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Abstract: We propose a novel automatic target recognition (ATR) system for classification

of three types of ground vehicles in the MSTAR public release database. First, MSTAR image

chips are represented as fine and raw feature vectors, where raw features compensate for the

target pose estimation error that corrupts fine image features. Then, the chips are classified by

using the adaptive boosting (AdaBoost) algorithm with the radial basis function (RBF) network

as the base learner. Since the RBF network is a binary classifier, we decompose our multiclass

problem into a set of binary ones through the error-correcting output codes (ECOC) method,

specifying a dictionary of code words for the set of three possible classes. AdaBoost combines

the classification results of the RBF network for each binary problem into a code word, which is

then “decoded” as one of the code words (i.e., ground-vehicle classes) in the specified dictionary.

Along with classification, within the AdaBoost framework, we also conduct efficient fusion of the

fine and raw image-feature vectors. The results of large-scale experiments demonstrate that our

ATR scheme outperforms the state-of-the-art systems reported in the literature.
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1 Introduction

Radar systems are important sensors due to their all weather, day/night, long standoff capabil-

ity. Along with the development of radar technologies, as well as with increasing demands for

target identification in radar applications, automatic target recognition (ATR) using synthetic

aperture radar (SAR) has become an active research area. The latest theoretical developments

in classification methodologies quickly find applications in the SAR ATR design. Joining these

efforts, in this paper, we present a new ATR scheme based on the adaptive boosting (AdaBoost)

algorithm [1], which yields the best classification results reported to date in the literature on the

MSTAR (Moving and Stationary Target Acquisition and Recognition) public release database.

The MSTAR data is a standard dataset in the SAR ATR community, allowing researchers to

fairly test and compare their ATR algorithms. The literature abounds with reports on systems

where the MSTAR database is used for validation. Among these systems, one most commonly

used approach is the template based method [2, 3, 4]. In this method, for each class, a set of filters

(templates) is generated to represent target signatures around different aspect angles; then, a

given target is identified as the class whose filters give the “best” output. The template based

method, however, is computationally inefficient. Here, high classification accuracy conditions

the create of large sets of filters for each class, which results in extensive computation both in

the training and testing stages. In addition, large memory-storage requirements, inherent to the

method, are a major hindrance for its implementation in systems subject to stringent real-time

constraints.

A more appealing approach is to design a classifier, which can be represented by a set of

parameters. For example, in [5], the authors use the neural network for their ATR system. Its

parameters can be easily estimated through optimization of a specified cost function, as for ex-

ample in the back-propagation algorithm. However, the neural network is prone to overfitting.

Moreover, after training of the neural network, its parameter estimates are not guaranteed to be

a global-minimum solution of a given optimization function. Recently developed large-margin

based algorithms have been reported to successfully alleviate the overfitting problem, while at

the same time maintaining the classification efficiency. Two typical examples of the margin-based

classifiers are the support vector machine (SVM) [6] and AdaBoost [1]. Interestingly, SVM-based

ATR systems (e.g., [7, 8]) perform only slightly better than the template based approaches. Con-

cerning AdaBoost, the literature reports success of many AdaBoost-based systems for pattern

classification (e.g., [9, 10]). Nevertheless, to our knowledge, it has not yet gained appropriate

attention in the SAR ATR community.

In this paper, we propose a novel classification scheme for the MSTAR data using the
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AdaBoost algorithm. The most important property of AdaBoost is its ability to find a highly

accurate ensemble classifier by combining a set of moderately accurate member classifiers, called

hypotheses or base learners. AdaBoost guarantees an exponential decrease of an upper bound

of the training error with the increase in the number of hypotheses, subject to a mild con-

straint that each base hypothesis achieves an error rate less than 0.5. Moreover, both theoretical

and empirical results demonstrate that AdaBoost has an excellent generalization performance

[11, 12].

AdaBoost is originally designed for a binary classification problem. To categorize multiple

types of vehicles in the MSTAR database, we first employ the error-correcting output codes

(ECOC) method [13], to decompose the multiclass problem into a set of binary sub-problems.

We refer to this decomposition as coding scheme, where each class is labeled with a code word.

Then, for each binary problem, we build a binary classifier by using AdaBoost with the radial

basis function (RBF) network [14] as the base learner. When presented an unseen sample, each

binary classifier produces a bit in a code word, which is then classified measuring the distance

of that code word from the code words in the dictionary specified by the coding scheme. The

experimental results, reported herein, show that the outlined classification system, without any

preprocessing of the MSTAR data, achieves comparable performance to that of systems utilizing

sophisticated pose estimators. This means that our SAR ATR system can be implemented

for the applications with stringent real-time constraints, where estimation of target poses is

computationally prohibitive.

The performance of the outlined system can be further improved by accounting for the

randomly distributed poses of SAR image chips, ranging from 0◦ to 360◦. We propose a pose

estimation algorithm, whereby all targets are rotated to the same aspect angle. Although our

pose estimation algorithm is quite accurate, it may fail when a target is severely shadowed

and/or distorted. To compensate for the occasional pose estimation error, we represent MSTAR

images by two sets of image features. The first set, called raw features, represent pixel values

of the original image chips that are not pre-processed. The second set of features, called fine

features, comprises magnitudes of two-dimensional DFT coefficients computed on the aligned

image chips, which are rotated to the same aspect angle by the pose estimator. Here, it is

necessary to design an efficient data fusion method for combining the two highly correlated

feature sets. Again, AdaBoost lends itself as a natural solution. Essentially, we utilize AdaBoost

to choose a “better” feature set in each training iteration, such that the final ensemble classifier

is optimized over the two feature sets. The resulting classification system, which incorporates

the information from the pose estimator, can correctly classify 1360 out of 1365 testing samples,

which, to our knowledge, is the best result ever reported in the literature.

3



The paper is organized as follows. In Section 2, we present our data preprocessing, including

the pose estimation and image-feature representation. In Section 3, we give a brief review of

AdaBoost and the RBF network, as well as discuss how to use AdaBoost for feature fusion and

ultimate multiclass target recognition. Experimental results on the MSTAR data are presented

and discussed in Section 4. We conclude with our remarks on the proposed system in Section 5.

2 Data Preprocessing

2.1 Pose Estimation

Targets in the MSTAR data have randomly distributed poses, ranging from 0◦ to 360◦. Elim-

inating variations in target poses can significantly reduce the classification error. However,

accomplishing an accurate estimation of poses is a challenging task. In general, it can be con-

sidered as a regression problem, where a pose estimator maps a high dimensional data sample

(in our case, a 128×128 image chip) to a real value between 0 and 360. In comparison to the

classification problem, where only one label from a finite label space is assigned to each sam-

ple, the regression problem is usually considered more difficult. Fortunately, available a priori

knowledge can be exploited to mitigate the difficulty of the pose estimation problem.

In this paper, we assume that the MSTAR data is rectangular shaped, such that the target

pose is uniquely determined by the longer edge. The angle between the longer edge and the

horizontal image axis is defined as target pose. Therefore, by detecting the longer edge of a

given target, we can immediately compute its pose; however, with the uncertainty of 180◦ with

respect to the referent aspect angle, since the edge detection does not provide the information on

the orientation of the target. That is, after the target is rotated, for example, to be horizontally

aligned with the image boundaries, it is not known whether the target heads right or left.

Unlike in optical images, targets in SAR images do not have clear edges. To detect edges,

it is first necessary to segment targets from noisy background, and then detect edges of the

segmented targets. In Figure 1, we present a block-diagram of our edge detection procedure.

Since the radar reflection varies from chip to chip, we first equalize the intensity of the image

to be in the interval from 0 to 1, by using the standard histogram equalization method [15].

Histogram equalization modifies the dynamic range and contrast of an image by employing a

monotonic, non-linear mapping which re-assigns the intensity values of pixels in the input image,

such that the output image contains a uniform distribution of intensities. Then, to the equalized

image chip, we apply a mean filter, which reduces the image noise level. The “smoothed” image

is then roughly segmented with a predefined threshold θ1. As output, we obtain a roughly
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segmented target with pixel values larger than θ1. Next, the median of this target is calculated.

The median, denoted as θ2, is used as a threshold for the subsequent fine-target segmentation.

From our experiments, the median is more appropriate as a threshold than the mean of target

pixel values, because the mean can be strongly influenced by extremely high pixel values, larger

than θ1, that are usually noise artifacts. After the fine-target segmentation, target edges are

detected by using the standard Sobel filter [15], and then dilated with a d2×d2 box. In Figure

2, we depict an example of the outlined edge-detection procedure for a T72 target. In our

experiments, we set the parameters to the following values: θ1 = 0.8 and d2 = 2.

The above algorithm poorly detects straight edges for majority of the chips. To alleviate this

problem, we perform an exhaustive target-pose search over different pose angles. Thus, for each

pose angle α, we first draw a rectangle in α direction, such that the sides of the rectangle are

tangent to the detected target contour, as depicted in Figure 3. Here, α is the angle between

the longer side of the rectangle and the horizontal image axis, as illustrated in Figure 3. Then,

we dilate the sides of the rectangle to be d2 pixels wide. Next, along the two longer sides of

the rectangle, we compute the number of pixels that belong to both the target contour and the

rectangle sides, and find the maximum of the two numbers. The maximum number of overlapped

pixels is recorded as the edge weight in α direction, w(α). This procedure is iterated, rotating

the tangent rectangle with a rotation step ∆α, until the entire interval [0◦, 180◦] is covered. Since

we assume that targets have a rectangular shape, there is no need to conduct search for angles

greater than 180◦. The angle α∗, characterized by the largest edge weight, α∗ = arg maxα w(α),

is selected as the target-pose estimate.

In our experiments, we set ∆α = 5◦. To compute the pose estimation error we determine

the ground truth by human inspection. For majority of the chips, the pose estimation error is

within ±5◦. However, the method fails in some cases, where the longer target edge is shadowed

or significantly distorted, as illustrated in Figure 4. In these cases, our algorithm estimates the

angle of the shorter target edge as α∗.

To identify potential outliers, we test each estimate against the following two criteria: (1) α∗

is approximately 180◦, and (2) w(α∗) is smaller than a certain threshold. If neither is true then

the pose estimate is equal to α∗. Otherwise, if the outcome of either of these two tests is positive,

we check yet another criterion: if the target length, measured along α∗ direction, is smaller than

the target width, measured along the direction perpendicular to α∗ (see Figure 3). If the last

test is negative then we consider the pose estimate equal to α∗. If the last test is positive then

the pose estimate is equal to the angle perpendicular to α∗. In Figure 4, we illustrate the above

outlier-test procedure, where the pose estimates of the vehicles in Figure 4 are corrected to 85◦

and 60◦, respectively – the values that are very close to ground truth.
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To validate our approach, we calculate the pose estimation error with respect to manually

estimated target poses. For three training data sets: T72 sn-132, BMP2 sn-c21, and BTR70

sn-c71, at 17◦ depression angle, the mean of the error is −0.32◦ and the standard deviation of

the error is 6.87◦. For seven test data sets: T72 sn-132/s7/812, BMP2 sn-c21/9566/9563, and

BTR70 sn-c71, at 15◦ depression angle, the mean of the error is 0.07◦ and the standard deviation

of the error is 7.82◦. Note that the standard deviation of the error is slightly greater than our

search step, ∆α=5◦, suggesting that our method is quite reliable.

2.2 Image Representation

In our approach, the MSTAR image chips are represented by two types of image-feature vectors

that we refer to as raw and fine features. The reason for representing images by two feature sets

is to reduce the occasional pose estimation error, as we discuss below.

For representing images by fine features, we use the estimated fine target pose to rotate the

target to the referent aspect angle of 180◦, as illustrated in Figure 5. Then, we crop the image by

selecting an 80×80 window in the center of the image. Next, we compute the two-dimensional

DFT for the cropped image. Finally, the magnitudes of the 2-D DFT coefficients are used as

fine features.

The well-known properties of the 2-D DFT [16] render this transform very suitable for our

purposes. More specifically, note that by using the magnitudes of 2-D DFT coefficients, we

alleviate the problem of target-center variations. The variations in target-center locations can

be viewed as image shifts along x and y coordinates. Since a shift in a 2-D signal does not change

its power spectral density (PSD), the DFT is invariant to these variations. In addition, the DFT

eliminates the inherent 180◦ uncertainty of our pose estimation algorithm, since for any signal

x(n) we have that x(−n) has the same PSD as x(n).

Relying only on the fine-feature set may cause poor classification performance, due to the

limited accuracy of our pose estimation algorithm. To compensate for the pose estimation error

in fine features, we also represent images by raw features. The raw features of a given image are

equal to individual pixel values in an 80×80 window, positioned at the center of the image.

3 Classifier Design

In our approach, each image in the MSTAR database is represented as a feature vector or

pattern. Hence, target identification can be formulated as a machine learning problem, where

unseen patterns are labeled using a trained classifier. As a classifier, in this paper, we use
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AdaBoost. For completeness, below, we first give a brief review of AdaBoost. Then, we describe

how AdaBoost can be used as a multiclass classification method as well as a feature fusion

method.

3.1 AdaBoost

Given an unseen pattern x and a class of hypothesis functions H = {h(x) : x → R}, called weak

learners or base learners, we are interested in finding an ensemble classifier F (x), or f(x), given

by

F (x) =
∑

t

αtht(x) and f(x) =
1

∑

t αt

F (x), (1)

such that a certain cost function C is optimized. By optimizing C, both the combination

coefficients α = [α1, . . . , αT ], and the hypotheses ht(x), t = 1, . . . , T , are learned in the training

process on the given set of training samples D = {(xn, yn)}N
n=1 ∈ X × Y, where X is a pattern

space, and Y is a label space. For the time being, we consider the binary classification problem,

where Y = {−1, +1}.
To find the ensemble function in Eq. (1), several ensemble methods have been developed

recently [1, 17, 18]. Among them, AdaBoost is considered one of the most important recent

developments in the classification methodology [1, 11, 12]. It has been shown that AdaBoost

searches for α and ht(x), t = 1, . . . , T by performing a functional gradient descent procedure on

the following cost function:

C =
1

N

N
∑

n=1

exp(−ynF (xn)), (2)

which is an upper bound of the empirical error Eemp = 1
N

∑N

n=1 I{yn 6= sign(F (xn))}. Here,

I{·} is the indicator function, and sign(·) is the sign operator. Note that the cost function in

Eq. (2) can be expressed as

C =
1

N

N
∑

n=1

exp(−ynf(xn)
∑

t

αt) =
1

N

N
∑

n=1

exp(−ρ(xn)
∑

t

αt), (3)

where the sample margin is defined as ρ(xn) , ynf(xn). This motivated researchers to try to

explain the good generalization properties of AdaBoost by using the margin theory [11, 12], that

is, to relate AdaBoost to those algorithms that directly maximize the classifier margin (or simply

margin) defined as ρ , min1≤n≤N ρ(xn).

The original AdaBoost algorithm [1] uses binary-valued hypotheses, i.e., h(x) : x → {±1},
as the base learners. Schapire and Single [19] extended the original AdaBoost to a more general
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case, where real-valued hypotheses are used. Here, h(x) : x → [−1, +1], where the sign of

h(x) represents the class label assigned to the sample x, and the magnitude |h(x)| represents

the prediction “confidence”. The pseudo-code of the confidence-rated AdaBoost is presented in

Figure 6.

The main idea of AdaBoost is to repeatedly apply the base learning algorithm to the re-

sampled versions of the training data, to produce a collection of hypothesis functions, which are

ultimately combined via a weighted linear vote to form the ensemble classifier in Eq. (1). An

intuitive idea in AdaBoost is that the sample, which are misclassified, get larger weights in the

following iterations (Eq. (17)); hence, in the subsequent training steps, the base learner is forced

to focus on these hard-to-classify cases, which, for instance, are close to the decision boundary.

The weights associated with data patterns at iteration step t form the distribution over patterns,

denoted as d(t).

Initially, the probability of selecting each pattern is set to be uniform, that is, d(1)(n) = 1/N ,

n = 1, . . . , N . In each iteration, t, the base learner is trained on a dataset sampled from the orig-

inal training data based on the distribution d(t)=[d(t)(1), . . . , d(t)(N)]. Then, the performance of

the base learner, measured through the edge, defined as rt ,
∑N

n=1 d(t)(n)ynht(xn), conditions

the value of the combination coefficient, αt, computed as in Eq. (16). Note that if rt is equal to

zero, there is no information that ht contributes to the ensemble classifier; therefore, αt is set to

zero. Usually, it is assumed that H is negative close; that is, if h ∈ H then −h ∈ H. Given this

assumption, we can further assume that the combination coefficients α are non-negative without

loss of generality. If αt happens to be negative in Eq. (16), −h can be used instead of h in Eq.

(1), in order to change the sign of negative rt and αt. After computing αt, the distribution d(t)

is updated, as in Eq. (17). Note that if the sign of ht(xn) agrees with yn, d(t)(n) decreases,

otherwise d(t)(n) increases.

One of the most important properties of AdaBoost is that, under a mild assumption that

weak learners can achieve the error rate less than random guessing (i.e., < 0.5), AdaBoost

exponentially reduces the training error to zero as the number of the combined base hypotheses

increases [19]. Moreover, along with minimizing the cost function C, given by Eq. (2), AdaBoost

effectively maximizes the margin of the resulting ensemble classifier. Consequently, the ensemble

classifier is characterized by small generalization error. In many cases, the generalization error

continues to decrease, with each iteration step, even after the training error reaches zero [11, 12].
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3.2 Base Learner: RBF Network

As the base learner in AdaBoost, we use the RBF network [14]. The RBF net is a multidi-

mensional nonlinear mapping based on the distances between the input vector and predefined

center vectors. Using the same notation as in Section 3.1, the mapping is specified as a weighted

combination of J basis functions:

h(x) =

J
∑

j=1

πjφj(‖x− cj‖p), (4)

where φj(‖x − cj‖p) is a radial basis function (RBF), πj is a weight parameter, and J is a

pre-defined number of RBF centers. Basis functions φj(·) are arbitrary nonlinear functions, ‖·‖p

denotes the p-norm (usually assumed Euclidean), and vectors cj represent RBF centers.

In the literature, one of the most popular RBF nets is the Gaussian RBF network [20]. Here,

the basis functions are specified as the un-normalized form of the Gaussian density function

given by

g(x) = exp

(

−1

2
(x − µ)TΣ−1(x − µ)

)

, (5)

where µ is the mean and Σ is the covariance matrix. For simplicity, Σ is often assumed to have

the form Σ = σ2I. Hence, the Gaussian RBF network is given by

h(x) =

J
∑

j=1

πjgj(x) =

J
∑

j=1

πj exp

(

−
‖x− µj‖2

2

2σ2
j

)

, (6)

where the µ’s represent center vectors, while the σ’s can be interpreted as the width of basis

functions.

The parameters of the Gaussian RBF network – namely, the means {µj}, the variances {σ2
j },

and the weighting parameters {πj} – are learned on training samples. In this paper, we employ

an iterative learning algorithm, where all the RBF parameters are simultaneously computed by

minimizing the following error function [21]:

E =
1

2

N
∑

n=1

(yn − h(xn))2 +
λ

2N

J
∑

j=1

π2
j , (7)

where λ is a regularization constant. In the first step, the means {µj} are initialized by the

standard K-means clustering algorithm, while the variances {σj} are determined as the distance

between µj and the closest µi, (i 6= j, i ∈ [1, J ]). Then, in the following iteration steps, a

gradient descent of the error function in Eq. (7) is performed to update {µj}, {σ2
j }, and {πj}.

In this manner, the network fine-tunes itself to training data.
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3.3 Multiclass Classification

So far, we have presented the ensemble classifier capable of solving binary-class problems. Since

our goal is to identify three types of targets in the MSTAR dataset, we are faced with the

multiclass problem. Here, a label from a finite label space Y = {1, · · · , K}, K > 2, is assigned

to each pattern. To design such a classifier by using a binary classifier (in our case, AdaBoost

with RBF nets), we first decompose the multiclass problem into several binary problems. For

this purpose, one popular approach is to implement the error-correcting output codes (ECOC)

method, where each class is represented by a codeword in a suitably specified code matrix [13].

Here, each label y ∈ Y is associated with a row of a pre-defined code matrix, M ∈ {−1, +1}K×L.

Below, we denote the k-th row of M as Mk·, then, the l-th column as M·l, and finally the

(k, l)-th entry of M as Mkl. Note that the l-th column of M represents a binary partition over

the set of classes, labeled according to M·l. This partition enables us to apply a binary base

learner to multiclass data. For each binary partition (i.e., column of M), the binary base learner

produces a binary hypothesis fl. It follows that the K-class problem can be solved by combining

L binary hypotheses fl, l = 1, . . . , L. After learning L binary hypotheses, the output code of a

given unseen instance x is predicted as f(x) = [f1(x), . . . , fL(x)]. This output code is “decoded”

as label y, if the y-th row of the code matrix, My·, is “closest” to f(x) with respect to a specified

distance metric d(My·, f(x)).

A more general framework for decomposing the multiclass problem can be formulated by

using a code matrix from the following set of matrices: {−1, 0, +1}K×L [22]. Here, a zero entry,

Mkl=0, indicates that the classification of hypothesis fl is irrelevant for label k. Consequently,

fl is learned only for those samples (x, Myl) where Myl 6=0. Such definition of the code matrix

provides for a unifying formulation of a wide range of methods for decomposing the multiclass

problem, including the well-known one-against-others, and all-pair approaches [22]. For the one-

against-others scheme, M is a K×K matrix with all diagonal elements equal to +1 and all other

elements equal to −1. An example of the one-against-others code matrix for K = 3 is given in

the following equation:

Mo =











+1 −1 −1

−1 +1 −1

−1 −1 +1











. (8)

For the all-pair scheme [23], M is a K ×
(

K
2

)

matrix, where the number of columns is equal to

the number of distinct label pairs (k1, k2). In the column l, which is assigned to the label pair

(k1, k2), only the elements in rows k1 and k2 are nonzero. An example of the all-pair code matrix
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for K = 3 is given in the following equation:

Ma =











+1 0 −1

−1 +1 0

0 −1 +1











. (9)

In our multiple-target classification experiments, we use both coding approaches.

Recall that for the ultimate classification it is necessary to specify the distance metric

d(My·, f(x)). One possible approach is to use the standard Hamming distance equal to the

number of bits of the output code f(x) different from those of the codeword My·. When the

Hamming distance is used, a sample x is classified as label ŷ if

ŷ = arg min
y

L
∑

l=1

1 − sign(Mylfl(x))

2
, (10)

where sign(z) is defined as

sign(z) =



















1 , z > 0 ,

0 , z = 0 ,

−1 , z < 0 .

(11)

A drawback of using the Hamming distance for decoding is that it does not make use of

the confidence level indicated by the magnitude of fl(x). This problem can be alleviated by

employing the Euclidean distance in conjunction with the following decoding rule:

ŷ = argmin
y

‖My· − f(x)‖2, (12)

where ‖ · ‖2 is the 2-norm. If codewords are symmetrically spaced in the L-dimensional space,

as is the case in the one-against-others and all-pair methods, for all labels y, My· has the same

number of nonzero elements. In this case case, the decoding rule can be simplified as

ŷ = arg max
y

L
∑

l=1

Mylfl(x) . (13)

We refer to the decoding rule in Eq. (13) as max-correlation decoding.

3.4 AdaBoost as a Fusion Method

Recall that in our approach each MSTAR image chip is represented by two sets of image features

– namely, fine and raw features. In Section 2.2, we discuss that the reason for representing images

by raw features is to compensate for the target pose estimation error in the fine features. We

hypothesize that combining the information of both feature sets would improve the classification

performance. In the literature, a method for combining several pieces of information from various
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sources with the goal to obtain a better performance than on each individual piece of information

is called the information fusion. In our case, we seek to combine the information contained in

the two feature sets. Since, the two feature sets are highly correlated, it is very challenging

to design a transform that would fuse the two feature sets into one in a new feature space.

Instead, we propose to use AdaBoost to combine the information from both sets, while keeping

them separate. Note that AdaBoost, here, does not transform the two feature spaces into a new

space, where the two feature sets would be united, and as such is not a typical fusion method.

However, AdaBoost combines the two sources of information improving the classification results,

as explained below, and therefore, we refer to it as fusion method.

Essentially, the idea is to choose a “better” set in each AdaBoost training iteration, such

that the final ensemble function is optimized over the two feature sets. To this end, we use a

fundamental theoretical result, presented in [19], that the upper bound of the training error in

Eq. (2) is equal to the product of the normalizing constants {Zt}, defined in Eq. (18):

1

N

N
∑

n=1

I{yn 6= sign(F (xn))} 6
1

N

N
∑

n=1

exp(−ynF (xn)) =
T
∏

t=1

Zt . (14)

The pseudo-code of the fusion algorithm is shown in Figure 7. There are two separate

branches of learning processes: Steps 1a-3a and Steps 1b-3b in Figure 7. In one branch the

ensemble classifier is iteratively trained on fine feature vectors xf
n, and in the other, on raw

feature vectors xr
n. More precisely, in each training step t, for both feature sets, the base learner

ht, combination coefficient αt, and normalization constant Zt are calculated with respect to the

data distribution d(t). Since the empirical training error is bounded by the product of {Zt} (Eq.

(14)), we choose Zt as a criterion for selecting between the two feature sets. Thus, in iteration

step t, the branch that produces smaller Zt would yield a smaller upper bound of the empirical

training error, and, as such, is selected. Then, for the following step t+1, we use ht, αt, and Zt

of the selected branch to update the data distribution d(t+1). Note that it is necessary to keep

track of the feature set used for computing each hypothesis ht in the ensemble classifier F (x).

In experiments on test images, a given base hypothesis ht should operate on the same feature

set as that selected in the training process.

The outlined strict mathematical formulation of the AdaBoost fusion algorithm has a more

appealing intuitive interpretation. Recall that AdaBoost has the capability of identifying difficult-

to-classify examples in the training data. During training, a given target sample with erroneous

pose estimation, will be categorized as a hard example, if fine features are used to represent that

sample. To prevent the propagation of pose-estimation error in AdaBoost training, we simply

discard the information of fine features and use raw features instead for those difficult-to-classify

training data.
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4 Experimental Results

4.1 Experimental Setup

We validate the proposed ATR system on the MSTAR public release database [2]. Here, the task

is to classify three distinct types of ground vehicles: BTR70, BMP2, and T72. There are seven

serial numbers (i.e., seven target configurations) for the three target types: one BTR70 (sn-c71),

three BMP2’s (sn-9596, sn-9566, and sn-c21), and three T72’s (sn-132, sn-812, and sn-s7). For

each serial number, the training and test sets are provided, with the target signatures at the

depression angles 17◦ and 15◦, respectively. The sizes of the training and test datasets are given

in Table 1.

We conduct experiments for two different settings. In the first setting, which we refer to

as S1, our classifier is optimized by using all seven training sets and tested on all seven test

sets. To balance the number of training data per target class, we augment the training set

of BTR70 sn-c71 by triplicating each image chip. To explain the reasoning for augmenting

the training set, note that the RBF neural network tries to minimize the mean squared error:

E =
1

N
(

∑

{n:yn=+1}

(yn − h(xn))2 +
∑

{n:yn=−1}

(yn − h(xn))2), where h(·) is a mapping function.

Consequently, if the number of training samples varies across classes, h(·) is biased towards classes

with majority population. It is a standard practice to alleviate this problem by augmenting

minority classes with sample duplicates [?],[?], so that all classes are equally populated, which

improves the accuracy of the outlined training of RBF.

In the second setting, referred to as S2, our classifier is learned using only a subset of training

data, and tested on all available test data. More precisely, for training we use training datasets

of BTR70 sn-c71, BMP2 sn-c21, and T72 sn-132, while for testing, all seven test sets. By doing

so, we are in a position to examine the generalization properties of our method.

Throughout, to reduce computational complexity, the dimensionality of each data is reduced

to 150 by principal component analysis (PCA)[24]. PCA is one of the most commonly used

dimensionality reduction method that projects pattern vectors onto a low-dimensional subspace,

so that the re-construction error is minimum in the least-square sense. The obtained low-

dimensional subspace is spanned by a selected subset of eigenvectors of the covariance matrix of

training patterns. The selected eigenvectors correspond to the largest eigenvalues. The recon-

struction error, that is, the cost of the achieved dimensionality reduction is simply the sum of

the discarded eigenvalues. The projection of the original 80×80=6400-dimensional onto a 150-

dimensional feature space is justified by significant processing-time savings, the price of which

is nearly negligible in the ultimate classification performance of our system.
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Another reason for performing PCA is to eliminate the redundancy present in the fine image-

feature representation. Recall that we use magnitudes of 2D DFT on a 80×80 window located at

the center of the image. The 80×80 vector of DFT magnitudes is characterized by a symmetry,

which PCA can effectively eliminate, and, hence, decrease the computational complexity of

classifying fine feature vectors. More formaly, let us consider a data matrix X ∈ RN×M , where

each row is an observation, for which the eigensystem is defined as {φi, λi}i. The projection of

data onto φi is simply Xφi. Now, let us consider a new dataset X̄ = [X,X] containing redundant

information. The new eigensystem corresponding to non-zero eigenvalues is {[φT
i φT

i ]T /
√

2, 2λi}i,

and the projection of the new data onto [φT
i φT

i ]T /
√

2 is
√

2Xφi, which is different from the

original one only by a constant. In conclusion, the redundant information in the fine image-

feature representation can be completely removed by PCA.

The maximum number of iterations in AdaBoost is fixed at T = 50. The number of Gaussian

RBF centers and the number of iterations are optimized through cross validation for each binary

problem. Also, the regularization constant λ is heuristically set to 10−6.

4.2 Experiments for S1 Setting

In this section, we present the performance of our classifier trained on all seven training datasets

and tested on all seven test datasets. To decompose the multiclass problem into a set of binary

problems, we use the one-against-others and all-pair encoding approaches, specified by the code

matrices Mo (Eq. (8)) and Ma (Eq. (9)), respectively. Each binary problem is classified by the

RBF nets that is trained through the AdaBoost algorithm. The outcomes of the RBF nets are

combined into a code word. This code word is then interpreted as one of possible target classes

by using either the Hamming decoding or the max-correlation decoding. In the experiments,

the training data is always classified with zero classification error after T = 50 iteration steps

in AdaBoost. In Table 2, we report the correct-classification rate obtained for the test dataset,

where we use different coding and decoding methods. The best performance is achieved when the

all-pair coding and max correlation decoding are used. The probability of correct classification

is 99.63%, which means that only 5 out of the 1365 test chips are misclassified. The confusion

matrix of the best classification result is given in Table 3.

To validate the efficiency of AdaBoost, we now present the classification results obtained by

using only the RBF base learner, discarding the boosting. As before, after decomposing the

multiclass problem into a set of binary ones, the code word of the RBF outcomes is decoded as

a target class. Note that the examined system corresponds to a classifier generated after the

first AdaBoost iteration. The classification results, when AdaBoost is not used, are reported
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in Table 4. Comparing the results in Tables 2 and 4, we observe that AdaBoost significantly

improves the performance of the RBF network. This phenomenon is also illustrated by the

training and testing error curves in Figures 8(a) and 8(b). From the figures, we observe that

the training error exponentially decreases to zero as the number of iterations increases, which is

in agreement with the theoretical result discussed in Section 3.1. Also, the classification error

on the test dataset becomes smaller with the increase in the number of iterations. Moreover, it

keeps decreasing even after the training error becomes zero (Figure 8(b)). From the figures, we

also see that the test errors finally flatten out, which allows us to set the maximum number of

iterations of AdaBoost, conservatively, to 50. From our experience, approximately 20 iteration

steps are enough for AdaBoost to yield a sufficiently accurate classifier. We point out that the

specification of the optimal maximum number of AdaBoost iteration steps is not critical for the

overall performance of our ATR system.

In the above experiments, both the fine and raw features are used for data representation.

To demonstrate the effectiveness of our data fusion method, in Table 5, we present the correct-

classification rate, when either the fine features, or the raw features are used. In comparison

to the results when both feature sets are used, we observe that our feature fusion procedure

significantly improves the probability of correct classification. Surprisingly, representing images

only by raw features gives a better classification performance than using only fine features. We

defer a detailed explanation of this observation for the next subsection.

We also compare our ATR algorithm with the following existing approaches: (1) the matched-

filter based approach [25], (2) the MACH-filter based approach [26], and (3) the multi-layer

neural-network based approach [5]. In [26], MACH (maximum average correlation height) is

a correlation type filter that maximizes the height of the correlation peaks over training data

in the frequency domain. For all these methods, the experimental set-up is the same as ours.

The classification results are summarized in Table 6. From the table, we observe that our ATR

system, when both feature sets are used, outperforms all three methods. Also, when images are

represented by raw features only, our system achieves equal performance to that of the MACH

filter based approach, while still proves better than the neural-network based approach. The

closest classification result to ours is achieved by the matched-filter based method [25], where

504 templates are used for the three target classes. However, in terms of the computational

complexity and the memory usage, the matched-filter based method may not be the most suitable

for implementation in real-time systems. For those systems, our approach has clear advantage.
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4.3 Experiments for S2 Setting

To demonstrate the generalization capability of our ATR scheme, we present experimental results

for the S2 setting. Here, we train our classifier only on a subset of training datasets, representing

three serial numbers: T72 sn-132, BMP2 sn-c21, and BTR70 sn-c71 at the depression angle of

17◦. After training, we test the classifier on all seven test datasets with target signatures at the

depression angle of 15◦.

The experimental results are reported in Table 7. We note that, for S2 setting, our system

achieves correct classification at the rate of 96.12% over all seven test datasets. This means that

our method has a very good generalization property. The best result is accomplished by using

the all-pair encoding approach and the max correlation decoding rule, as for S1 setting. In Table

8, we present the confusion matrix for the best result.

To demonstrate the effectiveness of our data fusion method, herein, we also report classifica-

tion results when either of the feature sets is used. In these experiments, both coding approaches

are employed for decomposition of the multiclass problem into a set of binary problems. The

max-correlation rule is used for decoding. The correct-classification rate is presented in Table 9.

Note that the AdaBoost-based fusion of features improves the classification performance.

In contrast to the results obtained for S1 setting, now, using only fine features gives a higher

correct-classification rate than using only raw features. This indicates that, along with the

variations in target aspect angles, poor diversity of training data is another key factor which

conditions the classification error. Thus, for S1 setting, where the training dataset represents

well all target variations, the pose-estimation error is the dominant factor. Consequently, for S1

setting, using only raw features gives a more successful classifier than using only fine features.

On the other hand, for S2 setting, the training dataset lacks information on certain target

aspect angles. If the pose estimator is not employed to mitigate the variations in target poses,

the missing information on target poses hinders the optimal training of our classifier. As a

result, for S2 setting, poor diversity of training data becomes the dominant factor leading to an

increased classification error. Therefore, for S2 setting, using only fine features yields a more

successful classifier than using only raw features. In practice, however, it is never known a priori

which setting our classifier is required to operate in. Fortunately, as our experimental results

demonstrate, regardless of the setting, S1 or S2, the proposed fusion method always leads to an

improved classification performance.

We also compare the classification performance of our ATR system with that of the template

based, neural-network based, and SVM based approaches presented in [7]. In [7], the used neural

network is a single-layer perceptron with a quadratic mutual information based cost function, and
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the SVM is...... For these methods, the same training and test sets are used as ours. As reported

in [7], for each of the three methods, a threshold is set to keep the probability of detection

on the whole test dataset equal to 0.9. That is, the classifier first rejects hard-to-categorize

samples up to 10% of the total number of test samples, and then the correct-classification rate is

calculated only for the remaining 90% of test samples. In contrast, when experimenting with our

ATR system, no test data is discarded. In Table 10, we report the correct-classification rate for

the three benchmark approaches, as well as the results for our ATR system, where the all-pair

encoding approach and max correlation decoding rule are used. From the table, we observe that

our algorithm significantly outperforms the other three, even though our ATR system is tested

on the entire test set.

5 Conclusions

We have proposed a novel AdaBoost-based ATR system for the classification of three types of

ground vehicles in the MSTAR public database. Targets in the MSTAR data have randomly

distributed poses, ranging from 0◦ to 360◦. To eliminate variations in target poses we have

proposed an efficient pose estimator, whereby all targets are rotated to the same aspect angle.

To compensate for the occasional pose estimation error, we have proposed to represent MSTAR

images by two highly correlated feature vectors, called fine and raw features. Such data repre-

sentation has allowed us to formulate the ATR problem as a machine-learning problem, where

the AdaBoost algorithm is used for two purposes: as a classifier and as a fine/raw-feature fusion

method. Through feature fusion, we have efficiently utilized the information contained in the

two feature vectors. As the base learner in AdaBoost, we have proposed to use the RBF net-

work, which is a binary classifier. Since identification of multiple types of vehicles in the MSTAR

database represents the multiclass recognition problem, we have employed the error-correcting

output codes (ECOC) method to decompose it into a set of binary problems, which can be then

classified by the RBF net. AdaBoost combines the outcomes of each binary classification into

a code word, which is then “decoded” by measuring the distance of that code word from the

pre-defined code words representing the three ground-vehicle classes in the MSTAR database.

Further, we have reported the results of our large-scale experiments. When all the available

training data (seven serial numbers of the three vehicle classes) is used, our system achieves

99.63% correct classification rate. To our knowledge, this is the best result ever reported in

the literature. When only a subset of the training data (only three serial numbers, one per

vehicle class) is used, our system achieves 96.12% correct classification rate. This means that

our system has a very good generalization capacity. Furthermore, the classification performance
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of our system, when the fine and raw feature sets are combined through the AdaBoost-based

feature fusion, is better than that of the system using only one feature set.

The reported excellent classification performance of our ATR system stems from very ap-

pealing properties of AdaBoost that we summarize below. Under a mild assumption that a

weak learner achieves the error rate less than 0.5, AdaBoost exponentially reduces the classifi-

cation error on training data to zero as the number of training steps increases. Moreover, along

with minimizing a specified cost function, AdaBoost effectively maximizes the margin of the

resulting ensemble classifier. Consequently, the ensemble classifier is characterized by a small

generalization error. In many cases, the generalization error continues to decrease, with each

training iteration step, even after the training error reaches zero. In addition, AdaBoost, being

characterized by a set of parameters, does not require large memory-storage space. Therefore,

our ATR system is very suitable for implementation in real-time applications.

18



References

[1] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and

an application to boosting,” Journal of Computer and System Sciences, vol. 55, no. 1, pp.

119–139, 1997.

[2] T. Ross, S. Worrell, V. Velten, J. Mossing, and M. Bryant, “Standard SAR ATR evaluation

experiments using the MSTAR public release data set,” in Proc. SPIE: Algorithms for

Synthetic Aperture Radar Imagery V, Orlando, Florida, 1998, pp. 566–573.

[3] Q. H. Pham, A. Ezekiel, M. T. Campbell, and M. J. T. Smith, “A new end-to-end SAR ATR

system,” in Proc. SPIE: Algorithms for Synthetic Aperture Radar Imagery VI, Orlando,

Florida, 1999, pp. 293–301.

[4] A. K. Shaw and V. Bhatnagar, “Automatic target recognition using eigen-templates,” in

Proc. SPIE: Algorithms for Synthetic Aperture Radar Imagery V, Orlando, Florida, 1998,

pp. 448–459.

[5] Q. H. Pham, T. M. Brosnan, M. J. T. Smith, and R. M. Mersereau, “An efficient end-to-

end feature based system for SAR ATR,” in Proc. SPIE: Algorithms for Synthetic Aperture

Radar Imagery VI, Orlando, Florida, 1998, pp. 519–529.

[6] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines (and other

kernel-based learning methods). Cambridge University Press, 2000.

[7] Q. Zhao, J. S. Principe, V. Brennan, D. Xu, and Z. Wang, “Synthetic aperture radar

automatic target recognition with three strategies of learning and representation,” Optical

Engineering, vol. 39, no. 05, pp. 1230–1244, May 2000.

[8] M. Bryant and F. Garber, “SVM classifier applied to the MSTAR public data set,” in Proc.

SPIE: Algorithms for Synthetic Aperture Radar Imagery VI, Orlando, Florida, 1999, pp.

355–360.

[9] H. Schwenk and Y. Bengio, “Boosting neural networks,” Neural Computation, vol. 12, no. 8,

pp. 1869–1887, 2000.
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Figure 1: Flow chart of the edge detection.

(a) (b) (c) (d)

Figure 2: An example of the intermediate results in the edge-detection procedure: (a) original

chip, (b) “smoothed” image, (c) fine target, and (d) target contour.
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Figure 3: Pose estimation: in α direction a rectangle is drawn, such that it is tangent to the

detected target contour.

(a)

(b)

Figure 4: Examples where the erroneous α∗ is detected, and the angle perpendicular to α∗ is

considered as the pose estimate: (a), α∗ = 175◦, pose estimate = 85◦; (b), α∗ = 150◦, pose

estimate = 60◦. The original image is shown on the left and the target edge is shown on the

right.
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(a) (b) (c)

Figure 5: Examples of the vehicles rotated to 180◦: (a) T72, (b) BMP2, and (c) BTR70.

Training set Testing set

serial number size serial number size

BTR70 sn-c71 233 sn-c71 196

sn-9563 233 sn-9563 195

BMP2 sn-9566 232 sn-9566 196

sn-c21 233 sn-c21 196

sn-132 232 sn-132 196

T72 sn-812 231 sn-812 195

sn-s7 228 sn-s7 191

Table 1: Summary of the MSTAR database.
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AdaBoost

Initialization: D = {(xn, yn)}N
n=1, maximum iteration number T , d(1)(n) = 1/N

for t = 1 : T

1. Train base learner with respect to distribution d(t) and get hypothesis ht(x) : x →
[−1, +1].

2. Calculate the edge rt of ht:

rt =

N
∑

n=1

d(t)(n)ynht(xn) , (15)

3. Compute the combination coefficient:

αt =
1

2
ln
(1 + rt

1 − rt

)

, (16)

4. Update distributions:

d(t+1)(n) = d(t)(n) exp(−αtynht(xn))/Zt , (17)

where Zt is the normalization constant such that
∑N

n=1 d(t+1)(n) = 1, that is,

Zt =
N
∑

n=1

d(t)(n) exp(−αtynht(xn)) . (18)

end

Output: F (x) =
∑T

t=1 αtht(x) .

Figure 6: The pseudo-code of the confidence-rated AdaBoost.

Hamming decoding max correlation decoding

one-against-all 98.68% 99.19%

all-pair 99.05% 99.63%

Table 2: Correct classification rates using both feature sets for S1 setting.

25



Data fusion using AdaBoost

Initialization: D = {((xf
n,xr

n), yn)}N
n=1, T , d(1)(n) = 1/N

for t = 1 : T

1a. Train ht on {xf
n} with respect to

d(t).

1b. Train ht on {xr
n} with respect to

d(t).

2a. Calculate αt as in (16) using the

results from 1a.

2b. Calculate αt as in (16) using the

results from 1b.

3a. Calculate Zt as in (18) using the

results from 1a. and 2a.

3b. Calculate Zt as in (18) using the

results from 1b. and 2b.

3. Choose the branch that gives smaller Zt, and update d(t+1), as in (17), using

ht, αt, and Zt from the selected branch.

end

Output: F (x) =
∑T

t=1 αtht(x).

Figure 7: The pseudo-code of AdaBoost as a fusion method.
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Figure 8: Classification error curves of (a) the one-against-others approach, and (b) the all-pair

approach. Both use the max correlation decoding rule. The classifiers are learned by AdaBoost

on all training datasets and tested on all testing datasets.
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BTR70 BMP2 T72

BTR70 195 1 0

BMP2 0 584 3

T72 0 1 581

Table 3: Confusion matrix of the all-pair encoding and the max correlation decoding rules using

both feature sets for S1 setting.

Hamming decoding max correlation decoding

one-against-all 94.58% 97.36%

all-pair 97.44% 97.80%

Table 4: Correct classification rates of the RBF base learner using both feature sets for S1

setting.

fine features raw features both features

one-against-all 97.07% 97.95% 99.19%

all-pair 97.44% 98.10% 99.63%

Table 5: Correct classification rates for different feature sets using the max correlation decoding

for S1 setting.

Matched Filter MACH Filter neural network AdaBoost

[25] [26] [5] raw features both features

Pcc 98.97% 98.10% 93% 98.10% 99.63%

Table 6: Correct classification rate of different ATR systems for S1 setting. Pcc - probability of

correct classification.

Hamming decoding max correlation decoding

one-against-all 92.45% 95.53%

all-pair 95.46% 96.12%

Table 7: Correct classification rates using both feature sets for S2 setting.
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BTR70 BMP2 T72

BTR70 192 3 1

BMP2 4 554 29

T72 0 12 570

Table 8: Confusion matrix of the all-pair encoding and the max correlation decoding rules using

both feature sets for S2 setting.

fine features raw features both features

one-against-all 94.65% 92.45% 95.53%

all-pair 95.31% 92.82% 96.12%

Table 9: Correct classification rates for different feature sets using the max correlation decoding

for S2 setting.

Template Matcher [7] neural network [7] SVM [7] AdaBoost

Pcc 89.7% 94.07% 94.87% 96.12%

Pd 90% 90% 90% 100%

Table 10: Correct classification rate of different ATR systems for S2 setting; Pcc - probability

of correct classification, Pd - probability of detection. Note that the classification rate of our

AdaBoost ATR system is calculated for a much higher (100% vs. 90%) detection probability

than for the other systems.
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