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Abstract ity. Many heuristic algorithms (e.g., forward and backward
With the advent of high throughput technologies, feature selectidflection [2]) have been proposed to alleviate the computa-
has become increasingly important in a wide range of scientific dfi@nal issue. In the presence of tens of thousands features, a
ciplines. We propose a new feature selection algorithm that pB¥Prid approach is usually adopted, wherein the number of
forms extremely well in the presence of a huge number of irref@atures is first reduced by using a filter method, and then a
vant features. The key idea is to decompose an arbitrarily coff@@Pper method is used on the reduced feature set. Never-
plex nonlinear models into a set of locally linear ones through lodR€less, it still may take several hours to perform the search,
learning, and then estimate feature relevance globally within a laffgP€nding on the classifier used in the wrapper method. An-
margin framework. The algorithm is capable of processing maf§ner issue with awrapper method is its capability to perform
thousands of features within a few minutes on a personal compug@ture selection for multiclass problems. To a large extent,
yet maintains a close-to-optimum accuracy that is nearly insensiti&S Property depends on the capability of a classifier used in
to a growing number of irrelevant features. Experiments on eightvrapper method to handle multiclass problems. In many
synthetic and real-world datasets are presented that demonstrate@3€S, @ multiclass problem is first decomposed into several

effectiveness of the algorithm. binary ones by using an error-correct-code method [3], and
then feature selection is performed for each binary problem.
1 Introduction This strategy further increases the computational burden of

a wrapper method. One issue that is rarely addressed in the

With the advent of high throughput technologies, featur? . . : .
. ; ) : ) ' iterature is algorithm implementation. Wrapper methods re-
selection has become increasingly important in a wide rangé

of scientific disciplines. Its goal is to extract the mos ire the train of a large number of classifiers and manually

relevant information about each observed datum fromsgeuflcatlon of many parameters. This makes their imple-

potentially overwhelming quantity of features to facilita;%nematlon and use rather complicated, demanding an exper-

the underlying data analysis. In this paper, we consi & N machine learning.

feature selection for the purposes of data classification. N Embedded methods have recently received an increased

. ; . mt rest (see, for example, [4] and the references therein.). In
only can its proper design reduce system complexity an :

S : contrast to wrapper methods, embedded methods incorporate
processing time, but it can also enhance system perform

C . . . .
; Hture selection directly into the learning process of a
in many cases.

Existing feature selection algorithms are traditionalFlaSSlﬂer' A feature weighting strategy is usually adopted

. ) that uses real-valued numbers, instead of binary ones, to
categorized as wrapper or filter methods [1]. In wrapper. : . )
e ; ; indicate the relevance of features in a learning process. This
methods, a classification algorithm is employed to evaluate :
! rategy has many advantages. For example, there is no

the goodness of a selected feature subset, whereas in filter :

o . need to pre-specify the number of relevant features. Also,

methods criterion functions evaluate feature subsets by their NP . .
standard optimization techniques (e.g., gradient descent) can

information content, instead of optimizing the performan%ee used to avoid combinatorial search. Hence, embedded

of any specific classification algorithm directly. Hence, filter .
) . methods are usually computationally more tractable than
methods are computationally much more efficient, but usu- ! : o .
.. Wrapper methods. Still, computational complexity is a major
ally perform worse than wrapper methods. One major issue

X . T . ISSue when the number of features becomes excessively
with wrapper methods is their high computational complergrge_ Other issues, such as algorithm implementation and

extension to multiclass problems, remain.
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sionto multiclass problems. The key idea is to decompobe computationally expensive to use SVM-REF with a non-
an arbitrary complex, nonlinear model into a set of locallinear kernel for high-dimensional daté.-SVM with a lin-
linear ones through local learning, and then estimate the et kernel [11], with a proper parameter tuning, can lead to
evance of features globally within a large margin framewor&.sparse solution, where only relevant features receive non-
We demonstrate that through linearization the feature seleero weights. A similar algorithm is logistical regression
tion problem can be easily solved by using well-establishedth ¢; regularization. It has been proved tHatregular-
machine learning and numerical analysis techniques. ized logistical regression has a logarithmical sample com-
plexity with respect to the number of irrelevant features [12].
1.1 Related Work Our approach is motivated by the idea¥he logarithmic dependence on the input dimension matches
implemented in the RELIEF algorithm [5, 6]. RELIEF hathe best known bounds proved in various feature selection
been long regarded as a heuristic filter method, until recentyntexts [12, 13]. However, the linearity assumption of data
we mathematically proved that RELIEF is an online algoaodels limits their application to general problems.
rithm that solves a convex optimization problem aimed at
maximizing the average margin [7]. One major probleth Our Algorithm

with RELIEF is that the nearest neighbors of a given sampi¢the section, we present the detailed formulation of our
are predefined in the original feature space, which typicaflyatyre selection algorithm. We also analyze the convergence
yields erroneous nearest hits and misses in the presencgf computational complexity of our algorithm, as well as
copious irrelevant features. The idea of using local i”f%resent its extension to multiclass problems.
mation for estimating feature relevance is also exploited in | gt p — {(%n,yn) 1", C R7 x {£1} be a training
the Simba algorithm [8]. One major problem with Simbéataset, wherex,, is the n-th data sample containing
is its implementation. The objective function optimized bytyres, ang,, is its corresponding class label. For clarity,
Simba is characterized by many local minima. Also, Sim@ here consider only binary problems, while in Sec. 2.3
represents a constrained nonlinear optimization problem that yeneralize our algorithm to address multiclass problems.
cannot be easily solved by conventional optimization teofse first define the margin. Given a distance function, we
niques. We empirically find that Simba performs well whefihg two nearest neighbors of each sampje one from the
the number of irrelevant features is small, but fails corgzme class (calledearest hitor NH), and the other from
pletely when there exist a relatively large number of irrglne gifferent class (calledearest misor NM) [5]. The
evant features (say 500). One possible explanation is tf??&rgin ofx,, is then defined ag, = d(x,, NM(x,)) —
the chance for Simba to be stuck into local minima is i@(xm NH(x,)), whered(-) is the distance function. For the
creased dramatically with the number of features. Basedmpose of this paper, we use the block distance to define a
our mathematical analysis of RELIEF, we have recently prgample’s margin and nearest neighbors, while other standard
posed a new feature weighting algorithm referred 10 asdafinitions may also be used. An intuitive interpretation of
RELIEF that performs significantly better than the abovgyig margin is a measure as to how mughcan “move” in
mentioned algorithms [7]. However, as with all other afhe feature space before being misclassified. By the large
gorithms in the RELIEF family, the objective function opmargin theory [14], a classifier that minimizes a margin-
timized by I-RELIEF is not directly related to the classificayased error function usually generalizes well on unseen test
tion performance of a learning algorithm. Moreover, unlikgata. One natural idea then is to scale each feature, and
the proposed algorithm, both RELIEF and I-RELIEF canng{ys obtain a weighted feature space, parameterized by a
provide a sparse solution. nonnegative vectow, so that a margin-based error function
The idea of using a large margin algorithm for featug the inducedfeature space is minimized. The margin of

selection is not new. For example, Weston et. al propage computed with respect te, is given by:
to perform feature selection directly in the SVM formula-

tion, where the scaling factors are adjusted using the gra@-1) p,,(w) = d(x,, NM(x,,)|w) — d(x,, NH(x,)|w) .
ent of a (loose) theoretical upper bound on the error rate [9].

SVM-RFE is a well-known algorithm specifically designe8y definingz,, = |x,, — NM(x,)| — [x, — NH(x,)|, where
for large-scale feature selection problems [10]. It works By | is an element-wise absolute operatpy,(w) can be
iteratively training a SVM classifier with the current set ggimplified as:

features and heuristically removing the features with small T

feature weights. As with wrapper methods, the structuf@+2) pn(W) =W 25,

parameters of SVM (i.e., the regularization and kernel PaIA:. 1 is a linear function ofv and has the same form as

meters) may need to be re-estimated using cross-validattnr?n : . ; . .

. . ) ) ” e sample margin defined in SVM using a kernel function.
during the iterations. Also, a linear kernel is usually usegl\.n important difference, however, is that by construction
From our personal communication with the authors, it may, magnitude of each 'element wf in the above margin
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definitionreflectsthe relevance of the corresponding feature
in a learning process. This is not the case in SVM except
when a linear kernel is used, which however can capture only
linear discriminant information. Note that the margin thus
defined requires only information about the neighborhood
of x,,, while no assumption is made about the underlying
data distribution. This means that by local learning we can
transform ararbitrary complex, nonlinear problem into a set
of locally linear problems.

The local linearization of a nonlinear problem allows us
to avoid the computational difficulties of prior work. It also
facilitates the mathematical analysis of our algorithm. The
main problem with the above margin definition, however, is
that the nearest neighbors of a given sample are unknown be- (a)
fore learning. In the presence of thousands of irrelevant fea- 0.25 w
tures, the nearest neighbors defined in the original space can
be completely different from those in the induced space. To
account for the uncertainty in defining local information, we o015k
develop a probabilistic model where the nearest neighbors of
a given sample are treated as latent variables. Following the
principles of the expectation-maximization algorithm [15],
we estimate the margin through taking the expectation of

0.2~

0.05F

Second Feature

pn(W) by averaging out the latent variables: oF .
(2.3)
po(w) = w' (ZieMn P(x;=NM(x,,)|W)|x, — x;| o T
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(b)

= wW'Z,,

whereM,, = {i : 1 < i < Nyy; # yn} Ho = {i :

1l <id< Ny = y’“hi # n}, ,Ilj,(,xi:::'M(X””W)_ aEd Figure1: Fermat's spiral problem. (a) Samples belonging
P(x;=NH(x,)|w) are the probabilities that sampieis the %o classes are distributed in a two-dimensional space,

neares_t miss or hit of,,, respectively. These pr_()babil_itiesrorming a spiral shape. A possible decision boundary is also
are estimated through the standard kernel density esUmaB?&ted If one walks from point A to B along the decision
n;e;hod: boundary, at any given point (say, point C), one obtain a liner
(2.4) problem locally. (b) By projecting the transformed data

P(x;=NM(x,,)|w) = k(HXk" _ Xi!W)_ ,VieM,, , onto the direction specified by, most samples have positive
2jem, k%0 = x5lw) margins.

and
(2.5)
P(x=NH(x,)|w) = E(llxn — Xi|lw) for_mulatlon is given in Eq. (2.3). Itis clea_lr that for the
Zjem E([|%n — X;]lw) splr_al problem, both features are equally |mportant_. By
projecting the transformed da#, onto the feature weight
where k(-) is a kernel function. Specifically, we use thevectorw = [1,1]7, we observe that most samples have
exponential kernek(d) = exp(—d/o), where the kernel positive margins (Fig. 1b). The above arguments generally
width determines the resolution at which the data is localyld for arbitrary nonlinear problems for a wide range of
analyzed. values of kernel width, as long as the local linearity condition
To motivate the above formulation, we consider thie preserved. We will shortly see that the performance of our
well-known Fermat's problem where the two-class samplagorithm is indeed robust against this parameter.
are distributed in a two-dimensional space, forming a spiral After the margins are defined, the problem of learning
shape, asillustrated in Fig. 1a. A possible decision boundégture weights can be directly solved within a margin frame-
is also plotted. If one walks from point A to B alongvork. Two most popular margin formulations are SVM [14]
the decision boundary, at any given point (say, point Gnd logistic regression [16]. Due to the nonnegative con-
one obtains a liner problem locally. One possible lineatraint onw, the SVM formulation represents a large-scale

YVieH, ,
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optimizationproblem,while the problem size can not be relt is interesting to note that though local learning is a highly
duced by transforming it into the dual domain. For compuaenlinear process, in each iteration we deal with a linear
tational convenience, we therefore perform the estimationnmodel.

the logistic regression formulation [16]. In applications with  For fixedz,, (2.6) is a constrained convex optimization
a huge amount of features (e.g., molecular classification), preblem. Due to the nonnegative constraintvonit cannot
expect that most of features are irrelevant. To encourage Iieesolved directly by using a gradient descent method. To
sparseness, one commonly used strategy is tdaddnalty overcome this difficulty, we reformulate the problem slightly
of w to an objective function. Examples, where this straas:

egy has been shown successful, include LASSO for regréxs8)

sion [17], £,-SVM [11] and ¥, regularized logistic regres- N

sion [12] for classification. Accomplishing sparse solutionsmin Z log| 1+exp | — Z vaEn(j) +A|v|Z,

by introducing the; penalty has been theoretically justified ~ n=1 j

(see, for example, [18] and the_referenc_es t_hereln). W'th Wﬁs obtaining an unconstrained optimization problem. It is
¢; penalty, we obtain the following optimization problem:

easy to show that at the optimum solution we have =
vﬁ,l < j < J. The solution ofv can be readily found

N
2.6) min Z log (1 + exp(_WTin)) + Allwl1 through gradient descent with a simple update rule:
' v n=1 (29)
s.t. WZO7 N exp(— -’U'Qin .
VHU<MZ oo VTLLC | P
where) is a parameter that controls the penalty strength and o L exn(= 32502 (7))

gonsequently the sparseness of thg solution. The optimig®eres is the Hadamard operator, ands the learning rate
tion formulation (2.6) can also be written as: determined by the standard line search. Note that the ob-
jective function of (2.8) is no longer a convex function, and
. = thus a gradient descent method may find a local minimizer
(2.7) iEa ngl Og( +oxp(—wz )) or a saddle point. The following theorem shows that if the
st |w|i<B,w>0. initial point is properly selected, the solution obtained when
the gradient vanishes is the global minimizer.
For every solutionw to (2.6) found using some particular . .
value of \, there is a corresponding value gfin (2.7) THEO@EMZGL Let_f(x) be ahstrlctly_convex functTlon_of
that will give the same solution. The optimization proble 26 a2nTg(:;) og Fy), !V (e):ret%r - [j‘rﬂ.’ o ’tyJ}I _I
of (2.7) has an interesting interpretation. If we adopt &> ! ;] 52|x=x+ = 0, thenx™ is not a loca

classification rule where,, is correctly classified if and only minimizer, .bUt a.saddle pointor a glopal m|n|m|zergc§§<).
if margin p,(w) > 0, then ZN I(pn(w) < 0) is the Moreover, ifx™ is found through gradient descent with an
n = ’ n=1 n

L . (0) . .
leave-one-out (LOO) classification error induced by usifigtial point ;7 # 0,1 < j < J, thenx™ is the global

w, whereI(-) is the indicator function. Since the logistidhinimizer ofg(x).

loss funct_ion is an upper bound of the misclassificatigfyof Due to the space limitation, we only present the
loss function, up to a difference of a constant factor, (2.d}etch of the proof. The proof is done by examining the
can be interpreted as finding a weighted feature spacepagperties of Hessian matrices. It can be proved that a given
Fhat the upper t.)oun.d.of. the LOO classmcatlon. error in ﬂ%ﬁationary point+ is a global minimizer ofy(x) if Hessian
induced space is minimized. Hence, the algorithm has typyix H(x*) is positive semidefinite, and a saddle point
levels of r_egu_larlzatlon, ie., the implicit LOO z_ind explicihtherwise. If stationary poink* is found with an initial

£1 regularization. We will shortly see that this proper%oinm@) £0,1 < j < J, thenx* is the global minimizer

together with the convergence property, 1eads to SUpeligh, . y'since the saddle points are not reachable via gradient
performance of the algorithm in the presence of copioysy .t

irrelevant features, and that due to the LOO regularization,

the performance of the algorithm is largely insensitive toFer fixedz,,, the objective function of (2.6) is a strictly con-

specific choice of. vex function ofw. Theorem 2.1 assures that in each itera-
Sincez,, implicitly depends orw through the probabil- tion, via gradient descent, reaching the global optimum so-

ities P(x;=NH(x,)|w) and P(x; = NM(x,)|w), we use a lution of w is guaranteed. After the feature weighting vector

fixed-point recursion method to solve fer. In each itera- is found, the pairwise distances among data samples are re-

tion, z,, is first computed by using the previous estimate ef/aluated using the updated feature weights, and the prob-

w, which is then updated by solving the optimization protabilities P(x;=NM(x,,)|w) and P(x,;=NH(x,,)|w) are re-

lem of (2.6). The iterations are carried out until convergenammputed using the newly obtained pairwise distances. The

N
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Feature Selection Algorithm

Input: DataD = {(x,,y.)}._,, stop criteriord, kernel
width o, regularization parameteps

(1) Initialization: setw(®) = 1,¢ = 0;
(2) Repeat
(3) Computed(x,,, x;|w"), Vx,,, x; € D;
(4) CalculateP(x;=NM(x,,)|w(")) and
P(x; = NH(x,)|w®) asin (2.4) and (2.5);
(5) Solve forv as in (2.9);
©) wi™ = (1)1 <5< J;
(7) t=t+1,;
(8) Until |[w®Y —w®| <6
Output: w = w(®),

without proof, which can be found for example in [19].

DEFINITION 2.1. Leti/ be a subset of a normed spage
and|| - || is a norm defined ir€. An operatorl’ : U — Z

is called a contraction operator if there exists a constant
g € [0,1) such that||T(x) — T'(y)|| < q|l= — y|| for every
x,y € U. qis called the contraction number @f.

DEFINITION 2.2. An element of a normed spageis called
afixed pointofl : U — Zif T(z) = x.

THEOREM2.3. (RXED POINT THEOREM) LetT be acon-
traction operator mapping a complete sub&etf a normed
spaceZ into itself. Then the sequence generated@s') =

T(z®), t = 0,1,2,---, with arbitrary z(®) € U, con-
verges to the unique fixed point of 7. Moreover, the fol-

lowing estimation error bounds hold:

Figure2: Pseudo-code of the proposed algorithm. la® — ¥ < { ||z — 2O,

and [z2® — 2%| < 1%qu(t) — =D

two steps are ite_:rate(_j until convergence. The ir_nplemen,f%ot (of Theorem 2.2): The gist of the proof is to identify
tion of the algorithm is very simple. Itis coded in Matlaly ¢onraction operator for the algorithm, and make sure that

with less than one hundred lines. Except for the standard §g conditions of Theorem 2.3 are met. To this end, we define
ear search, no other built-in Matlab functions are used. Tpe_ {p:p = [P(xi=NM(x,)|w), P(x;=NH(x,)|w)]}

pseudo-code of the algorithm is presented in Fig. 2.

(2.10)

and specify the first step of the algorithm in a functional form

. . asT1 : RZ, — P, whereT1(w) = p, and the second
2.1 Convergence AnalysisThis section presents the con; N

) ) _ stepasl2 : P — RZ,, whereT2(p) = w. HereRY, =
vergence an_aIyS|s of_ our algorithm. We begin by StUdqu%v we R w s 02}0 Then, the aigarithm can bez\?vritten
its asymptotic behavior. I& — +oo, for all wlz 0 and asv;/(f) - (T’2 o_Tl)&w@*l)') & T} wiors (o)
i€M,, we have lim P(x;=NM(xs)|w) = M since - denotes functional composition afit: RZ, — RZ,. Since

lim k(d) = 1. On the other hand, & — 0, by assum- Réo is a closed subset of normed sp&é and complete,
fnzli?]oat for allx,, d(xn, xi|w) # d(x,%;|w) if i £ j T is an operator mapping complete subgel, into itself.
. N T ”’Next, note that for — +o0, the algorithm converges with
we havelim P(x; = NM(x,,)|w) = 1 if d(x,,x;|w) = .
o—0 . o i one step. We havelim |T(wy,0) — T'(wz,0)|| = 0,
min d(x,,x;|w) and0 otherwise. Similar asymptotic be- 0400 ) S
JEM: for everyw,wy € Rio. Therefore, in the limit,T" is a

havior holds forP(x;=NH(x,)|w). From the above analy-¢ontraction operator with contraction constant 0, that is,
sis, it follows that forc — oo the algorithm converges t0 11, ¢(5) = 0. Therefore, for every > 0, there existe™*

a unique solution in one iteration, siné¥x;=NM(x,,)|w) U—”ﬁoh h . , h
and P(x;=NH(x,)|w) are constants for any initial feature®Uch thau(o) < e whenevew > o*. By setfings < 1, the

weights. On the other hand, for — 0, rarely do we em- resulting operatof” is a contraction operator. By the Banach
pirically observe that the algorithm converges. This suggelted Point theorem, our algorithm converges to a unique

that the convergence behavior and convergence rate of (figd Point provided the kernel width is properly selected.
algorithm are fully controlled by the kernel width, which isThe above arguments establish the convergence theorem of

formally stated in the following theorem. the algorithm.

THEOREM2.2. For the proposed feature selection algo- The theorem ensures the convergence of the algorithm
rithm, there exists* such thatim;_. ;. [|w® —w (1| = if the kernel width is properly selected. This is a very loose

0 whenever > o*. Moreover, for a fixedr > o*, the al- condition, as our empirical results show that the algorithm
gorithm converges to a unique solution for any nonnegatigévays converges for a sufficiently large kernel width. Also,
initial feature weightsw(©). the error bound in (2.10) tells us that the smaller the contrac-
tion number, the tighter the error bound and hence the faster
We use the Banach fixed point theorem to prove tkiee convergence rate. Our experiments suggest that a larger
convergence theorem. We first state the fixed point theorkemel width yields a faster convergence. Unlike many other
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machindearningalgorithms (e.g., neural networks), the cor8  Experiments

vergence and the solution of our algorithm are not affect¢fle effectiveness of the proposed algorithm is empirically
by the initial value if the kernel width is fixed. Even if the,gjidated on eight synthetic and real-world datasets. We
initial feature weights were wrongly selected (e.g., inveSiemonstrate that our algorithm is capable of handling prob-
gators have no or false prior), and the algorithm started cofdins with an extremely large feature dimensionality.
puting erroneous nearest misses and hits for each sample, the
theorem assures that the algorithm will eventually convergg Spiral Problem We perform a simulation study on
to a unique solution. This property is experimentally demogp, artificially generated dataset, carefully designed to ver-
strated in Sec. 3.1 (see Fig. 4). ify various important properties of the algorithm. This ex-
ample, also called Fermat’s spiral problem, is a binary clas-
2.2 Computational Complexity and Fast Implementa- sification problem. Each class has0 samples distrib-
tion The main complexity of the algorithm comes fromyeq in a two-dimensional space, forming a spiral shape,
computing pairwise distances between data samples. ThiSijlustrated in Fig. 1. In addition to the first two rel-
the computational complexity of the algorithm®T'N>J), evant features, each sample is represented by a varying
whereT' is the number of iterations] is the feature dimen- nymper of irrelevant features, where this number is set to
sionality, andN is the number of data samples. We empiri{-507 100, 500, 1000, 5000, 10000, 20000, 30000}. The num-
cally find that our algorithm usually converges within a feWer30000 exceeds by far the amount of features experienced
iterations (see Fig. 3). Hence, its computational complexjty many scientific fields. For example, human beings have
is comparable to that of RELIEF. A close look at the updaggout25000 genes, and hence nearly all gene expression mi-
equation ofv, given by (2.9), allows us to further reduc@yoarray platforms have less than000 probes. The added
complexity. If some elements of are very close t0 zerojrrelevant features are independently sampled from the zero-
(say less tham0~*), the corresponding features can be eliMnean and unit-variance Gaussian distribution. Our task is to
inated from further consideration with a negligible impagdentify the first two relevant features. Note that only if these
on the subsequent iterations, thus providing a built-in megfy, features are used simultaneously can the two classes of
anism for automatically removing irrelevant features duri%mples be well separated. For most existing feature selec-

learning. tion algorithms, identifying the two relevant features in this
) ) example is an extremely challenging task.
2.3 Feature Selection for Multiclass ProblemsSome ex- Fig. 3 illustrates the dynamics of our algorithm

isting feature selection algorithms, originally designed f%rformed on the spiral data with0000 irrelevant fea-
binary problems, can be naturally extended to multiclass sgfes. The algorithm iteratively refines the estimates of
tings, while for others the extension is not straightforwarq,eight vectorw and probabilitiesP (x;=NH(x,,)|w) and

In particular, for both embedded and wrapper methods, tp@xi:NM(xnﬂw) until convergence. Each sample is col-
extension largely depends on the capability of a classifiieq according to its probability of being the nearest miss
to handle multiclass problems. In many cases, a multiclggshit of a given sample indicated by a black cross. We ob-
problem is first decomposed into several binary ones, afifve that, with a uniform initial feature weights, the nearest
then feature selection is performed for each binary prObleﬁéighbors defined in the original feature space can be com-
This strategy further increases the computational burdenyptely different from the true ones. The plot also shows that

embedded and wrapper methods. Our algorithm does f! aigorithm converges to a perfect solution in just three it-
suffer from this problem. A natural extension of the margigyations.

defined in (2.1) to multiclass problems is [20]: Fig. 4 presents the feature weights that our algorithm
(2.11) learns on the spiral data for a varying number of irrelevant
pn(W) features. The results are obtained for parametemnd

= {Ceg}gyn}d(xmNM(C)(Xn)\W) — d(xn, NH(xp) W), ) respectively set t and 1, while the same solution
— min  d(x,, x;|w) — d(x,, NH, |w) , holds for a wide range of other values of kernel widths and
x;ED\Dy,, regularization parameters (insensitivity to a specific choice
of these parameters will be discussed shortly). Fig. 4 shows

that our algorithm performs remarkably well over a wide

range of feature-dimensionality values that are of practical

where) is the set of class labels, NK(x,,) is the nearest interest, with .thesame parameters. We also_ note that.
neighbor ofx, from classc, and D. is a subset ofp the feature weights learned across all feature-dimensionality

feature selection algorithm for multiclass problems by usidgi€orem 2.2, which can be explained as follows. Suppose
the margin defined in (2.11) is straightforward. that we have two spiral datasets havib@O0 and 10000
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Figure 3: The algorithm iteratively refines the estimates of weight veetoand probabilitiesP (x;=NH(x,)|w) and
P(x;=NM(x,,)|w) until convergence. The result is obtained on the spiral dataMif0 irrelevant features. Each sample

is colored according to its probability of being the nearest miss or hit of a given sample indicated by a black cross. The plot
shows that the algorithm converges to a perfect solution in just three iterations.

irrelevant features, respectively. Also, suppose that we Our algorithm is computationally very efficient. Fig. 5
first perform the algorithm on the second dataset, and tehbws the CPU time it takes the algorithm to perform feature
after some iterations the algorithm find®00 irrelevant selection on the spiral dataset with different numbers of irrel-
features whose weights are very close to zero. Then, bettant features. The computer setting is Pentium4 2.80GHz
problems are almost identical, except that the first problemth 2.00GB RAM. The stopping criterion & = 0.01. As
has a uniform initial point (see line 1 of Fig. 2) and thean be seen, the algorithm runs for oBlyps for the prob-
second problem has a non-uniform initial point. By Theorelam with 100 features 37s for 1000 features, and72s for
2.2, the algorithm converges to the same solution for bab000 features. The computational complexity is linear with
problems. Of course, due to the randomness of irrelevaaspect to the feature dimensionality. To the best of our
features and the finite number of iteration steps, the tknowledge, no wrapper method has computational complex-
solutions are slightly different. For example, in Fig. 4, fdty even close to ours. Depending on the classifier used in
the dataset witt80000 features, the algorithm selects oneearch for relevant features, it may take several hours for a
false feature as relevant, in addition to the two relevant onesapper method to analyze the same dataset with Til9
However, the weight associated with the selected irrelevéeatures, and yet there is no guarantee that the optimal solu-
feature is much smaller than the weights of the two relevdian will be reached, due to heuristic search.
ones. The kernel widtho and the regularization parameter
One may be interested to know how many irrelevaate two input parameters of the algorithm. Alternatively,
features should be added to the dataset before the algorithay can be estimated through cross validation on training
fails. We conduct an experiment where the number déta. It is well-known that cross validation may produce
irrelevant features are continuously increased. We find tlaat estimate with a large variance. Fortunately, this does not
the algorithm attains the almost identical solutions to thopese a serious concern for our algorithm. In Figs. 6 and 7, we
presented in Fig. 4 until 100000 irrelevant features apiot the feature weights learned with different kernel widths
injected into the dataset. The algorithm fails simply becaused regularization parameters. The algorithm performs well
the computer is out of memory. This result suggests that @wer a wide range of parameter values, yielding always the
algorithm is capable of handling an extremely large numbargest weights for the first two relevant features, while the
of irrelevant features, far beyond that needed in most dabther weights are significantly smaller. This suggests that the
analysis settings one may currently encounter. This resulaigorithm’s performance is largely insensitive to a specific
very encouraging, and deserves further theoretical analyseisoice of parametersand), which makes parameter tuning
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Figure4: Feature weights learned on the spiral dataset with different numbers of irrelevant features, rangif@ ftoom

30000. The y-axis represents the values of feature weights, and the x-axis is the number of features, where the first two are
always fixed to represent the two relevant features. Zero-valued feature weights indicate that the corresponding features are
not relevant. The feature weights learned across all dimensionality are almost identical, for the same input parameters.
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Figure8: Convergence analysis of our algorithm, performing
Figure5: The run-times of our algorithm on the spiral datas@f the spiral dataset wits000 irrelevant features, fok = 1
with a varying number of irrelevant features, ranging froﬁﬂn‘%g € {0(%91130-0570-5’ 1,10,50}. The plots presertt =
50 to 30000. The plot demonstrates linear complexity witf{ W'’ — W'~ ||z as a function of the number of iteration
respect to the feature dimensionality. steps.

Table 1: Summary of UCI datasets. The number of artificiai@y be irrelevant or weakly relevant, and hence may receive
irrelevant features added to the original ones is indicatedZ@0 Weights in our algorithm. Since the true relevance of

the parentheses. the original features is unknown, to verify that our algorithm
i does indeed discover all relevant features, we compare the
Dataset  Train Test Feature classification performance of SVM (with the RBF kernel)
twonorm _ 400 7000 20(5000) in two cases: (1) when only the original features are used
waveform 400 4600 21(5000) (i.e., without 5000 useless features), and (2) when the fea-
banana 468 300  2(5000) tures selected by our algorithm are used. It is well known
thyroid 140 75  5(5000) that SVM is very robust against noise, and that the presence
diabetics 468 300  8(5000) of a few irrelevant features in the original feature sets should
heart 170 100  13(5000) not significantly affect its performance. Hence, the classifi-
splice 400 2175 60(5000) cation performance of SVM obtained in the first case should

be very close to that of SVM performed on the optimum fea-

ture subsets that are unknown to us a priori. Essentially, we
andhencehe implementation of our algorithm easy, even fare comparing our algorithm with an optimal feature selec-
researchers outside of the machine learning community. tion algorithm. If SVM performs similarly in both cases, we

Fig. 8 presents the convergence analysis of our atay conclude that our algorithm achieves close-to-optimum

gorithm on the spiral dataset with000 irrelevant fea- solutions.
tures, for A = 1 and different kernel widthss € The structural parameters of SVM are estimated through
{0.01,0.05,0.5,1,10,50}. We observe that the algorithmten-fold cross validation on training data. To further demon-
converges for a wide range efvalues, and that in generaktrate that the performance of our algorithm is largely insen-
a larger kernel width yields a faster convergence. These siive to a specific choice of the input parameters, we use
sults validate our theoretical convergence analysis, preseritehel widtho = 2 and regularization parametar= 1 for
in Sec. 2.1. all seven UCI datasets. The stopping criteriod is- 0.01.

The algorithm is ruri0 times for each dataset. In each run,
3.2 Experiments on UCI DatasetsThis section presentsa dataset is randomly partitioned into training and test sets.
our feature selection results on seven benchmark UTHe averaged classification errors and standard deviations
datasets [21]. The data information is summarized in TaF SVM are reported in Table 2. The false discovery rate
ble 1. For each dataset, the set of original features is a(igPR), defined as the ratio between the number of artificially
mented by5000 artificially generated irrelevant featuresadded, irrelevant features with non-zero weights and the total
The irrelevant features are independently sampled froom@mber of irrelevant features (i.e., 5000), is reported in Ta-
Gaussian distribution with zero-mean and unit-variance. ble 2. Feature weights, learned in one sample trial, for each
should be noted that some features in the original feature s#tseven datasets, are shown in Fig. 9. From these experi-
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Table2: Classification errors on test data and their standard deviatiohsf(SVM performed on the seven UCI datasets
contaminated by 5000 useless features. The second column records the performance of SVM performed on the features
selected by our algorithm, and the third column is the results of SVM obtained by using the original features. The last two
columns present the false discovery rates (FDR) and CPU times, and the last row presents the averaged FDR and CPU time.

SVM SVM FDR CPU time

Dataset  (selected features) (original features) (second per run)
twonorm 2.6(0.2) 2.6(0.2) 0/1000 162
waveform 11.7(0.9) 10.1(0.6) 1.6/1000 157
banana 10.9(0.5) 10.9(0.5) 0.1/1000 97
diabetics 23.7(1.1) 24.9(1.3) 1.8/1000 267
thyroid 5.3(2.4) 4.7(2.1) 0.1/1000 13

heart 17.2(4.2) 18.4(4.0) 0.4/1000 73

splice 12.9(2.1) 14.4(0.9) 1.0/1000 330
Average / / 0.7/1000 157

mentalresults we observe the following: though, for clarity, we have mainly considered only binary

(1) From Table 2, we observe that SVM using thproblems, we have shown that the extension of our algo-
features identified by our algorithm performs similarly atithm to multiclass settings is straightforward. Unlike most
even slightly better than SVM using the original featureprior work whose implementation demands an expertise in
It should be emphasized that the results are obtained in tii@chine learning, ours is very easy to implement. As with
presence of a huge number of irrelevant features, witheabst machine learning algorithms, ours has two user defined
estimating the optimal input parameters. parameters that can alternatively be estimated through cross

(2) In addition to successfully identifying relevant feavalidation. We have experimentally shown that the perfor-
tures, our algorithm performs remarkably well in removingnance of our algorithm is largely insensitive to a wide range
irrelevant ones. The false discovery rate, averaged over seveEwvalues for these two parameters, which makes parameter
datasets, is onl9.7/1000. The feature weights learned ortiuning and hence the implementation of our algorithm easy
one realization of each dataset are plotted in Fig. 9. For easeeal applications.
of presentation, the maximum value of each feature weight Due to its high accuracy, low complexity, and simple im-
vector is normalized td. For some datasets (e.panana plementation, we believe that the proposed framework may
andthyroid), the weights of the false positives are very smatpold major potential for eventually solving the feature selec-
and we experimentally find that it is possible to achievetian problem. Even in the current formulation, our algorithm
perfect solution by slightly increasing the regularization p& already capable of handling most feature selection prob-
rameter. lems one encounters in scientific research. Considering the

(3) The averaged CPU times of seven datasets are pnereased demand for analyzing data with a large number of
sented in Table 2. Our algorithm is capable of processifegatures in many research fields, we expect that the work pre-
thousands of features within a few minutes on personal cogented in this paper will make a broad impact.
puters.
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