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Abstract

This paper proposes the problem of unsupervised extrac-
tion of texture elements, called texels, which repeatedly oc-
cur in the image of a frontally viewed, homogeneous, 2.1D,
planar texture, and presents a solution. 2.1D texture here
means that the physical texels are thin objects lying along a
surface that may partially occlude one another. The image
texture is represented by the segmentation tree whose struc-
ture captures the recursive embedding of regions obtained
from a multiscale image segmentation. In the segmenta-
tion tree, the texels appear as subtrees with similar struc-
ture, with nodes having similar photometric and geometric
properties. A new learning algorithm is proposed for fusing
these similar subtrees into a tree-union, which registers all
visible texel parts, and thus represents a statistical, gener-
ative model of the complete (unoccluded) texel. The learn-
ing algorithm involves concurrent estimation of texel tree
structure, as well as the probability distributions of its node
properties. Texel detection and segmentation are achieved
simultaneously by matching the segmentation tree of a new
image with the texel model. Experiments conducted on a
newly compiled dataset containing 2.1D natural textures
demonstrate the validity of our approach.

1. Introduction

This paper is about (1) identifying the basic elements
of image texture, called texture elements, or texels, (2) ob-
taining the texel model, and (3) texel segmentation (delin-
eation of image regions occupied by texels) by using the
texel model. Our approach derives from and closely follows
the fundamental notion of image texture – namely, that im-
age texture is formed by spatial repetition of a large number
of texels, which are in turn the images of a large field of
spatially recurring physical texture elements in the scene.

Randomness, which is a defining feature of image tex-
ture, is the result of two physical, stochastic processes.
First, the intrinsic properties of the physical texture ele-
ments are not strictly identical; they are only statistically
similar as if they are samples drawn from a certain proba-

Figure 1. Kiwi slices: (left) an example of frontally viewed, pla-
nar 2.1D natural texture; (right) contours of extracted texels by our
algorithm. Challenges to texel extraction: texels may partially oc-
clude one another; texel subregions (white kiwi cores) may define
a different texture, at a finer resolution, and they may be confused
with the texels; occlusion and changes in illumination across the
image may reduce the gray-level contrast between texels andsub-
texels, making their learning and segmentation difficult.

bility density function (pdf). Second, the placement of the
physical elements in the scene is, in general, not strictly pe-
riodic but only statistically uniform. For example, in Fig.1,
the kiwi slices have statistically similar size, shape and
color, and their placement is statistically uniform. There-
fore, the models of intrinsic properties and spatial place-
ment of image texels need to be stochastic. Another impor-
tant characteristic of physical elements is their dimension-
ality. They may be painted patterns on the texture surface
defining a 2D texture, or 3D objects extending out of the
surface defining a 3D texture. As a third, hybrid case, the
physical texels may be very thin patches lying along the sur-
face, as in Fig. 1. The nearly zero thickness of these patches
makes them close to 2D texels, but their ability to overlay
and occlude one another lends them the 3D character; we
refer to this hybrid case as 2.1D textures as in [15].

In this paper, we consider nearly planar 2.1D textures,
imaged from a viewing direction which is nearly along sur-
face normal.1 For brevity, we will refer to them only as
2.1D textures. The image texels thus represent physical tex-
ture elements that are at a constant depth, and imaged fully

1The frontal viewing assumption helps us focus here on more funda-
mental, novel aspects of the proposed formulation aimed at more general
challenges of 2.1D textures listed in the caption of Fig. 1. The frontal
texture case is itself broadly relevant as is evident from most past work
on texture classification, synthesis and segmentation which is focused on
frontally viewed textures.
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or partly depending on their mutual occlusions. Since the
physical elements are themselves finite size objects, the im-
age texels are regions, whose properties – such as geometric
(e.g., area and shape), photometric (e.g., spatial color dis-
tribution), and topological (recursive embeddings of sub-
texel regions) properties – can be stochastically character-
ized. Given an image of 2.1D texture, this paper is aimed at
estimating the pdf of these texel properties. Since the notion
of image texture implies a large number of texels, and there-
fore a large number of samples from the underlying pdf’s,
reliable statistical estimation of these pdf’s is feasible. Es-
timation of the pdf of intrinsic texel properties can be com-
bined with the analysis of other aspects of texture, including
properties of the textured surface (e.g., plane orientation),
and stochastic rules governing the placement of physical el-
ements on the plane, to estimate the complete texture model
in more general (e.g., nonfrontal) cases. However, proper-
ties of texture surface and texel placement are outside the
scope of this paper. In the rest of this section, we first re-
view prior work, and then present an overview and main
contributions of our approach.

Prior Work: Texture Modeling – Most approaches ne-
glect to directly account for one or both basic components
of image texture – namely, the intrinsic and placement char-
acteristics of the texels. Statistical (pixel-based) approaches
[2] model the joint statistical properties of features extracted
at pixel locations, missing to encode the feature prior group-
ings imposed by texels [25]. Region based (structural) mod-
els [6] are more realistic in that they treat texture as a layout
of regions, as called for by structure of the physical tex-
ture [3, 20, 14]. However, with few exceptions [3], the ex-
isting region-based models do not distinguish between re-
gions within and across texels. For example, in [5], salient
segments are extracted at multiple scales to capture photo-
metric, geometric and structural properties of the entire tex-
ture; however, instead of identifying and modeling the basic
repetitive unit of texture, every extracted segment is treated
as the texture element. Many approaches exploit texture
regions only implicitly, by using measures of different edge
types, or of regions of different shapes, orientations or sizes,
obtained by, e.g., Harris, Kadir-Brady, SIFT, or blob detec-
tors [23, 11, 9, 13, 7]. Julesz and his collaborators [8] useda
special class of features called textons (e.g., closure, linear-
ity, end terminations, etc.) as primitives of model descrip-
tion, and demonstrated that the performance of the resulting
models better predicted human texture perception. There
are several attempts to mathematically define the notion of
textons for the purpose of texture modeling. For example,
in [24], texture is modeled as a superposition of Gabor base
functions, which are in turn generated by a user-specified
vocabulary of textons (e.g., star-shaped or T-junction tem-
plates). Finally, motivated by psychophysical research that
human brain decomposes texture into its frequency and ori-

entation subcomponents, many studies use signal process-
ing techniques for texture modeling [10, 4, 22].

Prior Work: Texel Extraction – Much work on texel ex-
traction mirrors the limitations of texture modeling. For
example, a highly restrictive assumption is made in [23]
that texels are homogeneous, structureless blobs, which are
darker or lighter than the background. In [3], a texel is
represented as a union of disc-shaped regions found by a
multiscale blob detector. In recent work, texels are charac-
terized by the occurrence of feature points associated with
them, or by correlations of image windows, neither of which
delineates the texels. Sometimes, edge fragments are used
to locate the vicinity of a texel. For instance, in [16, 21],
texels are represented by Harris corners and homogeneous-
intensity regions enclosed by Canny edges, while in [7],
by MSER points and normalized-cross-correlation patches.
In [13], texels are characterized by SIFT descriptors. In
[12], the user is required to provide a parallelogram-shaped
texel template for detecting similar texels in a given texture.
None of the above methods precisely segments the texels.

Motivation: We use regions as features for texel model-
ing and extraction. Regions offer several advantages over
lower-dimensional, local features, such as interest points
or edge fragments. Regions could precisely delineate the
texel’s contours, not just its vicinity. The higher dimension-
ality of regions makes them richer descriptors of texel’s geo-
metric and photometric properties, and their detection more
stable to small illumination and viewpoint changes. Un-
like local features, regions facilitate capturing within-texel
structure and spatial context of texels.

Overview of Our Approach: (1) We first obtain a mul-
tiscale segmentation of the texture image. The image is
then represented by a segmentation tree, whose nodes en-
code the geometric and photometric properties of the image
regions, and whose structure captures their recursive con-
tainment. The spatial layout of the regions can be easily
derived from the segmentation tree. Each texel appears as a
finite-size subtree in the segmentation tree, because a large
number of texels, required to comprise a texture image, lim-
its the texel size to a fraction of the image size, and also
the recursive subregion embedding visible within a texel
is lower bounded by the pixel size. (2) Since texture is
characterized by the presence of a large number of texels,
the segmentation tree must contain many subtrees having
similar node and structural properties. To identify texels,
therefore, we find the largest group of the largest subtrees
across the image that match. (3) Some matching subtrees
may represent different parts of only partly visible texels.
All such subtrees must clearly be parts of the unknown sub-
tree representing the entire texel. The texel subtree is con-
structed by fusing (registering and mosaicing) all matched,
partial as well as full, texel subtrees into a tree-union. A
pdf is estimated that captures statistical properties of the
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matching sets of nodes in the tree-union, which ultimately
serves as the generative model of the texel. Fig. 2 illus-
trates Steps 2 and 3. (4) Given a new image of the same
texture, texels are extracted by matching the learned texel
model with the image’s segmentation tree. Matches found
locate texels, and being union of regions, they simultane-
ously delineate their exact boundaries.

Towards the implementation of these steps, we propose
a new learning algorithm for estimating the texel generative
model. Our algorithm involves simultaneous estimation of
both model structure and model pdf, which is commonly
viewed as the most challenging problem of statistical gener-
ative modeling. We formulate it as an optimization problem
to find the optimal model structure and pdf for which the de-
scription length of the data is minimum (MDL). This is ac-
complished in an iterative procedure that alternates between
the following two steps: (1) the Expectation-Maximization
(EM), where the model pdf is estimated for a given tree-
union structure, and (2) tree matching, where the tree-union
is estimated for the previously computed model pdf.
Contributions: (1) We employ a generative model of ar-
bitrarily structured texels comprising a 2.1D texture. The
model encodes the random geometric, photometric and
topological properties of texels. (2) A new learning algo-
rithm is proposed for simultaneous estimation of both struc-
ture and property-pdfs defining the texel model. (3) We es-
timate structural, geometric, and photometric propertiesof
the complete (unoccluded) texel from partially visible texel
occurrences in a 2.1D texture without any supervision. (4)
Experimental validation is conducted on a new dataset con-
sisting of 2.1D natural textures, which we have compiled
to exercise various parts of the proposed algorithms. This
dataset complements the existing benchmark sets (e.g., Bro-
datz, CUReT, CMU Near-regular Textures, etc.) since most
of them do not contain 2.1D textures, or have only 2.1D tex-
tures with (near-)regular placement of texels. (5) Most prior
work replaces texel extraction with the simpler problem of
locating a point or points associated with each texel. There-
fore, most existing methods cannot precisely delineate the
texel boundaries. To the best of our knowledge, this paper
presents the first formulation and solution to unsupervised
learning and segmentation of texels in 2.1D textures.

Next we describe our image representation, in Sec. 2,
followed by texel detection in Sec. 3. The texel genera-
tive model is defined in Sec. 4, while learning of the model
structure and pdf’s is described in Sec. 5. Experimental val-
idation is discussed in Sec. 6.

2. Region Properties for Texel Modeling

An input image is represented by the segmentation tree,
T , obtained using the multiscale segmentation algorithm of
[1], which parses the image into homogeneous regions, at
all degrees of homogeneity present, regardless of the re-
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Figure 2. An input image is represented by the segmentation tree,
and then all pairs of itsM nodes are matched. Frequently occur-
ring, similar subtrees are viewed as candidate texels, which are
then fused into the tree-union, representing the texel model.

gions’ contrast, size, shape and location. Nodes at up-
per levels correspond to larger regions, while their children
nodes capture embedded, smaller details. Any cutset of the
tree corresponds to one possible image segmentation, while
parent-child relationships capture recursive region embed-
ding. The number of nodes (150–200),2 branching factor
(0–5), and the number of levels (10–15) in different parts
of the tree are image dependent . A vector,yij , of region
properties is associated with nodei. Many of the proper-
ties of nodei are expressed relative to those ofi’s parent-
regionj, to allow rotation and scale invariance in texel de-
tection. These properties are as follows: (1) gray-level con-
trastgij ; (2) area ratioaij,Ai/Aj , whereAi andAj are the
areas ofi andj; (3) displacement between the centroid loca-
tions(x, y) of i andj,

−→
∆ij,

1√
Aj

[(−→x j−−→x i)+(−→y j−−→y i)];

(4) area dispersion ofi over its children k∈C(i),
ADi,

∑

k∈C(i)(ak−mean({ak}))2; (5) shape context his-
togramhi={hi(z)}z=1...Z , computed by parsing the image
into Z=40 pie slices, each of which begins at the centroid
of i, and subtends the same angle2π/Z, and by counting
the total number of pixels of regioni that fall in pie slice
z; the slice having the largest histogram value is is said to
contain the estimate of the major axis of regioni; (6) tilt
angleαij between major axes ofi andj. In summary, given
thatj is the parent ofi, the vector associated with nodei is
yij=[gij , aij ,

−→
∆ij , ADi, αij , hi]

T.

3. Texel Detection

The segmentation treeT contains all segments present in
the image, including texels. They can be detected as a set
of disjoint, similar subtrees rooted closest to the root ofT .
Therefore, any smaller, similar subtrees, corresponding to
the repetitive subtexel structure, are not detected separately,
since they are contained within the identified parent texel
subtrees. The texel subtrees are discovered by matching all
possible node pairs in the segmentation tree, and selecting
those node pairs closest to the root whose attributes match,

2The values in parentheses are obtained for 2.1D textures considered
in Sec 6.
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and the same holds for their descendant nodes. For match-
ing, we use the well-known graph matching algorithm of
[18, 17]. For each pair of nodes(i, i′)∈T×T , i 6=i′, the al-
gorithm matches nodes in the subtrees rooted ati andi′ so
as to maximize the total similarity valueSii′ computed over
the subtrees. Formally, given that the matching algorithm
has selected a bijectionf={(i0, i′0), (i1, i′1), . . ., (in, i′n)},
where the descendant nodesi1, . . ., in of i=i0 are paired
with the descendant nodesi′1, . . ., i

′
n of i′=i′0, the similarity

Sii′ between the subtrees is defined as

Sii′ , S(f) =
∑

(i,i′)∈f (ri+ri′−mii′) , (1)

whereri is the saliency of nodei, andmii′ is the cost of
matchingi andi′ (both also called edit-costs), both defined
in terms of region propertiesyij , as explained in Sec. 5.
The complexity of computingSjj′ is O(n2) wheren is the
number of descendant nodes underj andj′ [18, 17].

After finding the similarity measuresSii′ , ∀(i, i′)∈T×T ,
i 6=i′, we analyzeSii′ values to identify texel candidates.
From (1), Sii′ values become larger for nodesi and i′

closer to the root of the segmentation tree (i.e., for larger
regions in the image). Consequently, the highestS val-
ues may not correspond to the similarity measure between
texel subtrees, but between their groupings into supertex-
els. Since supertexels occupy larger image areas than tex-
els, the frequency of their occurrence is significantly smaller
than that of texels. Therefore, texel detection amounts to
finding a cluster ofS values that are both large and fre-
quent among the similarity measures obtained. To this
end, we analyze the modes and valleys of the frequency
histogram ofS values,H(S), and select as texel candi-
dates all subtree pairs whoseS values fall in the mode
with the largest product ofS values and their frequencies,
texel mode, arg max

mode∈histogrammodes

∑

S∈modeS · H(S).

4. Specification of the Texel Generative Model

The set of detected texel candidates,D={t1, t2, ..., tN},
may contain entire as well as partial views of the texels.
To fuse all these views into a compact model of the entire,
unoccluded texel, we find the unionT of the subtrees in
D. The tree-union is the smallest directed acyclic graph that
contains every tree in a given set. Since the texel structure
and region properties are stochastic, we characterizeT with
a pdf, as defined below.

Our generative model, depicted in Fig. 3, represents an
acyclic Bayesian network. Each nodei in T is associated
with a hidden random variablexi taking discrete values in
{1, . . . , K}, whereK is the input parameter.xi is assumed
statistically dependent oni’s parentxj , which is encoded by
the Markov chain of transition probabilitiesP (xi|xj), and
the root priorP (x1). The variability of tree-union structure
is captured by the observable random variableNi, repre-

senting the number of children of nodei, which is gener-
ated byxi according toP (Ni|xi),λxi

e−λxi
Ni . The vector

of region propertiesyij associated with nodei, defined in
Sec. 2, is generated byxi andxj according to the Gaussian
distribution,P (yij |xi, xj),N (yij ; µxixj

, Σxixj
). The set

of model parameters,Ω, is assumed to be identical for
all nodesi in T : Ω,{P (x1), P (xi|xj), µxixj

, Σxixj
, λxi

}.
Then, the joint likelihood ofT is given by

P (T |Ω)=P (x1)
∏

j∈T λxj
exp(−λxj

Nj)

·∏Nj

i=1 P (xi|xj)N (yij ; µxixj
, Σxixj

).
(2)

5. Learning Model Structure and Parameters

Learning the model structureT and parametersΩ is con-
ducted simultaneously in an iterative procedure, where for
a given model structure we estimate the model parame-
ters, and then use these parameters to re-estimate the model
structure. This iterative learning is guided by the minimum
description length (MDL) principle. Related to ours is the
approach to learning a mixture of tree-unions from a given
set of trees [19]. The likelihood of their mixture model is
defined as a product of the sampling probabilities of nodes
in the trees from the set, since these nodes are assumed sam-
pled from the model as Bernoulli trials. Unlike [19], we ex-
plicitly model the transition (Markovian) probabilities be-
tween parent-child node pairs inT , and thus enforce a cor-
rect sampling of node hierarchy from our generative model.
In the sequel, we first explain how to estimate model param-
eters for a given model structure, then discuss how to learn
the tree-union structure by using the parameter estimates,
and finally present the entire learning algorithm.
Learning Model Parameters: Given the model structure
(i.e., tree-union), which is a directed acyclic graph,Ω can
be learned using the EM algorithm, in conjunction with the
belief propagation. The EM algorithm consists of the E-step
and M-step that are iterated alternatively until the objective
function,Q, reaches convergence.

Let N={Ni} and Y ={yij} denote all observ-
ables, andX={xi}, all hidden variables ofT . In
the E-step, the expectation of the joint log-likelihood
Q(Ω|Ω(τ))=E

[

log P (X, N , Y |Ω)|N , Y , Ω(τ)
]

is com-
puted. From (2), we have

Q(Ω|Ω(τ))=P (x1|Y , N , Ω(τ)) log P (x1)

+
∑

j P (xj |Y , N , Ω(τ))[log λxj
−λxj

Nj ]

+
∑

i,j P (xi, xj |Y , N , Ω(τ)) log P (xi|xj)

+
∑

i,j P (xi, xj |Y , N , Ω(τ)) logN (yij ; ·).
(3)

To obtain posterior marginalsP (xj |Y , N , Ω(τ)) and
P (xi, xj |Y , N , Ω(τ)), appearing in (3), we use the belief
propagation algorithm presented in Appendix. After the
posterior marginals are computed, they are plugged in (3),
which concludes the E-step.
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Figure 3. The texel model: hidden variablesxi andxj form the
Markov chain, and generate observables: region propertiesyij ,
and the branching factorNi.

In the M-step, we updateΩ(τ+1)=arg max
Ω

Q(Ω|Ω(τ)).

By setting∂Q(Ω|Ω(τ))/∂Ω=0 and accounting for the La-
grange multipliers, we obtain the following update rules:

P (τ+1)(x1) =P (x1|Y , N),

P (τ+1)(xi|xj)=
1

nij

∑

i,j

P (xi,xj |Y ,N)
P (xj |Y ,N) ,

µ
(τ+1)
xixj =

P

i,j
P (xi,xj|Y ,N)yij

P

i,j
P (xi,xj |Y ,N) ,

Σ
(τ+1)
xixj =

P

i,j
P (xi,xj|Y ,N)(yij−µ(τ+1)

xixj
)(yij−µ(τ+1)

xixj
)T

P

i,j P (xi,xj|Y ,N) ,

λ
(τ+1)
xi =

P

i
P (xi|Y ,N)

P

i
P (xi|Y ,N)Ni

,

(4)
wherenij is the number of child-parent pairs(i, j) in T .

The E-step and M-step are performed alternatively until
minxi,xj

|µ(τ+1)
xixj −µ

(τ)
xixj |/µ

(τ)
xixj <10−4, which takes only a

few iterations in our experiments. The EM is guaranteed to
converge to a local maximum or a saddle pointΩ̂.
Learning Model Structure: The tree-unionT is con-
structed by sequentially adding the texel subtreest∈D to
the model. This is done by matchingt with the current es-
timateT (τ), and by adding and appropriately connecting
to T (τ) the unmatched nodes fromt, which yieldsT (τ+1).
For matchingt and T (τ), we use the same algorithm of
[18, 17], described in Sec. 3. From (1), it follows that learn-
ing the model structureT depends on the definitions of node
saliencyri, and the cost of node matchingmii′ . Our goal
is to estimateri andmii′ , so that the learning yields the
optimal model structure. This is accomplished by posing
tree-union learning as an optimization problem with the ob-
jective to minimize data description length. In the sequel,
we deriveri andmii′ .

We begin with the standard definition of the MDL of sub-
trees inD:

L , − logP (T |Ω) − log P (|T |) + 1
2 |Ω| log |D|, (5)

whereP (T |Ω) is given by (2),P (|T |) is the prior of the
number of nodes inT , and|Ω|=3K2+2K (Sec. 4).P (|T |)
is assumed to be the exponential distribution with parameter
Λ. Also, all tree-unions with|T | nodes are assumed equally
likely. Since the number of ordered trees withn nodes

is 1
n

(

2n−2
n−1

)

n→∞−−−→4n, we obtainP (|T |)=κe−Λ|T |4−|T |,

whereκ is a normalization constant. LetLj denote per-
node description cost, whose definition follows from (2):

Lj,λxj
Nj−

∑Nj

i=1 log[P (xi|xj)N (yij ; µxixj
, Σxixj

)].
(6)

For the roots inT , L1 also includes− log P (x1). Then,
from (5) and (2),L can be expressed in terms of per-node
description costs as

L =
∑

j∈T Lj+|T |(Λ+ log 4)+1
2 |Ω| log |D|, (7)

where constants irrelevant to minimization ofL are
dropped. The expression in (7) shows thatL is directly pro-
portional to the number of nodes inT . Thus, minimizing
L amounts to findingT with the fewest nodes, which also
preserves the original node adjacency and hierarchical rela-
tionships inD. Indeed, such a graph is the tree-union, which
can be constructed using the matching algorithm of Sec. 3,
with ri andmii′ defined so thatL is minimized. To specify
ri andmii′ , we relate the expressions for description length
(7) and similarity measure (1), as discussed in the sequel.

When learningT (τ+1) from T (τ) andt∈D, two nodes
i∈T (τ) and i′∈t may either be matched (case 1), or left
unmatched (case 2). In case 1,i and i′ form a joint
nodeii′ to which we associate the vector of region prop-
ertiesyii′·=mean(yi·, yi′·). In case 2, nodei′∈t is added
to T (τ+1), while i remains intact. From (7), descrip-
tion length advantage between the two cases is given by
A(i, i′)=Lcase 2−Lcase 1=Li+Li′−Lii′ . It follows that the
set of matchesf={(i, i′)|i∈T (τ), i′∈t} that minimizesL
also maximizes the advantage function

A(f) = maxf

∑

(i,i′)∈f (Li+Li′−Lii′ ). (8)

From (1) and (8), we conclude that maximizingA(f) can
be identified with maximizing the similarity measureS by
the matching algorithm of Sec. 3. This allows us to define
the information theoretic node saliency and matching cost:

ri , Li, mii′ , Lii′ , (9)

whereLi andLii′ are given by (6). The definitions ofri

andmii′ in (9) guarantee that the texel model will respect
the node-hierarchy constraints present inD, and will have
the MDL among all possible models. The overall learning
algorithm is summarized in Alg. 1.

6. Experimental Results

For experimental validation, we carefully selected a new
dataset containing 80 homogeneous 2.1D natural textures.
All textures are on a nearly planar surface, and have been
imaged from a direction nearly normal to the plane. The
texels are all 3D, but their thickness and depth differences
are much smaller than their distance from the camera.
Therefore, they offer a good approximation to 2.1D tex-
tures. Each texture class is represented by three320 × 240
images in the dataset, samples of which are shown in
Figs. 1, 4, 5. The three images are obtained by cropping
a single large texture image. The number of texels per
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Algorithm 1 : Learning the Texel Model
Input : D={t1, . . ., tN}, K∈{2, 3, 4, . . . }, Λ∈[ 1

200
, 1

50
]

Output : Model structureT̂ , and model parameterŝΩ

Initialization ofΩ(0): SetP (x1) andP (xi|xj) as uniform1

distributions;µxixj
=mean({yij}), Σxixj

=cov({yij});
λxi

=1/mean(# of children per node inD);
Initialize r

(0)
i ,||yi·||, andm

(0)
ii′

,|r(0)
i −r

(0)
i′

|;2

ConstructT (0) from {t1, t2} by usingr
(0)
i andm

(0)
ii′

, where3

t1 andt2 are randomly selected fromD;
Setτ=0, D=D\{t1, t2} ;4

while D 6= ∅ do5

ConstructT (τ+1) from T (τ) andt by usingr
(τ)
i and6

m
(τ)
ii′

, wheret is selected fromD such thatL is minimum;
ComputeΩ(τ+1) as in (4) ;7

Computer(τ+1)
i andm

(τ+1)
ii′

as in (9) ;8

D=D\{t}; τ = τ+1;9

end10

T̂ = T (τ), Ω̂ = Ω(τ);11

image ranges from 14 to 175, depending on the texture
class. The dataset represents the following challenges
(Figs. 4, 5): (1) inter-texel occlusions, (2) texel subregions
can be viewed as texture at finer resolution (artichokes); (3)
repetitive texel substructure may be confused with the texel
(vertical stripes on the fish); (4) large variations in texelap-
pearances (fish); (5) the texels may appear as low contrast
regions (bees), thin regions (pine-trees), and their contours
may form complex topologies (four contours of the leeks
meet at one point), all of which are difficult to segment; (6)
the background surface along which physical texture ele-
ments lie may be completely/heavily occluded by the ele-
ments (bees), which violates the assumption of some prior
work that texels appear against the background; and (7) il-
lumination may vary across the image (fish).

The texel model is learned on one out of three available
images per texture class. Texel extraction is performed in
the remaining two test images by matching the learned texel
model with the two segmentation trees. The matches found
with sufficiently large similarity measures are adjudged as
texels. The ground truth is obtained by manually delineat-
ing the contours of all texels present in the image. A de-
tected texel is said to be false positive if the XOR of its
area with the true texel area is larger than their intersection.
Segmentation error per true positive is defined as the ra-
tio between the XOR, and union of its area with the true
texel area. Average segmentation error is defined as the
mean of texel segmentation errors on all true positives in
the image. For all texture classes, we perform texel extrac-
tion experiments three times, each time using a different
training image, and report the average results here. For the
purpose of showing specific results, Figs. 4, 6 , and Table 1
use the similarity-measure threshold that yields the highest
F -measure,F,2·Precision·Recall/(Precision+Recall).

Texel segmentation:Figs. 4 and 5 illustrate high accuracy
in detecting and segmenting the fully and partially visible
texels. Extracted texels are shown by drawing the outer
contours of the visible parts on the original. Performance
is good even in cases when the texel edges are jagged and
blurred (e.g., bees), and when several overlapping texels
form a complex region topology (e.g., daisies). Figs. 4 and 5
also show examples where our texel extraction fails. Tex-
els that are not detected, for the most part, have low inten-
sity contrasts with the surround, and thus do not form texel-
characteristic subtrees in the segmentation tree that can be
matched with the texel model. Due to low contrast, parts
of one texel may be occasionally confused as parts of the
neighboring texels (petals of daisies). Also, severely oc-
cluded texels may not be detected, since the similarity mea-
sure of their matches with the texel model may not be suffi-
ciently large (e.g., occluded oranges in Fig. 5).
Accuracy: The results in Table 1 and Fig. 6 are averages
over all 80 textures in the dataset. Fig. 6 gives performance
comparison of the information-theoreticedit-costs, given by
(9), against the standard heuristic definition of edit-costs,
given in Step 2 of Alg. 1. When the heuristic edit-costs are
used, there is no need to estimate the model pdf’s, and thus
the learning algorithm in this case does not include Steps 7–
8 of Alg. 1, i.e., it is equivalent to the algorithms presented
in [17]. Learning the information-theoretic edit-costs yields
significantly better performance.
Sensitivity and Run-time: Our texel extraction algorithm
uses only two input parameters: (1) the mean number of
nodes in the tree-union1/Λ, and (2) the number of hidden-
variable statesK. Λ controls the flat prior distribution
P (|T |). Therefore, our algorithm is insensitive to a wide
range of valuesΛ∈[ 1

200 , 1
50 ]. Sensitivity toK is illustrated

in Table 1 and Fig. 6. AsK increases both the detection
and segmentation become better, but with a major increase
in complexity of Alg. 1 (O(|T |K2), see Appendix). For ex-
ample, learning takes approximately 6-15min forK=3, and
10-25min forK=6, with C-code on a 2.8GHz 2GB PC.
Matching the tree-union with the segmentation tree takes
10-30s, depending on the number of nodes in these graphs.

7. Conclusions

We have presented what to our knowledge is the first at-
tempt at solving texel detection and segmentation, for the
case of homogeneous, frontally viewed, 2.1D, natural tex-
tures. This is accomplished by a new learning algorithm
that combines tree matching, belief propagation on acyclic
graphs, and EM, to learn structural, geometric, and photo-
metric properties of the complete (unoccluded) texel from
its partially visible occurrences in a 2.1D texture, without
any supervision. Tree matching and tree-union learning
have already been demonstrated to construct good represen-
tations under changes in illumination and view directions
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[17]. Here we show that these algorithms also handle occlu-
sions well. We plan to extend this work to cover nonfrontal
and nonplanar textures with occlusion.

Appendix: Belief Propagation on Tree-Union

The E-step in the EM algorithm requires posterior
marginalsP (xj |Y , N , Ω(τ)) and P (xi, xj |Y , N , Ω(τ)),
appearing in (3). We compute them by using the stan-
dard belief propagation (BP), derived below. LetYi and
Ni denote all observables down the tree-union under node
i∈T , includingyij andNi. Let (i, j) denote child-parent
node pair, andC(i), the set of children ofi. Then, we de-
rive the BP algorithm onT as presented in Algorithm 2.

Algorithm 2 : Belief Propagation onT
Input : Current estimateΩ(τ) of model parameters, K
Output : PosteriorsP (xi|Y , N ) andP (xi, xj |Y , N )

Compute∀i, j∈T , xi, xj∈{1, . . . , K}: P (yij |xi, xj), and1

P (Ni|xi) usingΩ(τ), as specified in Sec. 4;
Compute∀(i, j)∈T top-down:2

P (xi, xj)=P (xi|xj)P (xj); P (xi)=
P

xj
P (xi|xj)P (xj);

Compute∀(i, j)∈T bottom-up:3

P (xi, xj |Yi, Nj)∝P (Nj |xj)P (yij |xi, xj)P (xi, xj)

·
Q

c∈C(i)

P

xc

P (xc, xi|Yc, Ni)

P (xi)
;

Compute∀(i, j)∈T top-down:4

P (xi, xj |Y , N ) =
P (xi, xj |Yi, Nj)P (xj |Y , N )

P

xi
P (xi, xj |Yi, Nj)

,

P (xi|Y , N ) =
P

xj
P (xi, xj |Y , N ).

In Step 3 of Alg. 2, “∝” means that equality holds up to
a multiplicative quantity, which is canceled out in Step 4.
Complexity of the EM is defined by complexity of Alg. 2,
which isO(|T |K2); |T | is the number of tree-union nodes.
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Figure 4. Results of texel extraction on eight 2.1D natural textures from our dataset of 80 (K=4, Λ= 1
100

). The contours of the detected
texels are overlaid on the originals. Challenges to the algorithm include low-contrast regions between neighboring texels, thin and elongated
texel regions, jagged and blurred texel edges, complex topologies of the texel boundaries, inter-texel occlusions, and varying illumination.

Figure 5. Texel extraction usually fails due to severe occlusion and low intensity contrast with neighboring texels. The matches of occluded
texels with the texel model have lower similarity measures than the threshold. The low contrast texels are not even represented by the
segmentation tree, and thus cannot be detected. The two right images show zoomed-in details of the black windows in the original image.
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Table 1. Average Recall, Precision, and Segmentation Error(in %)

K=2 K=3 K=4 K=5 K=6 Heuristic Edit-Costs

Recall 61.3±9.5 67.5±10.1 75.5±8.7 79.4±6.2 82.6±7.3 59.6±11.2

Precision 68.2±17.8 79.8±11.8 82.5±9.4 85.4±7.1 90.2±6.3 73.2±16.3

Segm. Error 29.8±14.5 25.4±13.1 20.3±9.4 17.9±10.4 16.7±8.1 19.9±11.4

Figure 6. Performance comparison of the information-theoretic edit-costs, given by (9), against the standard heuristic definition of edit-
costs, given in Step 2 of Alg. 1.
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