features are
not relevant. The feature weights learned across all dimensionality are almost identical, for the same input parameters.

10
0

10
1

10
2

10
3

0

10

20

30

40

50

60

λ=0.1

10
0

10
1

10
2

10
3

0

5

10

15

20

25

30

35

40

0.5

10
0

10
1

10
2

10
3

0

5

10

15

20

25

30

1

10
0

10
1

10
2

10
3

0

5

10

15

20

25

1.5

10
0

10
1

10
2

10
3

0

5

10

15

20

2

Figure6: Feature weights learned on the spiral dataset with5000 irrelevant features, for a fixed kernel widthσ = 2, and
different regularization parametersλ ∈ {0.1, 0.5, 1, 1.5, 2}.

10
0

10
1

10
2

10
3

0

5

10

15

20

25

30

σ=0.1

10
0

10
1

10
2

10
3

0

5

10

15

20

25

30

0.5

10
0

10
1

10
2

10
3

0

5

10

15

20

25

30

1

10
0

10
1

10
2

10
3

0

5

10

15

20

25

30

3

10
0

10
1

10
2

10
3

0

5

10

15

20

25

30

5

Figure7: Feature weights learned on the spiral dataset with5000 irrelevant features, for a fixed regularization parameter
λ = 1, and different kernel widthsσ ∈ {0.1, 0.5, 1, 3, 5}.

537

50 100 500 1000 5000 10000 30000

10
−1

10
0

10
1

Number of Features

C
P

U
 T

im
e

(M
in

ut
e)

3.5s

37s

372s

Figure5: The run-times of our algorithm on the spiral dataset
with a varying number of irrelevant features, ranging from
50 to 30000. The plot demonstrates linear complexity with
respect to the feature dimensionality.

Table 1: Summary of UCI datasets. The number of artificial,
irrelevant features added to the original ones is indicated in
the parentheses.

Dataset Train Test Feature
twonorm 400 7000 20(5000)
waveform 400 4600 21(5000)
banana 468 300 2(5000)
thyroid 140 75 5(5000)
diabetics 468 300 8(5000)
heart 170 100 13(5000)
splice 400 2175 60(5000)

andhencethe implementation of our algorithm easy, even for
researchers outside of the machine learning community.

Fig. 8 presents the convergence analysis of our al-
gorithm on the spiral dataset with5000 irrelevant fea-
tures, for λ = 1 and different kernel widthsσ ∈
{0.01, 0.05, 0.5, 1, 10, 50}. We observe that the algorithm
converges for a wide range ofσ values, and that in general
a larger kernel width yields a faster convergence. These re-
sults validate our theoretical convergence analysis, presented
in Sec. 2.1.

3.2 Experiments on UCI DatasetsThis section presents
our feature selection results on seven benchmark UCI
datasets [21]. The data information is summarized in Ta-
ble 1. For each dataset, the set of original features is aug-
mented by5000 artificially generated irrelevant features.
The irrelevant features are independently sampled from a
Gaussian distribution with zero-mean and unit-variance. It
should be noted that some features in the original feature sets

2 4 6 8 10 12 14
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Number of iterations

θ

0.01
0.05
0.5
1
10
50

Figure8: Convergence analysis of our algorithm, performing
on the spiral dataset with5000 irrelevant features, forλ = 1
andσ ∈ {0.01, 0.05, 0.5, 1, 10, 50}. The plots presentθ =
‖w(t) − w(t−1)‖2 as a function of the number of iteration
steps.

may be irrelevant or weakly relevant, and hence may receive
zero weights in our algorithm. Since the true relevance of
the original features is unknown, to verify that our algorithm
does indeed discover all relevant features, we compare the
classification performance of SVM (with the RBF kernel)
in two cases: (1) when only the original features are used
(i.e., without 5000 useless features), and (2) when the fea-
tures selected by our algorithm are used. It is well known
that SVM is very robust against noise, and that the presence
of a few irrelevant features in the original feature sets should
not significantly affect its performance. Hence, the classifi-
cation performance of SVM obtained in the first case should
be very close to that of SVM performed on the optimum fea-
ture subsets that are unknown to us a priori. Essentially, we
are comparing our algorithm with an optimal feature selec-
tion algorithm. If SVM performs similarly in both cases, we
may conclude that our algorithm achieves close-to-optimum
solutions.

The structural parameters of SVM are estimated through
ten-fold cross validation on training data. To further demon-
strate that the performance of our algorithm is largely insen-
sitive to a specific choice of the input parameters, we use
kernel widthσ = 2 and regularization parameterλ = 1 for
all seven UCI datasets. The stopping criterion isθ = 0.01.
The algorithm is run10 times for each dataset. In each run,
a dataset is randomly partitioned into training and test sets.
The averaged classification errors and standard deviations
of SVM are reported in Table 2. The false discovery rate
(FDR), defined as the ratio between the number of artificially
added, irrelevant features with non-zero weights and the total
number of irrelevant features (i.e., 5000), is reported in Ta-
ble 2. Feature weights, learned in one sample trial, for each
of seven datasets, are shown in Fig. 9. From these experi-

538

Table2: Classification errors on test data and their standard deviations (%) of SVM performed on the seven UCI datasets
contaminated by 5000 useless features. The second column records the performance of SVM performed on the features
selected by our algorithm, and the third column is the results of SVM obtained by using the original features. The last two
columns present the false discovery rates (FDR) and CPU times, and the last row presents the averaged FDR and CPU time.

SVM SVM FDR CPU time
Dataset (selected features) (original features) (second per run)
twonorm 2.6(0.2) 2.6(0.2) 0/1000 162
waveform 11.7(0.9) 10.1(0.6) 1.6/1000 157
banana 10.9(0.5) 10.9(0.5) 0.1/1000 97
diabetics 23.7(1.1) 24.9(1.3) 1.8/1000 267
thyroid 5.3(2.4) 4.7(2.1) 0.1/1000 13
heart 17.2(4.2) 18.4(4.0) 0.4/1000 73
splice 12.9(2.1) 14.4(0.9) 1.0/1000 330

Average / / 0.7/1000 157

mentalresults,weobserve the following:
(1) From Table 2, we observe that SVM using the

features identified by our algorithm performs similarly or
even slightly better than SVM using the original features.
It should be emphasized that the results are obtained in the
presence of a huge number of irrelevant features, without
estimating the optimal input parameters.

(2) In addition to successfully identifying relevant fea-
tures, our algorithm performs remarkably well in removing
irrelevant ones. The false discovery rate, averaged over seven
datasets, is only0.7/1000. The feature weights learned on
one realization of each dataset are plotted in Fig. 9. For ease
of presentation, the maximum value of each feature weight
vector is normalized to1. For some datasets (e.g.,banana
andthyroid), the weights of the false positives are very small,
and we experimentally find that it is possible to achieve a
perfect solution by slightly increasing the regularization pa-
rameterλ.

(3) The averaged CPU times of seven datasets are pre-
sented in Table 2. Our algorithm is capable of processing
thousands of features within a few minutes on personal com-
puters.

4 Conclusion

The newly proposed algorithm is formulated based on the
concept that a given complex problem can be more easily,
and yet accurately enough, analyzed by parsing it into a set
of locally linear problems. Local learning allows us to cap-
ture local structure of the data, while the parameter estima-
tion is performed globally to avoid possible overfitting. In
comparison with other feature selection algorithms, our algo-
rithm has many advantages. We have experimentally demon-
strated that our algorithm is capable of handling problems
with an extremely large feature dimensionality, without mak-
ing any assumption on the underlying data distributions. Al-

though, for clarity, we have mainly considered only binary
problems, we have shown that the extension of our algo-
rithm to multiclass settings is straightforward. Unlike most
prior work whose implementation demands an expertise in
machine learning, ours is very easy to implement. As with
most machine learning algorithms, ours has two user defined
parameters that can alternatively be estimated through cross
validation. We have experimentally shown that the perfor-
mance of our algorithm is largely insensitive to a wide range
of values for these two parameters, which makes parameter
tuning and hence the implementation of our algorithm easy
in real applications.

Due to its high accuracy, low complexity, and simple im-
plementation, we believe that the proposed framework may
hold major potential for eventually solving the feature selec-
tion problem. Even in the current formulation, our algorithm
is already capable of handling most feature selection prob-
lems one encounters in scientific research. Considering the
increased demand for analyzing data with a large number of
features in many research fields, we expect that the work pre-
sented in this paper will make a broad impact.

References

[1] R. Kohavi and G. H. John,Wrappers for feature subset
selection, Artifi. Intell., 97 (1997), pp. 273–324.

[2] P. Pudil, J. Novovicova,Novel methods for subset selection
with respect to problem knowledge,IEEE Intell. Syst., 13
(1998), pp. 66–74.

[3] T. G. Dietterich and G. Bakiri,Solving multiclass learning
problems via error-correcting output codes, J. Artif. Intell.
Res., 2 (1995), pp. 263–286.

[4] T. N. Lal, O. Chapelle, J. Weston, and A. Elisseeff,Embed-
ded methods, in Feature Extraction, Foundations and Appli-
cations, Springer-Verlag, 2006.

[5] K. Kira and L. A. Rendell,A practical approach to feature

539

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Features

F
ea

tu
re

 S
co

re

Banana

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Features

F
ea

tu
re

 S
co

re

waveform

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Features

F
ea

tu
re

 S
co

re

diabetics

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Features

F
ea

tu
re

 S
co

re

heart

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Features

F
ea

tu
re

 S
co

re

twonorm

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Features

F
ea

tu
re

 S
co

re

splice

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Features

F
ea

tu
re

 S
co

re

thyroid

Figure9: Featureweights learned in one sample trial on seven UCI datasets. The dashed line indicates the number of
original features. The weights plotted on the left side of the dashed line are associated with the original features, while those
on the right, with the additional5000 irrelevant features. Some of the original features are found irrelevant.

selection, Proc. 9th Int. Conf. Mach. Learn., (1992), pp. 249–
256.

[6] I. Kononenko,Estimating attributes: analysis and extensions
of RELIEF, Eur. Conf. Mach. Learn., (1994), pp. 171–182.

[7] Y. Sun and J. Li,Iterative RELIEF for feature weighting,
Proc. 21st Int. Conf. Mach. Learn., (2006), pp. 913–920.

[8] R. Gilad-Bachrach, A. Navot, and N. Tishby,Margin based
feature selection-theory and algorithms, Proc. 19th Int. Conf.
Mach. Learn., (2004), pp. 43–50.

[9] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio,
and V. Vapnik, Feature selection for SVMs, Advances in
Neural Information Processing Systems, (2001), pp. 668–
674.

[10] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik,Gene selec-
tion for cancer classification using support vector machines,
Mach. Learn., 46 (2002), pp. 389-422.

[11] J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani,1-norm support
vector machines, Advances in Neural Information Processing
Systems, 16 (2004).

[12] A. Y. Ng, Feature selection, L1 vs. L2 regularization, and
rotational invariance, Proc. 21st Int. Conf. Mach. Learn., 69
(2004), pp. 78–86.

[13] A. Y. Ng and M. I. Jordan,Convergence rates of the Voting
Gibbs classifier, with application to Bayesian feature selec-
tion, Proc. 18th Int. Conf. Mach. Learn., (2001), pp. 377–384.

[14] V. Vapnik, Statistical Learning Theory, Wiley, New York,
1998.

[15] A. Dempster, N. Laird, and D. Rubin,Maximum likelihood

from incomplete data via the EM algorithm (with discussion),
J. R. Stat. Soc. Ser. B, 39 (1977), pp. 1–38.

[16] C. M. Bishop,Pattern Recognition and Machine Learning,
Springer, New York, 2006.

[17] R. Tibshirani, Regression shrinkage and selection via the
lasso, J. R. Stat. Soc. Ser. B, 58 (1996), pp. 267–288.

[18] D. Donoho, M. Elad,Optimally sparse representations in
general nonorthogonal dictionaries byl1 minimization, Proc.
Natl. Acad. Sci. U.S.A., 100 (2003), pp. 2197–2202.

[19] R. Kress,Numerical Analysis, Springer-Verlag, New York,
1998.

[20] Y. Sun, S. Todorovic, J. Li, and D. Wu,Unifying error-
correcting and output-code AdaBoost through the margin
concept, Proc. 22nd Int. Conf. Mach. Learn., (2005), pp. 872–
879.

[21] C. Blake and C. Merz, UCI repository of machine learning
databases, 1998.

540

