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In the supplemental material, we present the proof that our four alternative algo-
rithms for solving the LP, given by (5)–(6) and (9)–(10) in the paper, converge to a
globally optimal solution. This is formally stated in Theorem 1.

Theorem 1. Let f(v) be a strictly convex (or concave) function of v ∈ RK and
g(w) = f(v), where w = [w1, . . . , wk, . . . , wK ]T = [v2

1 , . . . , v
2
k, . . . , v

2
K ]T. If the

point w∗ is found through gradient descent (or gradient ascent), ∂g
∂w |w=w∗ = 0, with

an initial value w(0)
k 6= 0, for k = 1, . . . ,K, then w∗ is a global minimizer (or maxi-

mizer) of g(w).

The key idea of the proof is to show that our formulations in (4) and (8) in the paper
are convex and concave, respectively. If this holds, then the gradient descent in (5)-(6),
and the gradient ascent in (9)-(10) in the paper will each provide an optimal solution.
To this end, we will use the following Theorems 2–4, and Lemma 1 from Chapter 3 of
the book “ Convex Optimization and Euclidean Distance Geometry” By Jon Dattorro,
2005.

Theorem 2. Given functions g : RK → R and h : RN → RK , their composition
f = g(h) : RN → R is convex if

– g is convex non-decreasing monotonic, and h is convex; or
– g is convex non-increasing monotonic, and h is concave;

and composite function f is concave if

– g is concave non-decreasing monotonic, and h is concave;
– g is concave non-increasing monotonic, and h is convex;

where∞ (−∞) is assigned to convex (concave) g when evaluated outside its domain.
Convexity (concavity) of any g is preserved when h is affine.

Lemma 1. The following properties follow from Theorem 2:

1. f is convex⇔−f is concave,
2. minimization of f ⇔ maximization of −f ,
3. f is positive and convex⇔ 1/f is positive and concave,
4. minimization of f ⇔ maximization of 1/f ,
5. f is convex (concave)⇒ exp(f) and f2 are convex (concave)
6. f is positive and convex (concave)⇒ log(f) and

√
f are convex (concave)
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Theorem 3. A norm on RN is a convex function f : RN → R, satisfying for x, y ∈ RN

and α ∈ R the following:

1. f(x) ≥ 0 (f(x) = 0⇔ x = 0) (non-negativity)
2. f(x+ y) ≤ f(x) + f(y) (triangle inequality)
3. f(αx) = |α|f(x) (non-negative homogeneity)

Theorem 4. Non-negatively weighted sum of (strictly) convex (concave) functions re-
mains (strictly) convex (concave)

We now prove that our formulations in (4) and (7) in the paper are convex and
concave, respectively. Define an auxiliary variable, z, as

z =

{
δm − δh , if δm − δh > 0
0 , otherwise .

The original LP formulation, given by (2) in the paper, reads

argmax
w

zTw, s.t. w ≥ 0, ||w||n ≤ γ ,

where w ≥ 0 means that all elements of vector w are nonnegative. This is a concave
optimization problem, where ‖ · ‖n is the `n norm, n ∈ {1, 2}. Replacing wk with v2

k,
k = 1, 2, . . . , as described in the paper, gives the following formulation:

argmax
v

∑
v2

kzk, s.t. ‖v‖22n ≤ γ, n ∈ {1, 2} .

Using the diagonal matrix Z = diag(z), and β =
√
γ, the above formulation can be

re-written as
argmax

v
vTZv, s.t. ‖v‖2n ≤ β, n ∈ {1, 2} .

This is a standard concave QCQP problem, since zk ∈ R+, k = 1, 2, . . . . It follows that
the substitution wk = v2

k, k = 1, 2, . . . , does not change the concavity of the original
LP formulation, given by (2) in the paper. Based on Lemma 1 and Theorem 4, it also
follows that the logistic regression formulations

argmin
v

log[1 + exp(−vTZv)] + λ‖v‖22n, n ∈ {1, 2} .

are convex.

Using the same auxiliary variable, z, the alternative LP formulation, given by (7) in
the paper, becomes:

argmax
w

zTw, s.t. w ≥ 0, ‖w‖n = γ

which can be reformulated as:

argmax
v

vTZv, s.t. ‖v‖2n = β
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Let’s now consider the function h : RK → RK defined by h(v) = v/‖v‖2n. From
Theorem 3 and Lemma 1, h is a concave function. From Theorem 2 the following
formulation

argmax
v

vTZv

‖v‖22n

is concave. This completes the proof.


