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Part-Based Models for Analyzing Tooth Characters of
Bat Skulls

Xu Shell Hu

EECS, Oregon State University

Abstract. This paper is a summary report for our work in the AVATOL project.
We focus on tooth character scoring for bat species. Based on the needs of bi-
ologists, we propose three different scenarios of character scoring and come up
with three different methods that make use of the structure among object parts
(i.e., teeth). For a single species, we use the classical deformable parts model
with few modifications in parameter learning. For multiple species, we propose a
new model for parsing and localizing chain structured objects, where object parts
may be invisible due to partial occlusions or phenotypic variations. We model
the locations of parts and the dependencies between all possible pairs of parts
using a graphical model. For a testing image, the goals are finding the locations
of parts and the best chain structured parse graph. We show that exact inference
using dynamic programming can be performed under the assumption that all the
parse graphs are substrings of a chain graph. The last scenario is the case when
only a small group of species are known. We want to score unknown species ac-
cording to the knowledge learned from known species. We propose a zero-shot
learning method inspired by recent development of attribute representations for
image classification. The individual tooth detectors are treated as attribute classi-
fiers in our case. We evaluate our methods on a dataset of bat skull images. The
results show that our methods are able to score presence/absence characters of
tooth automatically and achieve significant improvements over baseline methods.

1 Introduction

“Phenomic characters” represent a rich source of information for understanding bio-
diversity and evolution [1,2], especially for reconstructing the Tree of Life. For fossil
species, these data are the only way to discover the evolutionary relationships among
species. For living species, phenomic data contribute to our understanding of evolu-
tionary relationships and provide a window into the complex interrelationships of form,
environment, and genes. Phenomic characters include anatomical characteristics of or-
ganisms, such as presence or absence of shared or unique parts (e.g., horns, wings),
shapes of parts (coiled versus straight horns) relationships between parts (e.g., that the
eye is superior to the nose), and other features such as biochemistry and behavior. Mor-
phoBank, a new web application and database allows researchers to collect and archive
images collaboratively in online matrices [3]. MorphoBank now includes thousands of
scores and annotated images used in evolutionary research. Columns in MorphoBank
matrices represent characters, such as the presence/absence of a part (e.g., horns) or
more complex relationships (e.g., distance between teeth). Rows in matrices are species.
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Scoring each cell in a matrix, however, currently requires individual visual inspection
by an expert, limiting the speed at which these data can be analyzed. A goal of our
research, as a part of the collaborative AVATOL project1, is to apply computer vision
techniques to accelerate the character scoring process, which will significantly advance
the reconstruction of the whole Tree of Life containing tens of millions of characters
and species [4].
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Fig. 1: Two bat skull images in ventral view and the structural dependencies between
teeth. A tooth layout is a configuration of tooth types induced by a particular instance
of structural dependencies.

In this work, we mainly focus on an image collection of bat skulls provided by re-
searchers in the Department of Mammalogy at the American Museum of Natural His-
tory. Some examples of bat skulls in ventral view are illustrated in Fig. 1, Fig. 5 and Fig.
6. To analyze the evolutionary relationships between bat species, one important clue is
to reason about the types and the layout of their teeth. Teeth vary widely in mammalian
evolution, and their differences are important distinguishing characteristics of species
and larger groups. Mammals, including bats, have four tooth types (incisors, canines,
premolars, and molars). Differentiating tooth type and number can be especially prob-
lematic when teeth appear to be similar in texture and shape, in which case finding the
right tooth layout could be of great help. However, the tooth layout is usually unknown
unless we know in advance which species it comes from, in which case we probably
know the tooth types as well. Depending on how much information we are given, we
summarize the problems into three different scenarios:

1. Individual Species Scenario (ISS): We are given a set of images from a single
species with ground truth annotations of tooth locations in the training set. The
goal is to find the tooth layouts for all the images in the testing set;

1 NSF – Assembling, Visualizing, and Analyzing the Tree of Life: http://avatol.org/
ngp/

2

http://avatol.org/ngp/
http://avatol.org/ngp/
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2. Multiple Species Scenario (MSS): We are given a database of images drawn from
several bat species. All these species must appear in the training set. Given a testing
image without the meta information of species, the goals are to determine tooth
types and localize the teeth;

3. Zero-Shot Scenario (ZSS): The images in the testing set are drawn from species
that are not included in the training set. This is the main application scenario since
there are hundreds of bat species, but only a few of their images have been anno-
tated. If all of the images were annotated, there would be no need for computer
vision, because the characters would already have been scored. The goals for the
test images are the same as in the MSS.

We have developed different methods for each scenario. For ISS, we model the
layout of teeth as a tree graphical model with Gaussian-like pairwise potentials. The
problem of localizing teeth can then be solved by exact MAP inference using dynamic
programming and the distance transform. This model is known as the deformable parts
model (DPM) [5] in computer vision. The proposed model for MSS is called the recon-
figurable chain model (RCM), which is an extension of the DPM. Since multiple species
will introduce multiple tooth layouts, we must search for the right tooth configuration
while localizing the teeth at the same time. Due to the assumption of chain graphs, the
inference of RCM can be solved by dynamic programming as well. The model parame-
ters can be learned jointly using a structured SVM. For ZSS, we use a different method
inspired by recent research on zero-shot learning using attribute representations [6]. In
our case, we learn a set of tooth classifiers (specifically DPMs) to obtain scores under
different configurations. These scores are combined to form the attribute representation,
which is used to predict the tooth types.

Our experiments are performed on the existing dataset of bat skulls in Morphobank.
The dataset includes 24 bat species with 10-20 images per species. For ISS, we evaluate
the localization error of the teeth. For MSS and ZSS, we evaluate the prediction error of
tooth types and the localization error of the teeth. Our implementations are integrated
into a software package for automatic scoring of tooth characters on Morphobank with
a GUI that allows users to examine the results.

The structure of this report is organized as follows. In section 2, we will talk about
the technical details of deformable part models. In section 3, we present the problem
under MSS and introduce the reconfigurable chain model (RCM) including its inference
and parameter learning. In section 4, we discuss the zero-shot learning for character
recognition and a simple method using DPMs as attribute classifiers. Our experimental
results will be presented in section 5.

2 Single Species with Deformable Parts Model

For a single species, the tooth types are given, so the task is merely to localize teeth.
We noticed that distinguishing among different tooth types is difficult due to the simi-
larity in appearance. To obtain more precise localization of teeth, we make use of the
prior information about the geometric layout of teeth. If we model the locations of teeth
as random variables, by learning a graphical model of those locations, the localiza-
tion problem can be solved by MAP inference. Similar problems have been studied in

3
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computer vision for more general objects. The most famous graphical model for object
recognition due to Felzenswalb et al. [5] is called the deformable parts model (DPM).
The idea of modeling object parts as a deformable pictorial structure has been studied
for decades, spanning from early work by Fischler and Elschlager [7] to more recent
work by Felzenszwalb et al. [5,8] and Yang et al. [9]. In the DPM, an object template
is represented by a composite of part filters (i.e., the models of the appearance of each
part). The geometric layout of parts is hard encoded by a tree structure, which per-
mits exact inference. The matching of an object on the image to a pictorial structure
template involves both photometric similarity measurements and structural similarity
measurements.

Given a tree graph G = (V, E), where V is the set of teeth (the nodes) and E is
the set of edges connecting neighboring teeth, the scoring function of a particular tooth
layout x is defined as

f(x|I) =
∑
i∈V

θi(xi|I) +
∑

(i,j)∈E

θij(xi,xj), (1)

where θi(xi|I) is the unary potential for measuring appearance likelihood of the ith
tooth, and θij(xi,xj) is the pairwise potential for scoring the spatial offset between
tooth i and tooth j. Thus, part detection and localization amounts to estimating x̂ =
argmaxx f(x|I). We specify θi(xi|I) and θij(xi,xj) as linear functions:

θi(xi|I) = wi ·ψi(xi, I), (2)
θij(xi,xj) = wij ·ψij(xi,xj), (3)

where ψi is a feature vector associated with i, and ψij is a pairwise feature vector
associated with (i, j). In particular, ψi(xi, I) represents the standard HOG descriptor
extracted from a window centered at xi, andψij(xi,xj) measures the displacement be-
tween windows centered at xi and xj . Specifically, letψij(xi,xj) = [dx, dy, dx2, dy2],
where [dx, dy] is the offset between xj and the anchor location of j specified by xi. This
then defines a Gaussian-like potential, which makes it possible to apply a distance trans-
form [10] to speed up the message computations. Moreover, for all pairs ij, ψi(xi, I)
and ψij(xi,xj , I) are concatenated to form a joint feature map ψ. Let w denote the
corresponding parameter vector. Then the score function Eq. (1) can be rewritten as
f(I, S) = w ·ψ(x, I).

Inference. To find the most probable location of teeth, we perform the standard max-
product message passing algorithm, where the messages are computed via the gener-
alized distance transform algorithm [10] since the state space of each random variable
could be as large as the image. The time complexity of this inference is O(LK), where
L is the number of possible locations for each part and K is the number of parts.

Learning. Parameter learning is slightly different from the original DPM learning [5],
where they use a latent SVM and the loss is merely related to correctly identifying the
root location. In our case, we suffer a loss for errors in the location of each tooth. The
learning is thus formulated as a structured SVM [11]. Note that it is also possible to

4
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apply maximum likelihood learning if marginal inference is used instead of MAP infer-
ence. Formally, given a dataset {In,xn}Nn=1, consider the empirical risk minimization
as the form

min
w

∑
n

∆
(
xn, argmax

x
fw(x|In)

)
, (4)

where∆ is the loss function. However, the above objective is not convex in general. We
will optimize a convex upper bound and include a complexity regularization term.

min
w

λ

2
‖w‖22 +

∑
n

max
x

(
fw(x, |In) +∆(xn,x)

)
− fw(xn|In) (5)

There are two key components in the above optimization: 1) the user-defined loss func-
tion ∆ and 2) the loss augmented inference, i.e., maxx

(
fw(x, |In) + ∆(xn,x)

)
. We

specify the loss function as

∆(x, x̂) =
1

|V|

|V|∑
i=1

κ(xi, x̂i), (6)

where κ is a kernel for measuring the distance between the predicted location and the
ground truth location, which can be one minus intersection-over-union (1-IOU) if we
define appropriate bounding boxes to cover the entire teeth. The MAP inference algo-
rithm mentioned above can be reused for the loss augmented inference. The only dif-
ference is that we will add 1

|V|κ(xi,x
n
i ) when computing the unary potential θi(xi|In).

As in [12], we solve Eq. (5) using stochastic subgradient descent. Empirically, we
set λ = 1 and run the training for 200 epochs, which ensures the convergence for all
species.

3 The Multiple Species Scenario (MSS)

If there exist multiple species, we would like to learn a model that could correctly score
all of them. By contrast, a DPM can work only for a single species. The MSS is a more
general setting, where the dataset contains images from multiple species. However the
name of the species in each testing image is not given. Note that the key assumption
of MSS is that all the species will be seen in the training set. Thus we have enough
information to learn a model to identify the species (thus tooth types) and predict tooth
locations at the same time. In this section, we first discuss a simple baseline for MSS
using multiple DPMs. Then, we propose a new model called the reconfigurable chain
model (RCM) to handle the MSS and even more general structural variation issues in
object recognition.

3.1 Joint Training of Multiple DPMs

Given multiple species, one could train a DPM for each species. However, the scores
of different DPMs are not comparable in general, due to the different numbers of parts

5
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as well as mutually independent training. A simple solution inspired by the mixture
components introduced in [5] is to train all DPMs jointly. By introducing additional
biases, the scores can be adjusted, such that the scores of the truth species are larger
than others.

In practice, we first learn individual DPMs. Their parameters associated with po-
tential functions are not updated during the joint training. For each species, a bias is
then added. We learn these biases jointly, which turns out to be equivalent to a simple
multi-class classification with DPM scores as the input features.

3.2 Reconfigurable Chain Models for MSS

Consider the problem of localizing object parts on the image. In particular, we are
interested in the case where some parts may be invisible due to occlusions or missing
due to phenotypic variations. In general, this problem is intractable if the number of
parts is large. The number of part configurations grows exponentially as the number of
parts increases. In this work, we narrow our focus to a special case. Suppose the full
configuration has K parts and forms a chain structure (1, . . . ,K). We require that all
possible configurations of parts obey the substring assumption, that is, a configuration
of parts has to be a substring of the full configuration (1, . . . ,K). For example, (1, 3,K)
is one of the substrings of (1, . . . ,K).

We will show that for this case there exists exact inference by dynamic program-
ming, since the substring assumption defines an underlying order for parts, which allows
us to consider only a small subset of the possible configurations of parts. Although this
is a special case, it is important for many part localization problems whenever parts have
distinct semantic meanings. For example, it is natural to define an order for shoulder,
elbow and hand in the context of human pose estimation.

To describe the problem formally, we define a random variable xi for each part to
denote its location in the image. We then associate a binary discrete random variable dij
to indicate whether there is a dependency between the part i and j. Now a configuration
of parts can be read from the dependency graph D = [dij ], by collecting the endpoints
of those edges with dij = 1 in a sequence. Without loss of generality, we assume the
dependency graph is a complete graph. One can also eliminate impossible dependencies
to form a sparser graph. An example of the dependency graph is shown in Fig.2.

Note that our problem is similar to the problem of dependency parsing in NLP,
except that we are looking for a chain subgraph from the dependency graph instead of a
tree. However, the dependency parsing problem does not ask for finding the state (i.e.,
the part location in our case) of each node in the graph. In addition, the dependencies
between parts may vary for different part locations. Thus, we have to optimize over x
and D jointly.

In case all parts are invisible, we add a virtual head node indexed by 0, but x0

does not represent any actual location on the image. In order to keep consistency, all
the potential functions with x0 as inputs return 0’s as the function outputs. Now, we
formulate the problem as a structured prediction problem with the scoring function

6
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defined as

f(x, D|I) =
K∑
i=0

K∑
j=i+1

dij (θij(xi,xj) + θj(xj |I)) +

(
K∑

t=i+1

dit − dij

)
· δij (7)

=

K∑
i=0

[ K∑
j=i+1

dij(θij(xi,xj) + θj(xj |I))

−
K∑

j=i+1

dij · δij +

 K∑
j=i+1

dij

 ·
 K∑

j=i+1

δij

]. (8)

where θij and θj are unary and pairwise potentials depending on the locations of parts
given the image data I , and δij is introduced as a compensation for the unary poten-
tial of part j as well as the pairwise potential between part i and part j. Note that if∑K

t=i+1 dit = 0, the contribution of part i to f will be 0, since it does not make any
sense to add δit’s in this case.

In order to make sure a configuration of parts is a chain, we impose additional
constraints on D:

(a) Upper triangle: If dij = 1, then i < j, and dij = 0, whenever i ≥ j;
(b) Single dependence:

∑K
j=1 dij ≤ 1,∀i and

∑K
i=1 dij ≤ 1,∀j;

(c) Substring: If dij = 1, we have dkt = 0,∀t, whenever i < k < j and
∑K

t=1 djt = 1.

Let Dc = {D : D satisfies (a), (b) and (c)} denote the set of valid D’s. Now, we could
formulate the problem of parsing and localizing parts as the following discrete opti-
mization:

max
x,D∈Dc

f(x, D|I). (9)

Fig. 2: The dependency graph, where the dashed node is the virtual head node.

Inference. We show that there is an exact inference procedure for maximizing over
x and D at the same time. Although they are dependent of each other, the substring
assumption allows us to decouple x and D in one pass from K to 0 using dynamic
programming (DP).

If D is fixed, one could apply the max-product message passing algorithm to obtain
the MAP solution, which is in fact a DP algorithm. On the other hand, if x is fixed,

7
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one could also find D exactly via another DP, which is similar to the idea of finding the
maximum weighted path in a graph given the source and the sink.

We noticed that these two DPs can be operated alternately if an order of nodes
is predefined, which is exactly the case when the substring assumption is made. We
develop a message passing algorithm to combine them. The message passing steps are
shown as follows.

m1
j→i(xi) = max

xj

[
θij(xi,xj) + θj(xj) + cj(xj)

]
, (10)

m0
j→i(xi) = max

xj

[
δij + cj(xj)

]
, (11)

d∗i (xi) = argmax
di : ‖di‖1≤1

 K∑
j=i+1

m1
j→i(xi) · dij +m0

j→i(xi) · (1− dij)

 , (12)

ci(xi) =

K∑
j=i+1

m1
j→i(xi) · d∗ij(xi) + δij · (‖d∗i (xi)‖1 − d∗ij(xi)), (13)

where di = {dij}Kj=i+1. Briefly, for each edge ij, we pass two messages representing
the beliefs from below conditioned on the state of dij . The messages are combined to
obtain ci(xi) by maximizing over di, which now gives the best score of the substring
below i. Note that Eq. (12) involves solving a linear program with respect to each lo-
cation. It is not difficult to show that integer solutions are guaranteed for all such linear
programs.

Once we reach the node 0, we can backtrace to obtain the MAP solution. Specif-
ically, we need two back-pointers for Eq. (10) and Eq. (12) respectively: x1∗

j (xi) and
d∗i (xi). We first find d0 from d∗0(x0). If ‖d0‖ = 0, which implies all parts are invisible,
then we are done. Otherwise, there must exist a node j with d0j = 1. Now, its location
can be read from xj = x1∗

j (x0). Next, we obtain dj from d∗j (xj). This procedure is
repeated until we get the solution for node K.

Proposition 1. c0(x0) = maxx,D∈Dc
f(x, D).

Proof. Let xi:K = (xi, . . . ,xK) and Di:K = (di, . . . ,dK). We can define the scor-
ing function for a subproblem as f(xi:K , Di:K). The result that c0(x0) is equal to the
MAP objective value can be shown by induction. The base case holds since we have
cK(xK) = 0. Now, let’s assume that ci(xi) = maxxi+1:K ,Di:K

f(xi:K , Di:K) holds for
each i ≥ k. We need to show it also holds for ck−1(xk−1). In fact, with the constraint
‖dk−1‖1 ≤ 1, we have

max
xk:K ,Dk−1:K

f(xk−1:K , Dk−1:K) = max
dk−1

max
xk:K ,Dk:K

f(xk−1:K , Dk−1:K) (14)

= max
{
0,max

j≥k
sj(xk−1)

}
, (15)
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where sj(xk−1) corresponds the case when dk−1,j = 1, which is given by

sj(xk−1) = max
xj

[
max

xj+1:K ,Dj:K

f(xj:K , Dj:K) + θk−1,j(xk−1,xj) + θj(xj)
]

+
∑

i≥k : i 6=j

δk−1,i · (‖dk−1‖1 − dk−1,i) (16)

= m1
j→k−1(xk−1) +

∑
i≥k : i 6=j

δk−1,i · (‖dk−1‖1 − dk−1,i), (17)

since di = 0 for i ∈ [k, j − 1] by the constraint (c). Thus, we have

ck−1(xk−1) = max
xk:K ,Dk−1:K

f(xk−1:K , Dk−1:K). (18)

Comparing to Eq. (13), it is easy to show that

c0(x0) = max
x1:K ,D0:K

f(x0:K , D0:K) = max
x,D

f(x, D). (19)

A naive algorithm that enumerates all possible locations and then solves the DP
for each location takes O(LKK2). The time complexity of our algorithm is O(L2K2),
where L is the number of possible locations for each part. If the distance transform
technique [10] is applied, the time complexity can be reduced to O(LK2).

Joint Max-Margin Learning. Suppose that the potential functions are linear func-
tions with the following forms: θij(xi,xj) = θij · φij(xi,xj) and θi(xi|I) = θi ·
φi(xi|I), where φ is the feature function. Let the parameter vector w = [θ, δ]. Note
that fw(x, D) is a polynomial function in x and D, however it is also a linear function
in terms of w. To see that, we can rewrite fw(x, D) as

fw(x, D) = w ·ψ(x, D), (20)

where ψ =
(
{dij · (φij ,φj)}ij , {‖di‖1− dij}ij

)
. Thus, the parameters can be learned

jointly using the structured SVM framework. The objective function is similar to Eq.
(5), except for the loss function, which is defined as

∆(xn, Dn,x, D) =

K∑
i=0

K∑
j=i+1

κ(xn
j , d

n
ij ,xj , dij), (21)

where κ(xn
j , d

n
ij ,xj , dij) is a kernel function given by

κ(xn
j , d

n
ij ,xj , dij) =

{
1, if dnij = dij

1(
box(xn

j )∩box(xj)

box(xn
j )∪box(xj)

≤ 0.5), if dnij 6= dij .
(22)

Multiple Chains. Although RCM can only find chain instances, it can be used to local-
ize more complex object parts whenever the object can be naturally decomposed into
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multiple chains. Fig. 3 shows an example of the decomposition that the pictorial struc-
ture of human body parts is decomposed into five chains. Note that the associated model
with these five chains is not equivalent to a tree-structured model, since certain connec-
tions are absent, for example, the connection between the hip and the leg is not con-
sidered in the model, which is replaced by two connections between a virtual node and
two real nodes. Generally, a dependency graph can be attached to another dependency
graph by connecting its virtual head node to any node on that graph. MAP inference
for dependency parsing will be performed independently for each dependency graph.
A node can additionally receive messages from other dependency graphs attached to it,
which is hard coded. Note that we have to make sure the combined graph of multiple
chains is loop-free. We can randomly pick a virtual head node as the root node of the
combined graph. The message passing is then similar to the max-product belief propa-
gation on trees, which guarantees to obtain the global optimum.

leg knee foot

head belly hip

slder

elbow hand

Fig. 3: An example of multiple chains for human pose estimation with structural varia-
tions.

Related Work. Recent part-based models, such as the deformable parts model (DPM)
[5,9] and its hierarchical extensions [13,14], have been successfully applied to detect
objects. However, these models underperform when objects are partially occluded [8].
This is because there is no effective mechanism in such models to handle missing parts.
Part detectors always fire somewhere to form a full part configuration of the object,
which causes false positives and false negatives.

Our approach is related to recent extensions of part-based models aimed at explic-
itly handling occlusion. These extensions are not appropriate for our problem either.
This is because these methods typically estimate every part’s visibility under the strong
assumptions that the part is a) independent from the other object parts [15,16]; b) con-
sistent with the visibility of neighboring parts [17,8]; c) consistent with the visibility of
parent and children parts of the object’s hierarchical structure [18]; or d) governed by a
“grammar” of occlusion shape priors or occlusion patterns [19,20,21]. However, these
assumptions do not hold in our setting.
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4 The Zero-Shot Scenario (ZSS)

One issue with the MSS is that it works only for testing images from known species
(i.e., species that appear in the training set). However, in AVATOL, the whole idea is for
the scientists to annotate a small number of species, train the computer vision algorithm,
and then apply it to score the characters in many more species. The scientists do not have
time to manually annotate images from all of the species, and if they did, there would
be no need for computer vision. We want to learn the rules for tooth configuration (or
more precisely which tooth types are present) from a small number of known species
and then apply these rules to many more species. Note that the prediction of a tooth
type is to be performed at the species level, which cannot be properly handled by RCM
due to possibly inconsistent predictions for different instances within the same species.
Moreover, the RCM requires strong supervision, which is contrary to the ZSS. If we
have already seen all the species in the training set, there is no point in predicting tooth
configurations.

In the ZSS, we assume that the known and unknown bat species share many phone-
mic characters. In our case, this means that we assume they share the same types of
teeth. It is reasonable to assume that teeth of the same type in different species will
have similar relative position and appearance. This, in turn, should allow successful
tooth detection and localization in unannotated images. It is natural to consider the
transfer learning, which provides a framework to utilize prior knowledge, so that a
model of a new class can be as effectively trained on a few training examples as in
the case of standard training with many training data. Related work typically focuses
on transfer learning for image classification. For example, boosting can be used for
learning a feature representation that is shared by all image classes to address the issue
of lacking training data for some classes [22]. Similarly, learning shared object parts
[23], and shared training examples [24] have been demonstrated as successful transfer
learning formulations for image classification. Transfer learning has also been used for
attribute recognition by finding a shared classifier of object attributes [25,26]. However,
in the case of ZSS, we have a much harder problem than transfer learning since there
are zero training examples. Zero-shot learning has been introduced for image classifi-
cation by mapping raw features of the unknown class to a common feature space of the
known classes [6]. However, these approaches have not been extended to address object
localization.

Let K and U denote the index sets for known species and unknown species respec-
tively. A known species k ∈ K is represented as a tuple ({Ink}Nk

nk=1, {xnk}Nk
nk=1,y

k),
where yk is a vector of binary variables denoting the tooth configuration. Similarly, an
unknown species u ∈ U is given as ({Inu}Nu

nu=1,y
u). In the following, we will use the

superscript k or u to indicate whether a species belongs the known set or the unknown
set. We notice that the mapping Ink 7→ yk in a known species is usually different from
the mapping Inu 7→ yu in an unknown species, since images in unknown species could
be largely dissimilar to images in known species. Moreover, the configuration and the
locations of teeth in Inu are unknown, which introduces extra challenges in making use
of the information given by {xnk}Nk

nk=1. Hence, to predict the tooth configuration for
an unknown species, we need to build a common intermediate representation a, which
could be interpreted as an attribute representation [6], such that the mapping a 7→ y
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is shared among all species. Then, we can build the mapping from I to y by indirect
mappings: I 7→ a and a 7→ y. To simplify the problem, we assume that the presence or
absence of tooth types are independent of each other. Thus, the probability of the tooth
type i is present given the image I is computed by

p(yi|I) =
∑
ai

p(yi|ai)p(ai|I). (23)

One could also consider the co-occurrence between tooth types by defining p(y|I) in a
multi-label MRF framework [27].

We found that tooth detectors provide useful information for predicting the pres-
ence/absence of a tooth type. For a particular tooth type i, let θki denote the tooth de-
tector learned by species k ∈ K that has tooth type i. This is equivalent to the unary
potential of tooth type i if a DPM is pre-learned for species k. Then, the attribute rep-
resentation of tooth type i of an unknown species u ∈ U given Inu can be defined as
aui |Inu = {xk

i |Inu}k∈K : yk
i =1, where xk

i |Inu is a detected instance of θki on Inu . One
could also include interactions among xk

i |Inu ’s, such as κ(xk
i |Inu ,xk

j |Inu) discussed
in section 2. We notice that this kind of information does improve performance. How-
ever, it is not easy to offer a clear probabilistic interpretation. We leave this question to
future work.

The intuition behind the attribute representation is quite straightforward. A tooth
detection is usually computed by sliding the template/subwindow everywhere on the
image. A high score indicates high similarity between the template and an image sub-
window. For each tooth type in an unknown species, there must be at least one known
species sharing the same tooth type, thus there must be one high score in the attribute
presentation. It could be the case that there exists other high scores due to noise, but
such high scores usually occur in a predictable pattern. Hence, the occurrence of high
scores actually offers a good feature for predicting whether a tooth type is present in
the unknown species.

To compute p(yi|I), we define p(yi|ai) as a logistic regression model and p(ai|I)
as a product of posterior probabilities of tooth locations computed by each of the dif-
ferent tooth detectors. Specifically

p(yi = 1|ai) = sigmoid
( ∑
k∈K : yk

i =1

vk
i · θki (xk

i |I)
)
, (24)

p(ai|I) =
∏

k∈K : yk
i =1

p(xk
i |I), (25)

where v are the parameters of the logistic regression model and

p(xk
i |I) =

exp[θki (x
k
i |I)]∑

xk
i
exp[θki (x

k
i |I)]

. (26)
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In practice, p(xk
i |I) is usually very peaky. So we could just take top-M detections for

computing p(yi|I). Thus, for an unknown species u, we have

p(yu
i |{Inu}Nu

nu=1) =

Nu∏
nu=1

p(yu
i |Inu). (27)

Once we obtained the MAP solution ŷu
i , the corresponding best detection will be treated

as the estimate of the tooth location.
It is worthy mentioning that we do not include pairwise scores in ZSS. The main

reason is that our pairwise potential is based on geometric constraints. However, a pair-
wise potential learned from a known species is very hard to transfer to an unknown
species because we have observed wide variations in the geometry (e.g., compression,
elongation, narrowing, etc.).

5 Experiments

In this section, we first introduce the bat skull dataset and our software. Then, we present
our experimental results on the bat skull dataset for the three scenarios.

5.1 Bat Skull Dataset

The bat skull dataset consists of 954 images of bat skulls from 318 specimens. Each
specimen is placed on black sand and imaged from three views: ventral, lateral and
dorsal. Although these images have relatively uniform background, detecting certain
skull parts of interest (in our case the teeth) is challenging due to low contrast in color
and small differences in shape and texture. The specimens belong to a diverse set of
24 bat species, where each species has about 10-20 specimens. For each species, we
randomly select 50% of the images for training and use the rest for testing.

There are 9 tooth types: I1 – mesial upper incisor, I2 – distal upper incisor, C –
upper canine, P1 – central upper premolar, P4 – central upper premolar, P5 – distal
upper premolar, M1 – mesial upper molar, M2 – central upper molar and M3 – distal
upper molar. Each species has a subset of these tooth types. Note that the C, P5, M1
and M2 tooth types are always present, so we only consider I1, I2, P1, P4 and M3
in the experiments for MSS and ZSS. Since tooth types occur in pairs, for ZSS, we
only consider teeth on the right side of the jaw, in case there are confusions caused by
accidental damages.

We manually annotated tooth locations for all the teeth for 318 ventral views with
help from biologists. The labels of presence/absence of tooth types are provided for
each species. The dataset can be downloaded from Morphobank. For access permission,
please contact Andrea Cirranello (andreacirranello@gmail.com).

5.2 Our Software

We created a program for biologists to use who do not have machine learning back-
ground. The computer vision code is integrated into a GUI, called the AVATOL Com-
puter Vision System, for automatic character scoring using Morphobank’s matrices/dataset
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as input 2. The code for the three scenarios is integrated as backends. The main program
is designed to be a general character scoring tool. It requires a valid Morphobank matrix
with only a few rows annotated.

From the user’s perspective, the whole process can be summarized in a few steps.
First, the user is asked a series of questions about image quality and other domain
specific issues. The answers are collected for the data configuration and the specification
of input parameters. After determining which scenario is desired, the corresponding
algorithms are executed, including both training and testing. Finally, the user can use
the GUI to examine the experimental results. Two screenshots are shown in Fig. 4.

Fig. 4: Two screenshots of our AVATOL Computer Vision System.

5.3 Results for ISS

For ISS, we would like to test how well the DPM can detect teeth in bat skull images.
We train a DPM for each species. We use the standard 32-dimensional HOG feature
[28], each HOG cell has 8 × 8 pixels. Each part template has the same size as an
image subwindow covering 5 × 5 HOG cells. The training includes two steps. First,
part detectors are trained independently as the initialization. The parameters for pair-
wise potentials are initialized to [0, 0.1, 0, 0.1] as suggested by [5]. Then, part detectors
are jointly trained using the structured SVM, where the loss function is the standard
intersection-over-union operator proposed in the Pascal VOC challenges. We show the
average loss of the detection results for each species in Table 1, which are the mean
results over all tooth types. We can see that the DPM achieves pretty good results for
all species. A few examples of DPM are shown in Fig. 5.

5.4 Results for the MSS

For the MSS, we propose two baselines, which are simplifications or variants of our
RCM. Independent Pruning of Parts (IPP) ignores interactions between parts. Each part
detector is trained independently. Detection responses are thresholded with an empirical

2 Many thanks to Jed Irvine, who developed the GUI and the input/output system.
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Species Error Species Error Species Error
Noctilio albiventris 0.27 Aselliscus tricuspidatus 0.20 Hipposideros diadema 0.18
Artibeus jamaicensis 0.29 Cynopterus sphinx 0.25 Lavia frons 0.26
Desmodus rotundus 0.23 Kerivoula hardwickii 0.29 Miniopterus schrebersii 0.21
Glossophaga soricina 0.27 Natalus stramineus 0.18 Myotis lucifugus 0.22
Molossus molossus 0.25 Pteropus vampyrus 0.31 Nycteris thebaica 0.27
Mormoops megalophylla 0.28 Rhinolophus ferrumequinum 0.22 Nyctimene albiventer 0.22
Saccopteryx bilineata 0.24 Taphozous melanopogon 0.19 Rhinolophus affinis 0.29
Trachops cirrhosus 0.28 Furipterus horrens 0.23 Thyroptera tricolor 0.16

Table 1: The result for the ISS using DPM. The average detection error per species is
measured by 1−intersection-over-union for the bounding boxes. We report the mean
over all tooth types.

Fig. 5: A few examples of the results of the ISS. Different colors are used for differ-
ent tooth types. We can see that the DPM can capture different tooth appearances and
structures for different species.

threshold, estimated as the minimum score of hypotheses which highly overlap with
true positives in the training set. In testing, a part will be pruned if the best score is
below the empirical threshold. Multiple DPMs (MDPM) is a variant of global mixture
components in DPM [5]. Each part configuration that appears in training set can be
treated as a mixture component. All collected mixture components are jointly learned
using SSVM. To make different components comparable, we introduce a global bias
term for each mixture component. For inference, we test each image with all mixture
components and take the highest scoring component as the solution of the part layout.

In the experiment, we use a fixed split for training and testing, such that training
images are stratified by species. For the split, half of the images are used for training,
and half of the images are used for testing. The results for all species are evaluated in
terms of the detection loss and the structural loss defined in Eq. (22). The comparison
of average performance for each tooth type is shown in Table 2. It can be seen that
RCM outperforms IPP and MDPM in terms of both the average structural loss and
the detection loss. MDPM works slightly better in predicting tooth configuration than
IPP but its detection performance is affected by incorrect predictions of tooth presence.
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On the other hand, IPP gains better performance in tooth detection, however, which
could not help to improve the structural prediction since the dependencies between
parts are ignored. Moreover, the pruning method in IPP is suboptimal, since the pruning
thresholds are not learned. Fig. 6 shows some qualitative results of RCM, where missing
teeth are represented with dashed bounding boxes, and red color indicates whenever a
prediction is mistaken or not.

Method I1 I2 P1 P4 M3 ASL ADL
IPP 0.27 0.51 0.43 0.25 0.17 0.33 0.45
MDPM 0.26 0.43 0.35 0.25 0.22 0.30 0.62
RCM 0.12 0.22 0.11 0.15 0.08 0.14 0.31

Table 2: The results of MSS. The structural loss for each tooth type is given individually.
The last two columns show the average structural loss (ASL) and the average detection
loss (ADL) over parts.

Fig. 6: The qualitative results of MSS, where bypassed teeth are represented with dashed
bounding boxes, and red color indicates whenever a prediction is mistaken. We show
three typical errors: non-existing teeth, bypassing teeth and incorrect tooth types.

5.5 Results for ZSS

For ZSS, we mainly focus on the prediction of tooth configurations. We do not pay
particular attention to the detection results, since tooth detectors are trained in known
species, and there is no supervision for adapting these detectors for unknown species.
However, we find the distribution of detections is very interesting: detections are cen-
tered if a tooth type indeed exists and they are not far away from the right location. See
Fig. 7 for an example. Since there are only 24 species, we manually pick 12 species
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as known species, and test on the remaining 12 species. The results are shown in Ta-
ble 3 and Table 4. The results in Table 3 shows the performance of individual attribute
classifiers p(ai|I). An attribute classifier is trained for each part in each species. Then
individual posterior probabilities are then combined to make the prediction for the entire
species as described in section 4. Table 4 shows our experimental results of predictions
of tooth type presence for the 12 unknown species. For each prediction, the number
associated is the average posterior probability of tooth type presence given the images
of unknown species.

I1 present I2 present P1 absent P4 present M3 present

Fig. 7: The distribution of detections in unknown species by tooth detectors trained in
known species.

Metrics I1 I2 P1 P4 M3 Overall
True positive rate 0.68 0.77 0.38 0.67 0.69 0.64
True negative rate 0.69 0.62 0.70 0.60 0.70 0.66
Accuracy 0.68 0.69 0.57 0.64 0.69 0.65

Table 3: The results of ZSS with respect to individual attribute classifiers.

6 Conclusion and Future Work

In this paper, we proposed part-based models for tooth character scoring under three
different scenarios. For ISS, we modeled the layout of teeth as a tree graphical model
with Gaussian-like pairwise potentials. This permits the problem of localizing teeth
to be solved by exact MAP inference using dynamic programming and the distance
transform. For MSS, we proposed the reconfigurable chain model, which can be used
as basic components whenever a problem involves solving structural variations of ob-
ject parts under the substring assumption. For ZSS, we proposed a zero-shot learning
method inspired by recent development of attribute representations for image classi-
fication. The evaluation is performed on the bat skull dataset downloaded from the
Morphobank. The results demonstrated the effectiveness of our methods.

Recently, we have done experiments with convolutional neural networks for learn-
ing unary potentials. The accuracy is even better than the one with help from the DPM.
The astonishing result suggests one of our future directions can be the combination
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Species I1 I2 P1 P4 M3 # incorr

Molossus
molossus

1 0 0 0 1
0 0 0 0 1 1

0.64 0.52 0.99 0.70 0.89

Trachops
cirrhosus

1 1 0 1 1
1 1 1 1 1 1

0.98 1.00 0.73 0.86 0.64
Aselliscus
tricuspida-
tus

1 0 1 0 1
0 0 0 0 0 3

0.68 0.56 1.00 0.67 0.87

Kerivoula
hardwickii

1 1 1 1 1
1 1 0 1 1 1

0.60 1.00 0.51 0.76 0.90

Natalus
stramineus

1 1 1 1 1
1 1 0 1 1 1

0.70 0.64 0.56 0.78 0.53
Taphozous
melano-
pogon

0 0 1 0 1
0 0 0 0 1 1

0.98 0.67 0.59 0.66 1.00

Species I1 I2 P1 P4 M3 # incorr

Furipterus
horrens

1 1 0 1 1
1 1 0 0 0 2

0.68 0.65 0.82 0.64 0.83

Lavia frons
0 0 0 0 1
0 0 0 1 1 1

0.53 0.97 0.78 0.65 0.99

Miniopterus
schrebersii

1 1 0 1 1
1 1 0 1 1 0

1.00 0.91 0.81 0.51 1.00

Nycteris
thebaica

1 1 0 0 1
1 0 0 1 1 2

0.62 1.00 0.84 0.65 0.52

Nyctimene
albiventer

1 0 1 1 0
1 1 0 0 0 3

0.80 0.58 0.60 0.51 0.67

Rhinolophus
affinis

1 0 1 0 1
1 0 1 0 0 2

0.50 0.83 0.74 0.66 0.66
Table 4: The results for the 12 unknown species. For each species, the first line stands
for ground truth states. Our prediction is shown in the second line. The third line gives
the average posterior probabilities. It can be seen that most of species has only one error.

of convolutional neural networks and the tooth type predictions. One possible idea is
that we treat the localization and prediction problem as a regression problem, where
each possible location is a state, plus an additional state for the absence of the tooth. A
similar work has been done for object detection by Sermanet et al. [29]. However, the
extension can be non-trivial.

Another interesting idea we have thought about is to model the tooth locations and
the presences/absences in a generative process. In other words, we could associate ran-
dom variables to tooth locations, tooth sizes and the gaps between teeth. The generative
process starts at a tooth, for example I1. We first sample the size of I1, and then its
location. Next, we sample a neighboring tooth type as well as the gap between them.
We repeat this process until all tooth types have been considered or there is no more
space to add a tooth. One advantage of this idea is that the zero-shot issue can be avoid.
Moreover, considering the size of the problem, even a naive MCMC inference can be
accepted. We will leave this interesting idea to our future work.
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